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Abstract. We consider average-case strengthenings of the traditional
assumption that coNP is not contained in AM. Under these assumptions,
we rule out generic and potentially non-black-box constructions of various
cryptographic primitives (e.g., one-way permutations, collision-resistant
hash-functions, constant-round statistically hiding commitments, and
constant-round black-box zero-knowledge proofs for NP) from one-way
functions, assuming the security reductions are black-box.

1 Introduction

In the past four decades, many cryptographic tasks have been put under rigorous
treatment in an e�ort to realize these tasks under minimal assumptions. In par-
ticular, one-way functions are widely regarded as the most basic cryptographic
primitive; their existence is implied by most other cryptographic tasks. Presently,
one-way functions are known to imply schemes such as private-key encryp-
tion [GM84,GGM86,HILL99], pseudo-random generators [HILL99], statistically-
binding commitments [Nao91], statistically-hiding commitments [NOVY98,HR07]
and zero-knowledge proofs [GMW91]. At the same time, some other tasks still
have no known constructions based on one-way functions (e.g., key agreement
schemes or collision-resistant hash functions).

Following the seminal paper by Impagliazzo and Rudich [IR88], many works
have addressed this phenomenon by demonstrating black-box separations, which
rules out constructions of a cryptographic task using the underlying primitive
as a black-box. For instance, Impagliazzo and Rudich rule out black-box con-
structions of key-agreement protocols (and thus also trapdoor predicates) from
one-way functions; Simon [Sim98] rules out black-box constructions of collision-
resistant hash functions from one-way functions. Furthermore, these impossibil-
ity results are unconditional.

Yet many classical cryptographic constructions (e.g., [FS90,DDN00,GMW91])
are non-black-box. This begs the question: to what extent does black-box sepa-
rations give us insight into the actual separation of cryptographic primitives?
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In this paper, we directly focus on providing lower bounds for non-black-
box constructions of cryptographic primitives from one-way functions. We em-
phasize that although we consider non-black-box constructions, we still assume
Turing (i.e., black-box) security reductions. For some of our results, we heavily
leverage the existing literature on the impossibility of basing cryptography on
NP hardness (these works also directly consider a Turing reduction of crypto-
graphic primitives from NP). Perhaps surprisingly, we also make extensive use of
known black-box separations. In other words, we demonstrate that some black-
box separations can be modi�ed to give further insight into the separation of
cryptographic primitives.

Before stating our theorems, we �rst discuss our assumptions. Assumptions
are necessary for non-black-box separations assuming black-box reductions; to
show that a primitive P cannot be constructed using one-way functions, we must
at least assume that a weak notion of so-called somewhere-uninvertable one-way
functions exist�i.e. functions that cannot be inverted on all input lengths (as
opposed to in�nitely many lengths as in the traditional de�nition of one-way
functions).1 As one of the main contributions of the paper, we introduce general
assumptions that we believe are reasonable, and are useful in establishing a
variety of non-black-box separations.

1.1 Our Assumptions

Assumption 1. Dist1sided -coNP 6⊆ Heur1/ poly AM is an average-case extension of
the well-studied (and widely believed) classical assumption coNP 6⊆ AM. Brie�y,
Dist1sided -coNP contains all coNP languages coupled with an e�ciently sam-
plable distribution over the no instances of the language. Such a language is
considered to be in Heur1/ poly AM if there exists an AM (constant-round) pro-
tocol that accepts the language, with the relaxation that soundness only needs
to hold with high probability over the no instances, as measured by the given
distribution. As we prove later, the assumption is equivalent to the existence
of an e�ciently computable function f that is not heuristically co-range veri�-
able�that is, there does not exist an AM protocol proving that an element is
outside the range of f , where soundness holds with high probability for a random
instance f(x).2 Assuming that there exists an e�ciently computable function
that is not heuristically co-range veri�able seems most reasonable (consider, for
instance, proving that an element is not in the range of AES [DR02]). We addi-
tionally show that such a function is implied by the existence of pseudorandom
generators3 secure against �promise-AM ∩ coAM�.

Assumption 2. Our second assumption is of a di�erent �avor: we assume the ex-
istence of one-way functions that are secure against PPTSAMd . Here SAMd refers

1 If Somewhere-Uninvertable OWFs do not exist, then every cryptographic primitive
can be constructed from OWFs, because for every e�ciently computable function,
there would be a trivial reduction that inverts the function on all input lengths.

2 See section 3 for a comparison with the literature of �average refutation� [FKO06].
3 Here we refer to BMY-type pseudo-random generators [BM84,Yao82].



to the depth-d collision �nding oracle de�ned in [Sim98,HHRS07];4 PPTSAMd

refers to the class of probabilistic polynomial time machines with oracle access
to SAMd. This assumption is �exible since we can adjust the parameter d; a
larger d implies a stronger assumption (in fact, if d = n/ log n, the assumption
is simply false since SAMn/ logn can in fact invert one-way functions [PV10]). In
our work, we focus on the case d = O(1) (constant depth), and refer to SAMO(1)

simply as SAM.

