
On the Public Indifferentiability and Correlation
Intractability of the 6-Round Feistel

Construction

Avradip Mandal1, Jacques Patarin2, and Yannick Seurin3

1 University of Luxembourg
2 University of Versailles, France

3 ANSSI, Paris, France
avradip.mandal@uni.lu,jacques.patarin@uvsq.fr,yannick.seurin@m4x.org

Abstract. We show that the Feistel construction with six rounds and
random round functions is publicly indifferentiable from a random in-
vertible permutation (a result that is not known to hold for full indiffe-
rentiability). Public indifferentiability (pub-indifferentiability for short)
is a variant of indifferentiability introduced by Yoneyama et al. [29] and
Dodis et al. [12] where the simulator knows all queries made by the dis-
tinguisher to the primitive it tries to simulate, and is useful to argue the
security of cryptosystems where all the queries to the ideal primitive are
public (as e.g. in many digital signature schemes). To prove the result,
we introduce a new and simpler variant of indifferentiability, that we call
sequential indifferentiability (seq-indifferentiability for short) and show
that this notion is in fact equivalent to pub-indifferentiability for state-
less ideal primitives. We then prove that the 6-round Feistel construction
is seq-indifferentiable from a random invertible permutation. We also ob-
serve that sequential indifferentiability implies correlation intractability,
so that the Feistel construction with six rounds and random round func-
tions yields a correlation intractable invertible permutation, a notion
we define analogously to correlation intractable functions introduced by
Canetti et al. [4].

Keywords: indifferentiability, correlation intractability, Feistel construction

1 Introduction

Indifferentiability. Indifferentiability has been introduced by Maurer et al. [22]
as a generalization of the concept of indistinguishability for systems using public
components (i.e. components that can be queried by any party including the
adversary). This framework has since then gained much popularity, and starting
with [7] it has been widely used to analyze hash functions built from a smaller
ideal primitive, e.g. a fixed input-length (FIL) random compression function
or an ideal block cipher. Informally, a construction C using an ideal primitive
F (e.g. a hash function based on a FIL random compression function) is said



to be indifferentiable from another ideal primitive G (e.g. a random oracle) if
there exists a simulator S accessing G such that the two systems (G,SG) and
(CF ,F ) are indistinguishable. Roughly, the goal of the simulator is twofold: it
must provide answers that are consistent with G, without deviating too much
from the distribution of answers of F . Indifferentiability allows modular proofs
of security in idealized models in the sense that if a construction CF is indiffe-
rentiable from an ideal primitive G, then any cryptosystem proven secure when
used with G remains secure when used with the construction CF .4 For example,
if a cryptosystem is secure in the random oracle model, and some hash function
construction Hf based on a FIL random compression function f is indifferen-
tiable from a random oracle, then the cryptosystem is still secure when used
with Hf . More interestingly from a theoretical point of view, Coron et al. [7]
showed that a number of variants of the Merkle-Damgård construction, used
with an ideal cipher in Davies-Meyer mode, are indifferentiable from a random
oracle. This implies that any functionality that can be securely implemented in
the random oracle model can also be securely realized in the ideal cipher model.

The Feistel construction with public round functions. The Feistel con-
struction turns a function F from n-bit strings to n-bit strings into an (effi-
ciently invertible) permutation on 2n-bit strings. It is computed as ΨF (L,R) =
(R,L ⊕ F (R)). In their seminal paper [18] which triggered a lot of subsequent
work [20,23,24,28], Luby and Rackoff showed that three (resp. four) rounds of the
Feistel construction, with independent pseudorandom functions in each round,
yields a pseudorandom permutation (resp. strong pseudorandom permutation).
The core of this result is in fact purely information-theoretic [20], meaning that
the Feistel construction with three (resp. four) rounds and random round func-
tions is indistinguishable from a random permutation (resp. an invertible random
permutation) by any computationally unbounded distinguisher limited to a poly-
nomial number of oracle queries. The Luby-Rackoff theorem crucially relies on
the secrecy of the round functions. A few papers studied what happens when
the round functions are made public. In particular, Ramzan and Reyzin [25]
have shown that the Feistel construction with four rounds remains strongly
pseudorandom even when the distinguisher has oracle access to the two middle
round functions (but not to the first or the fourth round function). Dodis and
Puniya [11] have studied various properties of the Feistel construction (unpre-
dictability, pseudorandomness) when all intermediate round values of the Feistel
computation are leaked to the adversary and shown that in that case a super-
logarithmic number of rounds was necessary and sufficient for the property to
be inherited by the Feistel construction from the round functions.

Indifferentiability of the Feistel construction. As already mentioned, it
is possible to securely instantiate a random oracle in the ideal cipher model.
A natural question is whether the other direction holds, namely whether there
is a construction using a random oracle that securely implements a random

4 It was recently pointed out that this composition theorem only holds for cryptosys-
tems whose security is defined by so called single-stage games [26].



invertible permutation.5 Given its numerous cryptographic properties, the Feis-
tel construction (with public random round functions) appears as an obvious
candidate for this task. Again, this question can be rigorously formulated in
the indifferentiability framework: namely, is the Feistel construction with suffi-
ciently many rounds, and public random round functions, indifferentiable from a
random invertible permutation? Dodis and Puniya [10] considered the problem
in the so-called honest-but-curious model, where the distinguisher only sees the
queries made by the Feistel construction to the random round functions, but is
not allowed to make arbitrary queries to the round functions. In this setting,
they showed that a super-logarithmic number of rounds is sufficient to securely
realize a random invertible permutation. However, since full indifferentiability
is not implied in general by indifferentiability in the honest-but-curious model
(these two notions are in fact incomparable [9]), they were not able to conclude
in the general setting. Coron, Patarin, and Seurin [9] gave a first proof that the
Feistel construction with six rounds is indifferentiable from a random invertible
permutation. The proof was rather involved, and Künzler [17] later found a dis-
tinguishing attack against the simulator given in [9], therefore invalidating the
indifferentiability proof.6 Only recently, Holenstein et al. [14] gave a new proof
that the Feistel construction with fourteen rounds is indifferentiable from a ran-
dom invertible permutation, which was inspired from a previous proof for ten
rounds that appeared in the PhD thesis of Seurin [27] but had some gaps.
Public indifferentiability. Yoneyama et al. [29] and Dodis et al. [12] indepen-
dently realized that indifferentiability was sometimes stronger than needed to ar-
gue security of cryptosystems. In particular, when all queries made to the ideal
primitive are public (like in many digital signature schemes such as FDH [2],
probabilistic FDH [6], PSS [3]. . . , where all queries to the hash function can
be revealed to the attacker without affecting the security), the weaker notion of
public indifferentiability is sufficient. [29,12] were both concerned with indifferen-
tiability from a random oracle and respectively called this notion leaky random
oracle and public-use random oracle. Public indifferentiability is defined simi-
larly to indifferentiability, but the task of the simulator is made easier by letting
it know all queries made by the distinguisher to the ideal primitive G.
Correlation intractability. Correlation intractability was introduced by Ca-
netti et al. [4] as an attempt to capture as many security properties of the random
oracle as possible. A family of functions is said to be correlation intractable if
for a random function of the family it is hard to find a sequence of inputs that
together with their image satisfy a relation that would be hard to satisfy for a
uniformly random function (a so-called evasive relation). Correlation intractabil-
ity in particular implies collision resistance, pre-image resistance and many other
security properties usually required for cryptographic hash functions. Unfortu-
5 Such a construction easily implies a secure ideal cipher by simply prepending the
key of the block cipher to the input of each random oracle queries.

6 We stress that this does not mean that the 6-round Feistel construction is not in-
differentiable from a random invertible permutation, but only that no one is able to
give a proof at the moment.



nately, Canetti et al. also showed that in the standard model, no correlation
intractable hash function family exists. A consequence of this non-existence re-
sult is that there are cryptosystems that are secure in the random oracle model,
but insecure when the random oracle is instantiated by any function family.
Though correlation intractability was primarily defined in the standard model,
it is easily transposable to idealized models. As we will see our result establishes
a connection between correlation intractability and public indifferentiability.
Contributions of this work. We define a new and weaker notion of indiffe-
rentiability that we call sequential indifferentiability (seq-indifferentiability for
short). This new definition only restricts the order in which the distinguisher
can query the two oracles it is granted access to: it can first query the primitive
F (or the simulator S), and then the construction CF (or the ideal primitive G),
but not F /S again. We show that when the ideal primitive G is stateless (which
is the most usual case), this notion is equivalent to public indifferentiability in-
troduced by [12,29] where all queries to the primitive G are public. However the
seq-indifferentiability notion has the advantage of being simpler and easier to use
in proofs. This simple restriction on the queries of the distinguisher enables to
give a relatively simple proof that the 6-round Feistel construction with random
round functions is seq-indifferentiable (and hence also publicly indifferentiable)
from a random invertible permutation, a result whose analogue for full indiffe-
rentiability seems out of reach at the moment. Our result in particular implies
that any scheme proven secure in the random invertible permutation model or
the ideal cipher model and where all queries to the ideal primitive can be made
public without affecting the security (e.g. signature schemes like OPSSR [13] and
subsequent variants [15,5]) remains secure in the random oracle model when us-
ing a 6-round Feistel construction (while the best generic replacement previously
to our work was the 14-round Feistel construction [14]).

Though weaker than full indifferentiability, we also show that seq-indifferen-
tiability is still sufficiently strong to imply correlation intractability. In particu-
lar, our result shows that the 6-round Feistel construction with random round
functions yields a correlation intractable invertible permutation (we note that
previous observations [9] already implied that the 5-round Feistel construction
fails to provide a correlation intractable invertible permutation). We discuss the
implications of this result for chosen-key and known-key attacks on block ci-
phers [16].

On a slightly different topic, we also analyze the Feistel-like domain extension
construction for ideal ciphers proposed by Coron et al. [8] and show that in
the seq-indifferentiability model one can obtain a security bound beyond the
birthday barrier. See the full version of the paper [19].
Open problems. The most challenging open question is of course whether
the 6-round Feistel construction is fully indifferentiable from a random invert-
ible permutation, and if not, what is the minimal number of rounds needed to
achieve this property. We hope that our result will constitute a first step to-
wards a finer understanding of this question. In particular, our result implies
that if the 6-round Feistel construction is not fully indifferentiable from a ran-



dom invertible permutation, then this cannot be shown by proving that it is not
correlation intractable as was done for five rounds. Another interesting problem
is to weaken the assumptions on the round functions and see which property
would continue to hold: e.g. is the 6-round Feistel construction with correlation
intractable round functions still a correlation intractable invertible permutation?
A related question is whether our result could be a first step towards proposing
plausible constructions of (restricted) correlation intractable function families in
the standard model, a question left open by [4, Section 5.1].
Organization. In Section 2, we start by giving the definition of sequential in-
differentiability and prove that it is equivalent to public indifferentiability for
stateless ideal primitives. In Section 3, we prove the main result of this paper,
namely that the 6-round Feistel construction is sequentially (and hence pub-
licly) indifferentiable from a random invertible permutation. In Section 4, we
apply this result to prove the correlation intractability of the 6-round Feistel
construction.