Assumption 3. Our �nal and strongest assumption is Dist1sided -coNP 6⊆
Heur1/ poly IP[PPTNP] (heuristically veri�ed by an interactive protocol where the
prover is a probabilistic polynomial time machine with access to a NP oracle). It
directly implies assumption 1, and relying on the work of Haitner, Mahmoody-
Ghidary and Xiao [HMX10], we show that it implies assumption 2 as well in the
case d = O(1). Due to their similarity, Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP]
inherits many of the justi�cations as our �rst assumption in a weaker form (e.g., it
is based on the classical assumption coNP 6⊆ IP[PPTNP], and is equivalent to the
existence of e�cient functions whose co-range cannot be veri�ed by IP[PPTNP]
protocols). We treat assumption 3 as a unifying (and strongest) assumption that
implies all of the results in our work.

Minimizing the assumption. It is natural to ask if the classical assumption
coNP 6⊆ AM, or perhaps the more standard average-case hardness assumption
Dist-coNP 6⊆ Heur1/ poly AM, are enough for our theorems (Dist-coNP consists of
coNP languages coupled with e�ciently samplable distributions that may range
over all instances). We argue that it would be unlikely. In order to rule out
constructions of cryptographic primitives based on OWFs, we �rst need to as-
sume the existence of OWFs. But, it is unknown even if hard-on-the-average
languages exist assuming only coNP 6⊆ AM. Similarly, the stronger assumption
Dist-coNP 6⊆ Heur1/ poly AM implies the existence of a hard-on-the-average lan-
guage, but, as far as we know, does not imply the existence of OWFs (indeed,
this is related to the question of whether one-way functions can be based on
average-case hardness). Restricting to one-sided distributions (i.e., considering
Dist1sided -coNP instead of Dist-coNP) is the next logical step, and this can be
shown to imply a form of one-way functions (see full version).

1.2 Our results

As mentioned, we are able to prove many separation results by adapting nu-
merous previous works to take advantage of our assumptions. We highlight the
main separations here (grouped by their assumptions), and leave the numerous
corollaries to the main text.

Based on the work of [Bra83], [AGGM06] and [Pas06], we have

4 Given an interactive Turing machineM and a transcript of ≤ d rounds, the SAMd or-
acle samples uniformly from the set of random tapes on which theM would produce
the given transcript.



Theorem 1 (Informal) Assuming Dist1sided -coNP 6⊆ Heur1/ poly AM, one-way
permutations and constant-round public-coin strongly witness-indistinguishable
proofs for all of NP cannot be based on one-way functions with a Turing security
reduction.

Based on the work of [Sim98], [HHRS07] and [PV10], we have

Theorem 2 (Informal) Assuming the existence of one-way functions secure
against PPTSAMO(1) (implied by Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP]), collision-
resistant hash functions, constant-round statistically hiding commitments, and
constant-round black-box zero-knowledge proofs for all of NP cannot be based on
one-way functions with a Turing security reduction.

Remark 1. Based on the work of [HMX10], the results in Theorem 2 can be
obtained under the weaker assumption of Theorem 1 if we restrict to security
reductions that have constant adaptivity.

In addition to these theorems, we again stress the following philosophical
contribution: with the right assumptions, not only are non-black-box separation
results possible, many such separations can be based on existing techniques. For
example, the black-box separation results of [Sim98], [HHRS07] and [PV10] are
essentially �upgraded� to non-black-box separations using our framework.

1.3 Our Techniques

Regarding the �rst assumption, Dist1sided -coNP 6⊆ Heur1/ poly AM, our separa-
tion results are largely based on previous works in the literature of separating
cryptography from NP hardness, speci�cally ruling out constructions of one-way
permutations [Bra83], size-veri�able one-way functions [AGGM06] and public-
coin strongly witness-indistinguishable proofs [Pas06]. These works follow a com-
mon pattern: they take a (candidate) Turing security reduction of some cryp-
tographic primitive P from NP, transform the reduction into an AM protocol,
and conclude that coNP ⊆ AM, an unlikely consequence. By adapting their
techniques, we show that a (candidate) Turing security reduction of the same
primitive P from a one-way function can be transformed into an AM protocol
that inverts the one-way function, and therefore the AM protocol may verify the
co-range of f . This is a contradiction (not surprising since our assumption is an
average case generalization of coNP 6⊆ AM).

Our second assumption is used in a di�erent fashion. Having justi�ed the
assumption that there exist one-way functions secure against SAM = SAMO(1),
it follows that any cryptographic primitive P whose security can be broken using
SAM cannot be based on one-way functions. This is because a Turing security
reduction of primitive P from a one-way function f directly gives an algorithm
that inverts f by using the SAM oracle, if SAMO(1) can be used to break the
security of primitive P . The SAMO(1) oracle (as well as its variants) is particularly
interesting in this aspect, since it is originally studied in the setting of black-box
separations. Therefore, we know from previous works that in a relativized world



with the SAMO(1) oracle, there do not exist collision-resistant hash functions
[Sim98], constant-round statistically hiding commitments [HHRS07], and zero-
knowledge proofs for all of NP [PV10]. In a similar spirit, other on black-box
separations can also be extended also to non-black-box separations; the work
then lies in justifying the resulting new assumption.

A note on Turing reductions. In this work, we only consider constructions with
Turing security reductions; that is, reductions that use the adversary (supposedly
breaking the security of the construction) as a black box. The non-black-box sim-
ulation technique of Barak [Bar01] demonstrates how the code of the adversary
can be used in security proofs for certain interactive zero-knowledge protocols.
Such non-black-box reductions might potentially also be useful in analyzing the
security of other cryptographic tasks.