2 Preliminaries

2.1 Notations and Definitions

Notations. [i..j] will denote the set of integers k such that i ≤ k ≤ j. We will
use n to denote the security parameter, and in sections dealing with the Feistel
construction we will identify n with the input and output length of the round
functions. We will write f ∈ poly(n) to denote a polynomially bounded function
and f ∈ negl(n) to denote a negligible function. When X is a non-empty finite
set, we write x ←R X to mean that a value is sampled uniformly at random
from X and assigned to x. PPT will stand for probabilistic polynomial-time, and
ITM for interactive Turing machine.
Ideal primitives. Given two sets Dom ⊂ {0, 1}∗ and Rng ⊂ {0, 1}∗, we denote
F(Dom, Rng) the set of all functions from Dom to Rng. A primitive G is a sequence
G = (Domn, Rngn,Gn)n∈N where Gn ⊂ F(Domn, Rngn). The ideal primitive G
associated with G is the sequence of random variables (Gn)n∈N where Gn is
uniformly distributed over Gn. We will often adopt the lazy sampling view [1]
to describe ideal primitives queried as oracles.

A random function F = (Fn)n∈N is the ideal primitive associated to the set of
all functions from {0, 1}n to {0, 1}n. Queried as an oracle it returns a uniformly
random string in {0, 1}n if x was never queried, or the same answer as before if
x was previously queried.

A random invertible permutation P = (Pn)n∈N is the ideal primitive associ-
ated with the sequence P = (Domn, Rngn,Pn)n∈N where Domn = {0, 1} × {0, 1}n,
Rngn = {0, 1}n, and Pn is the set of functions P such that x 7→ P (0, x) is a
permutation of {0, 1}n, and y 7→ P (1, y) its inverse. Queries of the form (0, x)
and (1, y) will be called respectively forward and backward queries. In the lazy
sampling point of view, Pn keeps two lists Lx and Ly of forward and backward
queries whose image is already defined together with an invertible mapping from



Lx to Ly. Upon receiving a forward query (0, x) such that x /∈ Lx it returns an
answer y uniformly random over {0, 1}n \ Ly, and adds x to Lx and y to Ly
and updates the mapping (and reciprocally for a backward query (1, y)). Later,
we will occasionally refer to Lx and Ly as the history of the random invertible
permutation. An ideal cipher E = (En) takes an additional input, the key, of
length `(n), and for each key k ∈ {0, 1}`(n), En(k, ·) is an independent random
invertible permutation over {0, 1}n.

A two-sided random function on {0, 1}n, denoted Rn, is very similar to a
random invertible permutation. It also keeps to lists Lx and Ly together with
an invertible mapping from Lx to Ly. However when receiving a forward query
(0, x) such that x /∈ Lx or a backward query (1, y) such that y /∈ Ly, it re-
turns a uniformly random answer in {0, 1}n. In case a collision happens, the
previous image or pre-image is removed from Ly or Lx and the mapping is up-
dated accordingly. Note that a two-sided random function is stateful: it may
return different answers to the same query (however at any time it defines an
invertible mapping from Lx to Ly). A two-sided random function is statistically
indistinguishable from a random invertible permutation: the so called PRF/PRP
switching lemma [1] establishes7 that an oracle machine making at most q oracle
queries can distinguish Pn from Rn with advantage at most q2/2n+1.

In the following, we omit the subscripts when the domain and the range
of an ideal primitive are clear from the context. A construction will simply be
a Turing machine having oracle access to an ideal primitive and implementing
another given primitive. The main construction we will consider in this work is
the Feistel construction.
The Feistel construction.Given a function F : {0, 1}n → {0, 1}n, the basic (1-
round) Feistel construction is the permutation on {0, 1}2n defined by ΨF (L,R) =
(R,L⊕ F (R)). Its inverse is computed by (ΨF )−1(S, T ) = (T ⊕ F (S), S). (Here
L, R, S, and T are n-bit strings). The k-round Feistel construction associated
to round functions (F1, . . . , Fk) takes inputs x ∈ {0, 1} × {0, 1}2n and is defined
by:

Ψ
(F1,...,Fk)
k (0, (L,R)) = ΨFk ◦ · · · ◦ ΨF1(L,R)

Ψ
(F1,...,Fk)
k (1, (S, T )) =

(
ΨF1

)−1 ◦ · · · ◦
(
ΨFk

)−1 (S, T ) .

Notations used for denoting the intermediate round values for the 6-round Feistel
construction are given in Figure 1. In the following, when considering the Feistel
construction using k independent random functions, we will simply note F =
(F1, . . . ,Fk) this tuple of functions and ΨF

k = Ψ
(F1,...,Fk)
k .

2.2 Sequential Indifferentiability
Indifferentiability was originally formulated within the formalism of random sys-
tems [21]. We adopt here the simpler formulation using interactive Turing ma-
chines as in [7]. We first recall the classical definition of indifferentiability [22].
7 Strictly speaking, the result is proven in [1] for one-sided functions and permutations,
but the proof can be straightforwardly adapted to two-sided primitives.



F1

F2 X

F3 Y

F4 Z

F5 A

F6 S

L R

S T

Fig. 1. Notations used for the 6-round Feistel construction.

For this, we slightly change the way one usually measure the cost of queries of
a distinguisher (this will make our results simpler to express). Given a distin-
guisher D, the total oracle queries cost of D is the number of queries received
by the oracle F when D interacts with (CF ,F ). Hence this is the sum of the
number of direct queries of D to F and the number of queries made by C to F
to answer D’s queries.

Definition 1 ((Statistical, Strong) Indifferentiability). Let q, σ : N → N
and ε : N → R be three functions of the security parameter n. A construction C
with oracle access to an ideal primitive F is said to be statistically and strongly
(q, σ, ε)-indifferentiable from an ideal primitive G if there exists an oracle ITM
S such that for any distinguisher D of total oracle queries cost at most q, S
makes at most σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DC

F ,F (1n) = 1
]∣∣∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any
q ∈ poly(n), the above definition is fulfilled with σ ∈ poly(n) and ε ∈ negl(n).