However, as we argue, in the context of basing cryptographic primitives on
one another, Turing reductions provide a semantically stronger notion of secu-
rity than non-black-box reductions. The existence of a Turing reduction from a
primitive P to a primitive Q implies that any �physical device��which might
rely on physical phenomena�that breaks the security of primitive Q, can be
used to break the security of primitive P . With a non-black-box security reduc-
tion, we would instead require an explicit description of the code of the attack
on primitive Q. Such descriptions might be hard to �nd: consider, for instance,
a �human-aided� computation, where a human is interacting with a computer
program in order to break a crypto system;5 getting an explicit description of
the attack would require providing an explicit (and �short�) description of the
human brain.

2 Preliminaries

We assume familiarity with common complexity classes such as NP, AM, etc.,
as well as common cryptographic primitives such as one-way functions (OWF),
collision-resistant hash-functions (CRH), zero-knowledge proofs (ZK), and witness-
indistinguishable proofs (WI).

Let [n] denotes the set {1, . . . , n}. Given an interactive protocol (P, V ) (a
pair of interactive Turing machines), let 〈P, V 〉 (x) denote the output of V (the
veri�er) at the end of an execution with P (the prover), on common input x.
Given a function f : {0, 1}∗ → {0, 1}∗ and a polynomial q(n), we say g is q(n)
concatenations of f to mean that for x1, . . . , xq(n) ∈ {0, 1}

n
, g(x1, . . . , xq(n)) =

(f(x1), . . . , f(xq(n))) (on other input lengths, g considers part of the input to be
padding appropriately).

2.1 Distributional Languages

De�nition 3 (Distributional Languages). An ensemble of distributions
is a collection D = {D1, D2, . . .} where Dn is a distribution over {0, 1}n. The en-
5 Practical attacks on crypto-systems are often not fully automatized, but do indeed
rely on such interactions; see e.g., [AAG+00].



semble is e�ciently samplable if there exists a probabilistic polynomial-time
algorithm S that, on input 1n, outputs a sample according to Dn. A distribu-
tional language is a pair (L,D) where L is a standard language and D is an
ensemble of distributions.

A well known class of distributional languages is Dist-coNP; it contains the set of
distributional languages (L,D) where L ∈ coNP and D is e�ciently samplable.

2.2 Hardness Ampli�cation of One-Way Functions

The following lemma on hardness ampli�cation of one-way functions is due to
Yao [Yao82].

Lemma 4 ([Yao82]) Let f : {0, 1}∗ → {0, 1}∗ be an e�ciently computable
function. Given any polynomial q(n), let g be q(n) concatenations of f . Then
there is a PPT oracle machine AO such that whenever O is an oracle that
inverts g with non-negligible probability, i.e., there exists some polynomial p(n)
such that for some set of n's,

Prx←{0,1}nq(n)

[
O(g(x)) ∈ g−1(g(x))

]
≥ 1/p(n)

then AO inverts f with probability 1− 1/q(n), i.e., for the same set of n's,

Prx←{0,1}n

[
AO(f(x)) ∈ f−1(f(x))

]
≥ 1− 1/q(n)

3 On Dist1sided -coNP 6⊆ Heur1/ poly AM

In this section we discuss our �rst assumption, Dist1sided -coNP 6⊆ Heur1/ poly AM,
starting with de�nitions, followed by its relation to other assumptions, and its
implications on basing cryptography on one-way functions.

De�nition 5. A distributional language (L,D) is in Dist1sided -coNP if and only
if L ∈ coNP, D is e�ciently samplable, and D only ranges over L̄.

Remark 2. In other words, (L,D) ∈ Dist1sided -coNP if and only if (L,D) ∈
Dist-coNP and D only sample instances not in L.

De�nition 6. A distributional language (L,D) is in Heur1/ poly AM if for every
polynomial q, there exists an AM (i.e., constant-round public-coin) protocol
(P, V ) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satis�es
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.



Remark 3. As usual, the choice of 2/3 and 1/3 is arbitrary and can be ampli�ed
to 1− 2−n and 2−n. Intuitively, the soundness condition means that L is almost
in AM, except for a fraction of instances in L̄ that is sampled with (arbitrarily
small) polynomial probability.

Remark 4. In a related work, Feige, Kim and Ofek give positive results in refut-
ing restricted random coSAT instances on average [FKO06]. The main di�erence
between the notion of average refutation and our de�nition of heuristic veri�a-
bility is in where errors are allowed. An average refutation algorithm may not
refute a random unsatis�able instance with small probability, but will never re-
fute a satis�able instance (i.e., perfect soundness). On a philosophical level, the
work of [FKO06] gives a distribution of coSAT instances that may indeed be
heuristically veri�able.

The complexity assumption we consider is Dist1sided -coNP 6⊆ Heur1/ poly AM,
which is a strengthening of the more standard assumption that Dist-coNP 6⊆
Heur1/ poly AM, which in turn is the heuristic analog of coNP 6⊆ AM.

Relation to other assumptions. To get a more concrete handle on our assumption,
we prove that Dist1sided -coNP 6⊆ Heur1/ poly AM is equivalent to the existence of
an e�ciently computable function f that is not heuristically co-range veri�able,
i.e., there does not exist an AM protocol proving that an instance is outside
the range of f , where soundness holds only with high probability with respect
to random instances of f(x). We then present several candidates for such a
function (such as AES [DR02] and Learning Parity with Noise [BFKL93]). Using
this equivalence, we also show that Dist1sided -coNP 6⊆ Heur1/ poly AM is implied
by the existence of pseudorandom generators secure against BPP(Promise(AM∩
coAM)).6

3.1 Heuristic co-Range Veri�able Functions

Given a function f , consider the language Rangef =
{
f(x) | x ∈ {0, 1}∗

}
.

De�nition 7. f is heuristically co-range veri�able if for any polynomial p,
there exists an AM (i.e., constant-round public-coin) protocol (P, V ) such that:

Completeness: For every y /∈ Rangef , Pr[〈P, V 〉(y) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1−1/p(n)

over x← {0, 1}n, Pr[〈P ∗, V 〉 (f(x)) = 1] ≤ 1/3.

Theorem 8 Dist1sided -coNP 6⊆ Heur1/ poly AM if and only if there exists an
e�ciently computable function that is not heuristically co-range veri�able.

Proof. We show each direction separately.

6 Traditionally, NW-style [NW94] PRGs against AM have been considered in the
literature (see e.g., [MV05]); in contrast, we require a BMY-style [BM84,Yao82]
�cryptographic� PRG.



�if� part: Let f be a function that is not heuristically co-range veri�able. By
padding the input/output of f , construct another e�ciently computable
function g that is length preserving (i.e., |g(x)| = |x| for all x). It is easy to
see that padding preserves heuristic co-range veri�ability, and so g is also
not heuristically co-range veri�able. Consider the Dist1sided -coNP distribu-
tional language (L,D) where L = Rangeg and Dn is the distribution that
results from computing g on a uniformly random x ∈ {0, 1}n. Because g is
not heuristically co-range veri�able, (L,D) /∈ Heur1/ poly AM.

�only-if� part: Let (L,D) be a distributional language such that (L,D) ∈
Dist1sided -coNP and (L,D) /∈ Heur1/ poly AM, and let t(n) be a bound on
the random bits required to e�ciently sample from Dn. De�ne f on input

x ∈ {0, 1}t(n)
to be the result of sampling from Dn given randomness x

(for other input lengths, f may treat part of the input as padding). f is an
e�cient function since D is e�ciently samplable, and f is not heuristically
co-range veri�able precisely because (L,D) /∈ Heur1/ poly AM. ut

The statement �f is heuristically co-range veri�able� can be viewed as an
average-case (heuristic) variant of the statement �Rangef ∈ coAM�. (Also observe
that if f is e�ciently computable then Rangef ∈ NP ⊆ AM.) We believe that
the existence of such functions is a reasonable average-case generalization of
SAT /∈ coAM: Just as it seems �unlikely� that there exist AM proofs for proving
that a string is outside an arbitrary NP set, it seems �unlikely� that there is a
AM proof for proving that a string is outside the range an arbitrary e�ciently
computable function, even if we only require soundness to hold for a random
string in the range of the function.

Candidate functions that are not heuristic co-range veri�able. Although many
traditional one-way functions (based for example on the hardness of factoring,
RSA, discrete log [Rab80], or lattice-based problems [GG00,AR05]) are co-range
veri�able, there are also "natural" one-way functions for which we do not know
of co-range veri�ability protocols. We here brie�y discuss a few functions that
are not known to be heuristically co-range veri�able.

Generalized AES: AES is a permutation on 128 bits [DR02]; that is, for a 128-

bit seeds, AESs is a permutation on de�ned on {0, 1}128. However, due to
the algebraic nature of the construction of AES, it can easily be generalized
to longer input lengths. Let AESn denote this generalized version of AES to
n-bit inputs. Now, consider the (one-way) function f(x) = AES|x|x (0|x|). It
would seems unlikely that this function is heuristically co-range veri�able.

Random Binary Linear Codes: A random binary linear code is obtained by
encoding a message x ∈ {0, 1}n as Ax where A is a random m × n binary
matrix. Given the matrix A and a codeword y, it is easy to �nd the corre-
sponding message x whenm ≥ n. However, the problem of �nding x becomes
hard when only a �noisy� codeword is given. The learning parity with noise
(LPN) problem requires �nding a random secret x, given (A,Ax+ e) where
e is a �short� (binary) error vector. The worst-case variant of the LPN prob-
lem (i.e. given a set of equations Ax = s to �nd x that maximally satis�es



the equations) is known to be NP-hard even to approximate [Hås01]. The
average-case version of LPN is also believed to be intractable: the LPNp,m
assumption [BFKL93] states that for p ∈ (0, 1

2 ) and polynomial m, there is
no PPT algorithm that �nds x with more than negligible probability given
(A,Ax + e mod 2) where A is a random m × n binary matrix and every
component of e is set to 1 independently with probability p. It seems like
a reasonable strengthening of the LPN assumption to say that the func-
tion x 7→ (A,Ax+ e mod 2) is not heuristically co-range veri�able, for some
choices of m and p. In other words, there is no AM-proof showing that a
binary string y is �far� from Ax for any x, even if soundness only holds for
randomly perturbed codewords.

Pseudo-random Generators secure against BPP(Promise(AM ∩ coAM)): While
not a speci�c function, we show that this class of PRGs are not heuristically
co-range veri�able.