Definition 1 does not refer to the running time of S and D. When only
polynomial-time algorithms are considered, indifferentiability is said to be com-
putational. Weak indifferentiability is defined as above, but the order of quanti-
fiers for the distinguisher and the simulator are switched (for all distinguisher,
there is a simulator. . . ). We will mainly be concerned with statistical strong in-
differentiability in this work, but we note that weak indifferentiability is sufficient
for our results on correlation intractability in Section 4.

In order to define our new notion of indifferentiability, we will consider a
restricted class of distinguisher, called sequential distinguisher, which can only



make queries in a specific order. Such a distinguisher first queries the primitive F
(or the simulator S) as it wishes, and then the construction CF (or the primitive
G) as it wishes, but after its first query to CF or G, it cannot query S or F
again. Sequential indifferentiability (seq-indifferentiability for short) is defined
relatively to such distinguishers.

Definition 2 (Seq-indifferentiability). A construction C with oracle access
to an ideal primitive F is said to be (statistically and strongly) (q, σ, ε)-seq-
indifferentiable from an ideal primitive G if Definition 1 is fulfilled when D
ranges over the class of sequential distinguishers.

Full indifferentiability obviously implies seq-indifferentiability. Yoneyama et
al. [29] and Dodis et al. [12] have introduced another weakened notion of indif-
ferentiability, where the primitive G is only queried on public inputs, that we
call here public indifferentiability (pub-indifferentiability for short). This can be
formalized as follows: given an ideal primitive G, we define the augmented ideal
primitive G as the primitive exposing two interfaces: the first (regular) one is the
same as G, and the second is an interface Reveal that, when queried, returns
the ordered sequence of all (regular) queries and corresponding answers made so
far by any party to the regular interface. The second interface can only be used
by the simulator, not by the distinguisher.

Definition 3 (Pub-indifferentiability). A construction C with oracle access
to an ideal primitive F is said to be (statistically and strongly) (q, σ, ε)-pub-
indifferentiable from an ideal primitive G if there exists an oracle ITM S such
that for any distinguisher D of total oracle queries cost at most q, S makes at
most σ oracle queries, and the following holds:∣∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DC

F ,F (1n) = 1
]∣∣∣∣ ≤ ε .

As explained in [12], the composition theorem of [22] still holds with pub-
indifferentiability for cryptosystems where all messages queried to G can be
inferred from the adversary’s query during the security experiment.

Clearly, pub-indifferentiability implies seq-indifferentiability. Indeed, since af-
ter its first query to G a sequential distinguisher never queries the simulator
again, the interface Reveal is of no use to the simulator. A less trivial result
is that seq-indifferentiability implies pub-indifferentiability for stateless8 ideal
primitives G, thus making seq- and pub-indifferentiability equivalent notions in
that case.

Theorem 1. Let C be a construction with oracle access to some ideal prim-
itive F . If CF is statistically (resp. computationally) strongly (2q, σ, ε)-seq-in-
differentiable from a stateless ideal primitive G, then CF is statistically (resp.
computationally) strongly (q, σ + q, ε)-pub-indifferentiable from G.
8 By stateless we mean that the answer of G to any query only depends on the query
and the randomness of G and not on any additional state information. In particular,
for fixed randomness, G always returns the same answer to a given query.



Proof. See the full version of the paper [19]. ut

Ristenpart9 observed that the above theorem does not hold (at least in the
computational setting) when G is stateful. This is explained in the full version of
the paper [19]. A very simple example enables to separate full indifferentiability
from seq/pub-indifferentiability, namely the Merkle-Damgård construction with-
out strengthening using a random compression function: it was proven in [7] that
it is not indifferentiable from a random oracle (a consequence of length-extension
attacks), and in [12] that it is pub-indifferentiable from a random oracle.

3 Seq-Indifferentiability of the 6-Round Feistel
Construction

In this section we prove the main result of this paper which states that the Feistel
construction with 6 rounds and random round functions is seq-indifferentiable
from a random invertible permutation, and hence also pub-indifferentiable since
a random invertible permutation is stateless. Before stating the result, we recall
that in [9], it was shown that the Feistel construction with five rounds is not
indifferentiable from a random invertible permutation. In fact, the distinguisher
they described is sequential, which implies that the 5-round Feistel construction
is not even seq-indifferentiable from a random invertible permutation. We recall
this attack in the full version of the paper [19].

Theorem 2. The Feistel construction with six rounds and random round func-
tions is statistically and strongly (q, σ, ε)-seq-indifferentiable from a random in-
vertible permutation, where:

σ(q) = q2 and ε(q) = 8q4

2n + q4

22n .

The rest of this section is devoted to the proof of Theorem 2. We will consider
a sequential distinguisher D that first issues at most qf queries to the simula-
tor (or the random functions Fi). These queries will be called F -queries. Then,
it issues at most qp queries to the random permutation P (or the Feistel con-
struction ΨF

6 ). These queries will be called P -queries. The total oracle queries
cost is qf + 6qp (for each P -query, the Feistel construction makes 6 F -queries to
compute the answer) and is assumed to be less than q.