De�nition 9. Let Un denote the distribution of uniform bit-strings of length
n. A collection of e�ciently computable functions G = {gn : {0, 1}n →
{0, 1}n+1}n∈N is a PRG secure against BPP(Promise(AM∩coAM)) if no PPT
adversary with a Promise(AM ∩ coAM) oracle can distinguish the ensembles
{gn(Un)}n∈N and {Un+1}n∈N with non-negligible probability in n.

Claim 10 Let g : {0, 1}n → {0, 1}n+1
be a PRG secure against

BPP(Promise(AM ∩ coAM)). Then g is not heuristically range veri�able.

Proof. Assume for contradiction that g is heuristically range veri�able. By
the de�nition of heuristic range veri�ability, there is a AM protocol (P, V )
such that on input g(x) for a uniformly random x ∈ {0, 1}n, V rejects g(x)
with probability at least 1−1/n. Let S = {x ∈ {0, 1}n | Pr[V rejects g(x)] ≤
1/n} (i.e., the set of x where V fails to reject g(x)). Then we must have

Prx←{0,1}n [x ∈ S] ≤ 2/n

Let T = {g(x) | x ∈ S}, i.e., the set of inputs where (P, V ) has high sound-
ness error. Now consider the promise problem Π = (ΠY , ΠN ) = (Rangeg −
T,Rangeg). Note that Π is trivially in NP ⊆ AM, and that Π ∈ coAM by
de�nition of T (via protocol (P, V )). Therefore Π ∈ AM ∩ coAM.
We now describe a polynomial-time distinguisher D that has oracle access to
a decision procedure for the the promise problem Π. On input y, D simply
outputs Π(y). To show that D is a good distinguisher for g, observe that

Pr
x←{0,1}n

[D(g(x)) = 1] ≥ Pr
x

[g(x) /∈ T ] = Pr
x

[x /∈ S] ≥ 1− 2
n

On the other hand,

Pr
y←{0,1}n+1

[D(y) = 1] ≤ Pr
y

[y /∈ Rangeg] ≤
1
2
ut

Claim 10 together with forthcoming theorems yields the following trade-o�:
if certain cryptographic primitives can be based on OWFs, then there does
not exist PRGs secure against BPP(Promise(AM ∩ coAM)).



3.2 Consequences of Dist1sided -coNP 6⊆ Heur1/ poly AM

The assumption Dist1sided -coNP 6⊆ Heur1/ poly AM implies some impossibility re-
sults on basing cryptographic primitives on one-way functions. First, we provide
an outline of our proof framework.

Recall that we consider arbitrary non-black-box (and even non explicit)
constructions based on one-way functions, but restrict our attention to Tur-
ing (black-box) security reductions. This means a primitive P constructed from
a one-way function f is accompanied by a PPT oracle reduction RO, such that
whenever O is an oracle that �breaks the security of P , RO inverts the f with
non-negligible probability. We will show that for certain primitives P and respec-
tive oracles O that break the security of P , the reduction RO can be emulated in
an AM protocol, allowing the veri�er of the AM protocol to invert the one-way
function. Coupled with the Yao's ampli�cation lemma (Lemma 4), the veri�er
can actually invert f with very high probability, and therefore heuristically verify
the co-range of f (by checking for a lack of inverses).

We present the lower-bound result for one-way permutations and Strong WI
AM proofs based on OWFs below.

On Basing One-Way Permutations on One-Way Functions We �rst
formalize the de�nition of basing one-way permutations (OWP) on one-way
functions (OWF) with Turing (black-box) reductions, and show that such a
construction is ruled out by the assumption Dist1sided -coNP 6⊆ Heur1/ poly AM.

De�nition 11. We say that OWPs can be based on OWFs if:

Construction: There is a mapping that takes the description of any polynomial-
time function f (candidate OWF) and outputs the description of a permu-
tation φ = φf (candidate OWP).

Reduction: For any polynomial-time function f , there is a PPT oracle algo-
rithm Rf such that whenever O inverts φ, i.e., there is a polynomial p such
that Prx←{0,1}n [O(φ(x)) = x] ≥ 1/p(n), ROf inverts f , i.e., there is some
polynomial p′ such that

Prx←{0,1}n [ROf (f(x)) ∈ f−1(f(x))] ≥ 1/p′(n)

The following theorem is proved using our framework combined with the
work of [Bra83].

Theorem 12 If OWPs can be based on OWFs, then Dist1sided -coNP ⊆
Heur1/ poly AM (contradicting our assumption).

Proof. Suppose that OWPs can be based on OWFs. We will show that every e�-
ciently computable function is heuristically co-range veri�able. Fix any e�cient
function f and polynomial q(n) (as in the de�nition of heuristically co-range
veri�ability), and de�ne g to be q(n) concatenations of f . By assumption, there
exists a permutation Pg and an e�cient security reduction Rg such that, given



an oracle O that inverts φ inverts g, ROg inverts g with non-negligible probability.