We start by describing how the simulator S works. It maintains an history of
values for which each round function has been defined (either because this value
has been queried by the distinguisher, or because the simulator has set this value
internally). We will note Fi, i ∈ [1..6] the history of the i-th round function, that
is a set of pairs (U, V ) ∈ {0, 1}n×{0, 1}n, where U is an input to round function
Fi and V is the corresponding image (which we denote Fi(U) = V ). We write
U ∈ Fi to denote that the image of U by Fi is defined in the history. Initially
round function values Fi(U) are undefined for all i ∈ [1..6] and all U ∈ {0, 1}n.
9 Personal communication



The images are then modified during the execution of the simulator. Fi(U)← V
means that the image of U by Fi is set to V and Fi(U)←R {0, 1}n means that
the image of U by Fi is set uniformly at random in {0, 1}n. If a round function
value is already in the history and a new assignment occurs, the previous value
is overwritten (alternatively, we could let the simulator abort in this case, as
in [9], but as we will see this happens only with negligible probability so that
the exact behavior of the simulator in such a case in unessential). We will note
H = (F1, . . . , F6) the complete history of the six round functions.

When the simulator receives a F -query (i, U) (meaning that the distinguisher
asks for the image of U through round function Fi), it calls an internal procedure
Query(i, U). This procedure checks whether the corresponding image is in the
history of Fi, in which case it returns this value and stops. Otherwise it sets the
image uniformly at random. If i = 1, 2, 5, or 6, it does nothing more. If i = 3 or
4, the simulator additionally completes all centers (Y,Z) ∈ F3×F4 newly created
so that the corresponding values of (L,R) and (S, T ) obtained by evaluating the
Feistel construction respectively backward and forward are consistent with the
random permutation P , meaning that P (0, (L,R)) = (S, T ). This is done by call-
ing two internal procedures CompleteForward (if i = 4) or CompleteBackward
(if i = 3) which “adapts” two round function values (F5(A) and F6(S) for
CompleteForward, and F1(R) and F2(X) for CompleteBackward) so that the
Feistel matches with the random permutation. The pseudo-code for the three
procedures is given below. Statements put in boxes in CompleteForward and
CompleteBackward are replacements for a different system used in the indiffe-
rentiability proof and can be ignored for the moment.

There are two points to prove in order to obtain Theorem 2: that the simula-
tor runs in polynomial time, and then that the probabilities that the distinguisher
outputs 1 when interacting with (P ,SP ) and (ΨF

6 ,F ) differ by a negligible quan-
tity ε. The following lemma shows that the simulator runs in time polynomial
in the number of queries it receives.

Lemma 1. When the simulator is asked at most q queries, then the size of
histories for F3 and F4 is at most q, the size of histories for F1, F2, F5 and F6
is at most q2 + q, the procedures CompleteForward and CompleteBackward are
called in total at most q2 times, and the simulator makes at most q2 queries to
the random permutation.

Proof. Elements are added to the history of F3 and F4 only when a correspond-
ing F -query is made to the simulator, so that the size of their history cannot be
greater than q. For each pair (Y,Z) ∈ F3 × F4, either CompleteForward(Y, Z)
or CompleteBackward(Y,Z) is called, at most once, so that in total these pro-
cedures are called at most q2 times. Since the simulator makes one query to the
random permutation per execution of CompleteForward and CompleteBackward
this in turns implies that the total number of queries to P is at most q2. Fi-
nally, elements are added to the history of F1, F2, F5 and F6 either when a
query is made to the simulator, or during an execution of CompleteForward
or CompleteBackward, so that the size of their history cannot be greater than
q2 + q. ut



Algorithm 1 Simulator

1: variable: round function histories F1, . . . , F6

2: procedure Query(i,U)
3: if U /∈ Fi then
4: Fi(U)←R {0, 1}n

5: if i = 3 then
6: for all Z ∈ F4 do
7: CompleteBackward(U,Z)
8: if i = 4 then
9: for all Y ∈ F3 do
10: CompleteForward(Y,U)
11: return Fi(U)

12: procedure CompleteForward(Y ,Z)
13: X := Z ⊕ F3(Y )
14: Query(2, X)
15: R := Y ⊕ F2(X)
16: Query(1, R)
17: L := X ⊕ F1(R)
18: (S, T ) := P (0, (L,R))

(S, T ) := R(0, (L,R))
19: A := Y ⊕ F4(Z)
20: F5(A)← Z ⊕ S
21: F6(S)← A⊕ T

22: procedure CompleteBackward(Y ,Z)
23: A := Y ⊕ F4(Z)
24: Query(5, A)
25: S := Z ⊕ F5(A)
26: Query(6, S)
27: T := A⊕ F6(S)
28: (L,R) := P (1, (S, T ))

(L,R) := R(1, (S, T ))
29: X := Z ⊕ F3(Y )
30: F2(X)← R⊕ Y
31: F1(R)← L⊕X

In order to prove that the two systems Σ1 = (P ,SP ) and Σ4 = (ΨF
6 ,F ) are

indistinguishable, we will use two intermediate systems: Σ2 = (ΨSP

6 ,SP ) where
the P -queries ofD are answered by the Feistel construction asking round function
values to the simulator, which itself interacts with P , and Σ3 = (ΨSR

6 ,SR)
where the random invertible permutation is replaced by a two-sided random
function R (note the corresponding change in procedures CompleteForward and
CompleteBackward indicated by a boxed statement). The four systems used in
the proof are depicted in Figure 2.

The main part of the analysis is concerned with systems Σ2 and Σ3. We will
show that unless some bad event happens, the round function values set by the
simulator in Σ2 are consistent with P (which will enable to bound the statistical
distance between Σ1 and Σ2), and that in Σ3 they are uniformly random and
independent (which will enable to bound the statistical distance between Σ3 and
Σ4). In systems Σ2 and Σ3, the simulator first receives at most qf queries from
the distinguisher, and then at most 6qp queries from the Feistel construction
(6 for each P -query of the distinguisher). Hence the total number of queries
received by the simulator is exactly the total oracle queries cost of D, which is
less than q. The statistical distance between answers of systems Σ2 and Σ3 is
easily bounded.