Using Lemma 4, we can construct a new e�cient reduction R̃f that, given an

oracle O that inverts φ inverts g, R̃Of inverts f with probability 1− 1/q(n).
Next we recall from [Bra83] an AM protocol that allows the veri�er to run R̃f

without access to O. The veri�er start by sending the prover a su�ciently long
random string to act as the random tape of R̃f . The prover then runs R̃f with

the given randomness, solving oracle queries as needed. When R̃f terminates,

the prover sends the output of R̃f as well as any oracle query-answer pairs

encountered in the execution of R̃f to the veri�er. The veri�er can check the
validity of the oracle query-answer pairs, and the validity of the execution using
the given oracle query-answer pairs. On common input y, the veri�er accepts if
and only if R̃f (y) fails to �nd an inverse.

Completeness: If y /∈ Rangef , and if the prover simulates R̃f (y) honestly, then
the veri�er will always accept the simulation, and of course R̃f will never
�nd an inverse to y under f . Hence we have completeness probability 1.

Soundness: We may assume that the veri�er accepts the execution of R̃f (y)
provided by the (possibly cheating) prover. In this case, the simulated exe-
cution of R̃f (y) is identical to a real execution of R̃Of (y) for a �perfect oracle�
O that answers all queries correctly; this is because every oracle has exactly
one answer. Therefore:

Pr
x←{0,1}n

[R̃f (f(x)) ∈ f−1(f(x))] > 1− 1/q(n)

By an averaging argument, we have that with probability at least 1−3/q(n)
over a random x ∈ {0, 1}n, y = f(x),

Pr[R̃f (f(x)) ∈ f−1(f(x))] > 2/3

in which case the veri�er would reject.

This concludes that f is heuristically co-range veri�able.

Remark 5. The di�culty of extending Theorem 12 to other cryptographic prim-
itives comes from constructing an AM protocol. For many primitives (e.g., col-
lections of trapdoor one-way functions), an oracle that breaks the security of the
primitive su�ers from two caveats: some queries have no answers (which cannot
be checked by the veri�er), and some queries have multiple answers (which al-
low a cheating prover to adaptively select the answer). These di�culties are well
known; see [BT03,AGGM06,HMX10].

Theorem 12 can be extended beyond one-way permutations. For example, it
can rule out basing certi�ed collection of (trapdoor) permutations on one-way
functions [BY96]. In this case, an oracle query consists of a candidate permu-
tation description and a candidate image. The veri�er can check whether each
description is indeed a valid permutation in the collection (certi�able), and if so



expect a unique inverse of the given image. (We may even extend the de�nition
of �certi�ed� to mean certi�able under an AM protocol.)

Another example is to rule out basing size-veri�able, polynomial-sized pre-
image one-way functions on one-way functions [AGGM06]. In this case, size-
veri�able one-way functions allow the veri�er to check the pre-image size of any
oracle query (in particular the veri�er checks whether a pre-image exists). Then,
the veri�er may ask the prover to provide all polynomially many pre-images to
force a unique answer.

On Basing Public-Coin Strongly Witness Indistinguishable Proofs on
OWFs Using the same framework, we rule out the possibility of basing O(1)-
round public-coin strongly witness-indistinguishable proofs (Strong-WI AM) for
languages in NP on OWFs. Below, we provide the result and brief overview of
the proof. The complete proof will appear in the full version.

The de�nition of basing Strong-WI AM proofs on OWFs can be extended
similarly to OWPs. Roughly speaking, for any language L, there exists a mapping
from the description of any function f to a protocol (P sWI

f , V sWI
f ) and a reduction

R such that for any adversary O and pair of ensembles of distributions,
{
D1
n

}
n∈N

and
{
D2
n

}
n∈N , and D

1
n and D2

n are distributions over L ∩ {0, 1}n × {0, 1}∗, if
O distinguishes proofs of statements using (P sWI

f , V sWI
f ) sampled from the two

distributions D1
n and D

2
n, then R

O inverts f with non-negligible probability. The
main result we obtain using the work of [Pas06] is

Theorem 13 If there exists O(1)-round Strong-WI AM proof systems with per-
fect completeness based on OWFs for all NP-languages, then Dist1sided -coNP ⊆
Heur1/ poly AM

On a high-level, [Pas06] shows how to construct a game Gf from any func-
tion f using a Strong-WI AM protocol for NP languages based on f such that
there exists a reduction from breaking the game to inverting the function f . Ad-
ditionally, he shows that a worst-case breaking oracle for Gf can be simulated
using an AM protocol. We obtain our result using the same game Gf but in-
stead of using any one-way function f , we use the function g obtained from any
language (L,D) ∈ Dist1sided -coNP as in the proof for OWP. Since a worst-case
breaker can be simulated using an AM protocol, following the proof technique
from Theorem 12, it essentially follows that (L,D) ∈ Heur1/ poly AM.

4 On One-Way Functions Secure Against PPTSAMO(1)

In this section we explore our second assumption: the existence of one-way func-
tions that cannot be inverted by PPTSAMO(1) : e�cient algorithms that have
access to a SAMO(1) oracle.



4.1 De�nition of the SAM oracle

Let M be a probabilistic interactive Turing machine that runs a d-round pro-
tocol. Let transi = (a1, b1, . . . , ai, bi) be a partial transcript of the messages
exchange with M(1n) in an execution. We use :: to denote appending messages
to a transcript. De�ne Rtransi(M) to be the set of all random tapes τ for which
Mτ (1n, a1, b1, . . . , bj−1) = aj for all j < i; we say that such a τ is consistent with
respect to transi. Without loss of generality, we assume that M sends the �rst
message (i.e., outputs a message on initiation). The oracle SAMd(n) takes inputs
of the form Q = (M(1n),transi, r) where transi−1 = (a1, b1, . . . , bi−1) is a par-
tial transcript and r ∈ {0, 1}∗. On input Q, SAMd(n) outputs (τ ′,transi−1 :: ai)
such that τ ′ ∈ Rtransi−1(M(1n)) and Mτ ′(1n,transi) = ai,

7 with the following
restrictions:

1. If i > 1, then (a1, b1, . . . , ai−1) was the result of a previous query of the form
(M, (a1, b1, . . . , bi−2), r′) for some r′ ∈ {0, 1}∗.

2. τ ′ is uniformly distributed in Rtransi−1(M) over the randomness of SAMd(n),
independent of all other queries.

3. SAMd(n) answers queries only up to a depth d(n), i.e. i ≤ d(n).

Otherwise, SAMd(n) outputs ⊥. The role of r in the query is to obtain new and
independent samples for each r and to allow a veri�er to obtain the same sample
query by querying on the same r.

Our above description of the SAMd(n)-oracle is a stateful instantiation of the
oracle de�ned in [HHRS07]. Just as in [HHRS07], for our results, we need the
oracle to be stateless; [HHRS07] specify how to modify the oracle to achieve this
(using �signatures�); we omit the details. When clear from context, we drop the
input 1n to M .

De�nition 14. We say that a (one-way) function f : {0, 1}∗ → {0, 1}∗ is se-
cure against (or hard to invert by) PPTSAMd if for every oracle PPT machine
A there exists a negligible function ν(·) such that

Pr[x← {0, 1}n ; y = f(x) : ASAMd(y) ∈ f−1(y)] ≤ ν(n)

In this work, we focus on the SAMO(1) and in the rest of the paper, we refer
to this oracle simply by SAM.

De�nition 15. We say that a language L is in BPPSAM if there exists an oracle
PPT machine M such that the following holds:

Completeness: For every x ∈ L, Pr[MSAM(x) = 1] ≥ 2/3
Soundness: For every x 6∈ L, Pr[MSAM(x) = 1] ≤ 1/2

The second assumption that we consider to establish non black-box lower
bounds is the existence of one-way functions that are secure against PPTSAM.
We justify our assumption in the next section.

7 It su�ces to consider an oracle that merely outputs τ ′, however, we consider SAM
that additionally outputs transi−1 :: ai for ease of exposition.



4.2 Relation to Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP]

De�nition 16. A distributional language (L,D) is in Heur1/ poly IP[PPTNP] if
for every polynomial q, there exists an interactive protocol (P, V ) where P ∈
PPTNP (oracle PPT machine with oracle access to an NP oracle) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satis�es
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.

The assumption Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP] is a heuristic ex-

tension of the worst case assumption coNP 6⊆ IP[PPTNP], i.e., there are no in-
teractive proofs for coSAT where the prover is e�cient with a NP oracle. While
coNP 6⊆ IP[PPTNP] is not as well studied as more standard assumptions like
coNP 6⊆ AM, the search for the aforementioned interactive proof for coSAT has
been open since the question was raised by Babai, Fortnow and Lund in 1991
[BFL91]. Next we show that Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP] implies the

existence of one-way functions secure against PPTSAM; the bulk of the technical
content of the proof is taken from [HMX10].

Lemma 17 If Dist1sided -coNP 6⊆ Heur1/ poly IP[PPTNP], then there exists a one-

way function that is secure against PPTSAM.

Proof. We prove the contrapositive. Suppose all e�ciently computable func-
tions can be inverted by PPTSAM. Fix any (L,D) ∈ Dist1sided -coNP and any
polynomial q as in the de�nition of Heur1/ poly IP[PPTNP]. We will show that

(L,D) ∈ Heur1/ poly IP[PPTNP].

Let t(n) be a bound on the randomness required to e�ciently sample from

Dn, de�ne f on input x ∈ {0, 1}t(n)
to be the result of sampling from Dn given

randomness x, and let g = gq be q(n) concatenations of f . By assumption,
there is a PPT oracle algorithm R such that RSAM inverts g with polynomial
probability. By Lemma 4, we can further construct a PPT oracle algorithm R̃
such that R̃SAM inverts f with probability 1− 1/q(n).

By the work of Haitner et. al [HMX10], the reduction R̃ can be simulated
in an interactive proof (P, V ) where the P is an e�cient algorithm with access
to an NP oracle. Speci�cally, using Theorem 5.2 of [HMX10]8, with parameter
δ = 1/q, (P, V ) has two properties:

Completeness: (P, V ) has completeness error 1/q(n) (the probability that V
aborts).

Soundness: For any (possibly cheating) prover P ∗, if V does not abort, 〈P ∗, V 〉 (y)
(the output of V ) and the output of R̃SAM(y) has statistical di�erence at most
1/q(n).

8 The theorem number refers to the full version of [HMX10] on ECCC.



We modify the protocol so that V on input y accepts if and only if V does not
abort during the simulation of R̃, and that R̃ does not �nd an inverse of y under
f . The resulting protocol shows that (L,D) ∈ Heur1/ poly IP[PPTNP]:

Completeness: On input y ∈ L, i.e., y /∈ Rangef , V only rejects during the

simulation of R̃ because R̃ can never �nd an inverse to y. Therefore V rejects
with probability at most 1/q(n).