D

0/1

SP

D

0/1

SΨ6

P

D

0/1

SΨ6

R

D

0/1

FΨ6

Σ1 Σ2 Σ3 Σ4

Fig. 2. Systems used in the seq-indifferentiability proof.

Lemma 2. For any distinguisher of total oracle queries cost at most q, the
following holds:∣∣Pr

[
DΣ2(1n) = 1

]
− Pr

[
DΣ3(1n) = 1

]∣∣ ≤ q4

22n+1 .

Proof. Consider the union of D, Ψ6, and S as a single distinguisher D′ interacting
either with a random invertible permutation or a two-sided random function.
Note that D′ makes at most q2 queries to its oracle (Lemma 1). One can conclude
thanks to the PRF/PRP switching lemma [1]. ut

Before going further with the proof, we define formally what it means for
an input x ∈ {0, 1} × {0, 1}n to the Feistel construction to be computable with
respect to the history of the simulator.

Definition 4 (Computable input). Given a simulator history H and an input
x ∈ {0, 1}×{0, 1}2n, the sequence ρH(x) = (ρH(x)[i])i∈[0..7] is defined as follows:

– for a forward input x = (0, (L,R)), ρH(x)[0] = L, ρH(x)[1] = R, and for
i = 2 to 7:{

if ρH(x)[i− 1] ∈ Fi−1 then ρH(x)[i] = ρH(x)[i− 2]⊕ Fi−1(ρH(x)[i− 1])
else ρH(x)[i] =⊥

– for a backward input x = (1, (S, T )), ρH(x)[7] = T , ρH(x)[6] = S, and for
i = 5 to 0:{

if ρH(x)[i+ 1] ∈ Fi+1 then ρH(x)[i] = ρH(x)[i+ 2]⊕ Fi+1(ρH(x)[i+ 1])
else ρH(x)[i] =⊥

An input x is said to be computable with respect to H iff ρH(x)[i] 6=⊥ for all
i ∈ [0..7]. In that case we note ΨH6 (x) = (ρH(x)[6], ρH(x)[7]) if x is a forward
input and ΨH6 (x) = (ρH(x)[0], ρH(x)[1]) if x is a backward input.



For a computable input x, we will often use the notation (L,R,X, Y, Z,A, S,
T ) = ρH(x) as depicted on Figure 1.

We now define a bad event that may occur during the execution of the sim-
ulator (in Σ2 or Σ3) in relation with Lines 20, 21, 30, and 31 of the simulator.
We will say that event Bad happens if in any execution of CompleteForward or
CompleteBackward, the input value whose image is set at Lines 20, 21, 30 or 31
is already in the history of the corresponding round function. This implies that
the simulator overwrites a value so that its answers may not be coherent with
P or R any more.10 Reciprocally, if Bad does not happen, then the simulator
never overwrites any value in its history.

We start with the simple observation that if Bad does not happen, then during
any execution of CompleteForward or CompleteBackward, the query to P or R
made by the simulator is fresh.

Lemma 3. In system Σ2, if Bad does not happen, then in any execution of
CompleteForward or CompleteBackward the query to P made by the simulator
is not in the history of P . For Σ3, the corresponding statement holds for R.

Proof. The reasoning is the same for Σ2 and Σ3, we use Σ2 to fix ideas. Consider
an execution of CompleteForward(Y,Z). Let x = (0, (L,R)) be the query to P
made by the simulator, and (S, T ) = P (x). If x is already in the history of P ,
it was necessarily added by a previous execution of CompleteForward(Y ′, Z ′) or
CompleteBackward(Y ′, Z ′) (note that the distinguisher does not make any query
to P in Σ2 or to R in Σ3). But since Bad does not happen, round function values
are never overwritten so that necessarily (Y ′, Z ′) = (Y,Z). This is impossible
since by construction the simulator makes at most one call to CompleteForward
or CompleteBackward per center (Y, Z) ∈ F3 × F4. ut

We are now ready to bound the probability that Bad happens in Σ2 or Σ3.

Lemma 4. For any distinguisher of total oracle queries cost at most q, event
Bad happens with probability less than 4q4/2n in Σ3 and less than 4q4/2n +
q4/22n+1 in Σ2.

Proof. See the full version of the paper [19]. ut

The following lemma says that as long as Bad does not happen in Σ2, the
round function values set by the simulator are consistent with P .

Lemma 5. If Bad does not happen in Σ2, then for any input x ∈ {0, 1}×{0, 1}2n

computable with respect to the final history of the simulator H, ΨH6 (x) = P (x).

Proof. Consider an input x ∈ {0, 1} × {0, 1}2n computable with respect to the
final history H of the simulator, and let (L,R,X, Y, Z,A, S, T ) = ρH(x). There
was necessarily a call to CompleteForward(Y,Z) or CompleteBackward(Y, Z)
10 In previous work on indifferentiability of the Feistel construction [9,27], in such a

case the simulator aborted. It does not change much since, as we will prove, this
happens only with negligible probability.



during the execution of the simulator. With respect to the history H′ just af-
ter the completion of CompleteForward(Y, Z) or CompleteBackward(Y,Z), it
is clear that ΨH′

6 (x) = P (x). Since Bad does not happen the simulator never
overwrites a value and the equality remains true until the end of the simulation,
hence ΨH6 (x) = P (x). ut

A direct consequence of this lemma is that as long as Bad does not happen
in Σ2, the answers of systems Σ1 and Σ2 are identically distributed.

Lemma 6. For any distinguisher of total oracle queries cost at most q, the
following holds:

∣∣Pr
[
DΣ1(1n) = 1

]
− Pr

[
DΣ2(1n) = 1

]∣∣ ≤ 4q4

2n + q4

22n+1 .