Soundness: Let P ∗ be an arbitrary machine. On a random input y /∈ L dis-

tributed according to Dn, i.e., y = f(x) for a random x ∈ {0, 1}t(n)
, R̃SAM(y)

would �nd an inverse of y with probability 1− 1/q(n). Therefore, if V does
not reject the simulation of R̃ provided by P ∗, V would �nd an inverse of y
with probability at least 1− 2/q(n). By an averaging argument, with proba-
bly at least 1− 3/q(n) over choosing y from Dn, Pr[〈P ∗, V 〉 (y) = 0] ≥ 2/3.

4.3 Consequences of the existence of one-way function secure w.r.t
PPT SAM

Assuming the existence of one-way function secure against PPT SAM we show
separation of collision-resistant hash-functions, O(1)-round statistically-hiding
commitments and O(1)-round zero-knowledge proofs for NP from OWFs. On a
high-level, for each of these primitives, we show that there exists an adversary
that can break the security with oracle access to SAM. Therefore, if these prim-
itives could be based on one-way functions, then we arrive at a contradiction
under the assumption.

As with the case of one-way permutations, we consider arbitrary non-black-
box (and even non explicit) constructions, but as before restrict attention to
Turing (i.e., black-box) security reductions. The de�nitions of basing CRHs,
statistically-hiding commitments and zero-knowledge proofs on one-way func-
tions can be extended analogously from OWP. Below we discuss brie�y how the
SAM oracle can be used to break each primitive.

Collision-Resistant Hash-Functions: Recall that, the SAM oracle can sam-
ple uniform collisions for probabilistic interactive Turing machines. If we
consider the e�cient Turing machine that computes the CRH function, it
follows that SAM can �nd a collision for a uniform input to the CRH if one
exists. Since any length-compressing function with high-probability has col-
lisions for uniformly chosen inputs, SAM breaks any CRH. We remark that
it su�ces to consider the potentially weaker SAM1-oracle to break CRHs.
As a consequence, we obtain the following theorem.

Theorem 18 Assuming the existence of one-way functions that are secure
against PPTSAM, we have that worst-case CRHs cannot be based on OWFs.

As a corollary, we also obtain (a potentially weaker statement) that worst-
case CRHs cannot be based on OWFs unless Dist1sided -coNP ⊆ Heur1/ poly IP[PPTNP].



Statistically-Hiding Commitments: We show that, for every O(1)-round
statistically hiding commitment based on one-way functions, there exists
a cheating sender who with oracle access to SAM violates the binding prop-
erty of the commitment. Haitner, Hoch, Reingold and Segev [HHRS07] prove
that using the stronger SAMπ oracle (that �nds collisions for PPT machines
that access a random permutation oracle π), there is a cheating committer
that can break the binding property of any fully black-box construction of
a statistically-hiding commitment scheme based on one-way permutations.
It essentially follows using the same proof that without access to any oracle
π, SAM can break any statistically-hiding commitment scheme with a PPT
committer. As a consequence, we obtain the following theorem.

Theorem 19 Assuming the existence of one-way functions secure w.r.t.
PPTSAM, then there exists no O(1)-round statistically-hiding bit-commitment
scheme based on one-way function.

As for the case of CRHs, we also have that there exists no O(1)-round
statistically-hiding bit-commitment scheme unless Dist1sided -coNP ⊆
Heur1/ poly IP[PPTNP].

Zero-Knowledge Proofs: Using similar techniques we show how to extend to
lower-bound of [PV10] on O(1)-round zero-knowledge proofs based on one-
way functions. Goldreich-Krawczyk [GK96b] showed that only languages in
BPP have constant-round public-coin black-box zero-know-ledge protocols.
In [PV10], this lower bound was extended to �fully black-box� constructions
of black-box zero-knowledge proofs (that could be private-coin) based on
one-way functions. More precisely, they show that only languages decidable
by oracle PPT machines with oracle access to SAMπ (for random permu-
tation π) can have constant-round fully black-box zero-knowledge proofs.
On a high-level, they establish this lower-bound, by providing a transforma-
tion that takes any private-coin zero-knowledge proof based on OWFs and
produces a public-coin zero-knowledge proof in a SAMπ-relativized world
and then concluding using the result of Goldreich-Krawczyk for public-coin
protocols. Based on the result of [PV10], we obtain the following theorem.

Theorem 20 Assume the existence of one-way functions that are secure
w.r.t. PPTSAM, there does not exist O(1)-round computational zero-knowledge
proofs for all of NP based on one-way functions.

Following the proof of [PV10], we can show that only languages in PPTSAM

have O(1)-round computational zero-knowledge proofs based on one-way
functions. We complete the argument by noting that our assumption implies
that NP 6⊆ BPPSAM, since otherwise, we can construct an oracle PPT ma-
chine that with oracle access to SAM inverts OWFs. We provide the formal
proof in the full version.

Finally, we remark that Theorem 20 implies Theorem 19 relying on the result
of Goldreich and Kahan [GK96a] and Theorem 19 implies Theorem 18 relying



on the result of Damgård, Pedersen and P�tzmann [DPP98]. Nevertheless, the
direct proofs are simpler and as mentioned before, it su�ces to assume the
weaker SAM1-oracle for Theorem 18.
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