Proof. Clearly, answers to F -queries of the distinguisher are identically dis-
tributed in Σ1 and Σ2 since they are answered by SP in both systems (may
Bad occur or not).11 Moreover, in Σ2 any P -query x asked by the distinguisher
is computable with respect to the history of the simulator at the time it is an-
swered by Ψ6, and if Bad does not happen in Σ2, then according to Lemma 5,
ΨH6 (x) = P (x) so that answers to P -queries of the distinguisher are also identi-
cally distributed in both systems. The result follows from Lemma 4. ut

Lemma 7. If Bad does not happen in system Σ3, then the round function values
set by the simulator are uniformly random and independent.

Proof. Since this is clear for round function values set uniformly at random
(independently of Bad occurring or not), we only have to examine values that
are adapted at Lines 20, 21, 30, and 31 of the simulator. But according to
Lemma 3, if Bad does not happen, the query to R made by the distinguisher in
any execution of CompleteForward or CompleteBackward is not in the history of
R, so that the answer (S, T ) or (L,R) is uniformly random. Consequently, round
function values set by F5(A)← Z⊕S and F6(S)← A⊕T in CompleteForward,
or F2(X) ← R ⊕ Y and F1(R) ← L ⊕ X in CompleteBackward are uniformly
random and independent of previous round function values set by the simulator.
Since Bad does not happen round function values are not overwritten and the
result follows. ut

This lemma finally enables to bound the statistical distance between the
answers of Σ3 and Σ4.

Lemma 8. For any distinguisher of total oracle queries cost at most q, the
following holds:

∣∣Pr
[
DΣ3(1n) = 1

]
− Pr

[
DΣ4(1n) = 1

]∣∣ ≤ 4q4

2n .

11 It is crucial here that the distinguisher is sequential, otherwise the simulation in Σ2
would be altered by the queries made by Ψ6.



Proof. If Bad does not occur in Σ3 then answers of SR are distributed exactly
as answers of F according to Lemma 7. Hence the statistical distance between
answers of Σ3 and Σ4 is upper bounded by the probability that Bad happens in
Σ3, given by Lemma 4. ut

Theorem 2 is now a simple consequence of Lemmata 2, 6, and 8.

Remark 1. The strategy of using the intermediate system Σ2 is likely to be
quite generic for seq-indifferentiability proofs (system Σ3, on the contrary, is
quite specific to the Feistel construction). We believe this could probably make
proofs of pub-indifferentiability (e.g. [12, Section 7]) much easier, but leave this
for future work.

Remark 2. Note that for general distinguishers (not necessarily sequential), the
proof would go through exactly as above for Lemmata 2 and 8. The problem-
atic step is clearly going from Σ1 to Σ2. To see what could go wrong if the
distinguisher can interleave queries to P and S, consider the following simple
example. D first makes a P -query P (0, (L,R)) = (S, T ), and then makes the
sequence of F -queries F1(R), F2(X), F6(S), F5(A). In system Σ1, the simulator
returns uniformly answers to the four F -queries and will be unable to adapt
F3 and F4, whereas in Σ2 the initial P -query of the distinguisher will trigger
six F -queries from Ψ6 which will lead the simulator to adapt the chain when
query F4(Y ) occurs. Making progress towards proving full indifferentiability for
six rounds clearly requires to find the right way to deal with these “external”
chains without knowing the P -queries of the distinguisher.

4 Applications to Correlation Intractability

Correlation intractability was introduced by Canetti et al. in their work on the
limits of the random oracle methodology [4]. In the standard model, a function
family is said to be correlation intractable if given the description of a random
function f of the family, no PPT algorithm can find an input x, or more generally
a sequence of inputs (x1, . . . , xm), such that ((x1, . . . , xm), (f(x1), . . . , f(xm)))
satisfies a relation that would be hard to satisfy for a uniformly random function.

There is no difficulty in extending the definition of correlation intractability to
an idealized model: instead of passing the description of the function as input to
the algorithm, it is granted access to the ideal primitive used by the construction
C. This way one can define a correlation intractable construction (accessing an
ideal primitive).

In all the following, we will consider relations over pairs of binary sequences
(formally, a subset of {0, 1}∗ × {0, 1}∗). We assume that the machine M re-
turns sequences of strings in Domn, the domain of the ideal primitive Gn or the
construction CFn .

Definition 5 (Evasive relation). Let G = (Gn) be an ideal primitive asso-
ciated to G = (Domn, Rngn,Gn). A relation R over pairs of binary sequences is



said to be evasive with respect to G if for any PPT oracle machineM, there is
a negligible function ε such that the following holds:

Pr
[
(x1, . . . , xm)←MGn(1n) :

((x1, . . . , xm), (Gn(x1), . . . ,Gn(xm))) ∈ R
]
≤ ε(n) .

Definition 6 (Correlation intractable construction). Let C be a construc-
tion with oracle access to an ideal primitive F = (Fn) and implementing some
primitive G. CF is said to be (multiple-output) correlation intractable if for any
relation R over pairs of binary sequences evasive with respect to G, and any
PPT oracle machineM, there is a negligible function ε such that:

Pr
[
(x1, . . . , xm)←MFn(1n) :(

(x1, . . . , xm), (CFn(x1), . . . , CFn(xm))
)
∈ R

]
≤ ε(n) .

Weak correlation intractability is defined similarly as above by quantifying only
over all polynomial-time recognizable relations (i.e. relations R such that there
exists a polynomial-time algorithm that, given ((x1, . . . , xm), (y1, . . . , ym)), de-
cides whether it belongs to R or not).

Theorem 3. Let C be a construction with oracle access to an ideal primitive
F = (Fn) and implementing some primitive G. If CF is statistically (resp. com-
putationally) seq-indifferentiable from the ideal primitive G, then CF is correla-
tion intractable (resp. weakly correlation intractable).

Proof. See the full version of the paper [19]. ut

A direct consequence of Theorems 2 and 3 is that the 6-round Feistel con-
struction with random round functions is correlation intractable: no polynomial
algorithm with oracle access to the round functions can find a sequence of in-
puts that together with their image by the Feistel satisfy a relation that would
be hard to satisfy in the random invertible permutation model. Note that the
sole existence of correlation intractable invertible permutations in the random
oracle model was already implied by the result of Holenstein et al. [14] on the
full indifferentiability of the 14-round Feistel construction (since full indifferen-
tiability implies seq-indifferentiability and hence correlation intractability), but
our results shows that six rounds are sufficient to achieve this property.

Remark 3. According to Theorem 3, sequential indifferentiability implies corre-
lation intractability. However correlation intractability does not necessarily im-
ply sequential indifferentiability. In the full version of the paper [19] we provide
a simple counter-example separating the two notions.

Implications for Chosen-Key and Known-Key Attacks on Block Ci-
phers. Knudsen and Rijmen [16] have introduced so-called known-key attacks
on block ciphers. We discuss the implications of our results regarding this attack
model in the full version of the paper [19].



References

1. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In X. Lai and K. Chen, editors, Advances in Cryptology
- ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages
299–314. Springer, 2006.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

3. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures - How to
Sign with RSA and Rabin. In U. M. Maurer, editor, Advances in Cryptology
- EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
399–416. Springer, 1996.

4. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Method-
ology, Revisited (Preliminary Version). In Symposium on Theory of Com-
puting - STOC ’98, pages 209–218. ACM, 1998. Full version available at
http://arxiv.org/abs/cs.CR/0010019.

5. B. Chevallier-Mames, D. H. Phan, and D. Pointcheval. Optimal Asymmetric En-
cryption and Signature Paddings. In J. Ioannidis, A. D. Keromytis, and M. Yung,
editors, Applied Cryptography and Network Security - ACNS 2005, volume 3531 of
Lecture Notes in Computer Science, pages 254–268. Springer, 2005.

6. J.-S. Coron. Optimal Security Proofs for PSS and Other Signature Schemes. In
L. R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 272–287. Springer, 2002.

7. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård Revisited:
How to Construct a Hash Function. In V. Shoup, editor, Advances in Cryptology -
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

8. J.-S. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A Domain Extender for the
Ideal Cipher. In D. Micciancio, editor, Theory of Cryptography Conference - TCC
2010, volume 5978 of Lecture Notes in Computer Science, pages 273–289. Springer,
2010.

9. J.-S. Coron, J. Patarin, and Y. Seurin. The Random Oracle Model and the Ideal
Cipher Model Are Equivalent. In D. Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2008.

10. Y. Dodis and P. Puniya. On the Relation Between the Ideal Cipher and the
Random Oracle Models. In S. Halevi and T. Rabin, editors, Theory of Cryptography
Conference - TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages
184–206. Springer, 2006.

11. Y. Dodis and P. Puniya. Feistel Networks Made Public, and Applications. In
M. Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of
Lecture Notes in Computer Science, pages 534–554. Springer, 2007.

12. Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damgård for Practi-
cal Applications. In A. Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 371–388. Springer, 2009.

13. L. Granboulan. Short Signatures in the Random Oracle Model. In Y. Zheng,
editor, Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 364–378. Springer, 2002.



14. T. Holenstein, R. Künzler, and S. Tessaro. The Equivalence of the Random Oracle
Model and the Ideal Cipher Model, Revisited. In L. Fortnow and S. P. Vadhan,
editors, Symposium on Theory of Computing - STOC 2011, pages 89–98. ACM,
2011.

15. J. Katz and N. Wang. Efficiency improvements for signature schemes with tight se-
curity reductions. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Conference
on Computer and Communications Security, pages 155–164. ACM, 2003.

16. L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some Block Ciphers.
In K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833
of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

17. R. Künzler. Are the random oracle and the ideal cipher models equivalent? Mas-
ter’s thesis, ETH Zurich, Switzerland, 2009.

18. M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

19. A. Mandal, J. Patarin, and Y. Seurin. On the Public Indifferentiability and Cor-
relation Intractability of the 6-Round Feistel Construction. ePrint Archive Report
2011/496, 2011. Available at http://eprint.iacr.org/2011/496.pdf.

20. U. M. Maurer. A Simplified and Generalized Treatment of Luby-Rackoff Pseudo-
random Permutation Generator. In R. A. Rueppel, editor, Advances in Cryptology
- EUROCRYPT ’92, volume 658 of Lecture Notes in Computer Science, pages
239–255. Springer, 1992.

21. U. M. Maurer. Indistinguishability of Random Systems. In L. R. Knudsen, editor,
Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 110–132. Springer, 2002.

22. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology. In
M. Naor, editor, Theory of Cryptography Conference- TCC 2004, volume 2951 of
Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

23. M. Naor and O. Reingold. On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. Journal of Cryptology, 12(1):29–66, 1999.

24. J. Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In M. K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 106–122. Springer, 2004.

25. Z. Ramzan and L. Reyzin. On the Round Security of Symmetric-Key Crypto-
graphic Primitives. In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 376–393. Springer, 2000.

26. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with Composition: Limi-
tations of the Indifferentiability Framework. In K. G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 487–506. Springer, 2011.

27. Y. Seurin. Primitives et protocoles cryptographiques à sécurité prouvée. PhD thesis,
Université de Versailles Saint-Quentin-en-Yvelines, France, 2009.

28. S. Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal of
Cryptology, 16(4):249–286, 2003.

29. K. Yoneyama, S. Miyagawa, and K. Ohta. Leaky Random Oracle. IEICE Trans-
actions, 92-A(8):1795–1807, 2009.


