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Abstract. Selective opening attacks against commitment schemes occur
when the commitment scheme is repeated in parallel (or concurrently)
and an adversary can choose depending on the commit-phase transcript
to see the values and openings to some subset of the committed bits.
Commitments are secure under such attacks if one can prove that the
remaining, unopened commitments stay secret.

We prove the following black-box constructions and black-box lower
bounds for commitments secure against selective opening attacks:

1. For parallel composition, 4 (resp. 5) rounds are necessary and suffi-
cient to build computationally (resp. statistically) binding and com-
putationally hiding commitments. Also, there are no perfectly bind-
ing commitments.

2. For parallel composition, O(1)-round statistically-hiding commit-
ments are equivalent to O(1)-round statistically-binding commit-
ments.

3. For concurrent composition, w(logn) rounds are sufficient to build
statistically binding commitments and are necessary even to build
computationally binding and computationally hiding commitments,
up to loglogn factors.

Our lower bounds improve upon the parameters obtained by the impos-
sibility results of Bellare et al. (EUROCRYPT ’09), and are proved in
a fundamentally different way, by observing that essentially all known
impossibility results for black-box zero-knowledge can also be applied to
the case of commitments secure against selective opening attacks.

Keywords: commitments, black-box lower bounds, zero knowledge, selective open-
ing attacks, parallel composition, concurrent composition

1 Introduction

Commitment schemes have a wide array of applications in cryptography, one
of the most notable being the construction of zero knowledge protocols [14, 4].
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A problem that arises in the use of commitment schemes is whether their hid-
ing property holds when composed in parallel: if some subset of the committed
messages are opened, do the remaining unopened messages remain secure? This
question arose early in the study of zero knowledge protocols, and is also nat-
ural in other cryptographic contexts where commitments are used as building
blocks for protocols that might be then used in parallel (e.g. secure multi-party
computation, etc.).

Although naively one might think because commitments are hiding that no
additional information should be leaked by composing them, nevertheless it is
unknown how to prove that standard stand-alone commitments (e.g. [18]) remain
hiding when composed.

More formally, a selective opening attack on a commitment scheme allows
a cheating receiver to interact in k parallel (or concurrent) commitments, and
then ask the sender to open some subset I C [k] of the commitments. The
question is whether the unopened messages remain hidden in the following sense:
is there a simulator strategy for every cheating receiver strategy that outputs
a commit-phase transcript, a set I C [k], and decommitments to (b;);cr that is
indistinguishable from the output of the cheating receiver with an honest sender?

In this paper we show that techniques both for constructions and lower
bounds from the study of zero knowledge protocols can be applied to the study
of commitments secure against selective opening attacks. We study the minimal
round complexity needed to construct such commitments, and give solutions for
commitments secure against selective opening attacks that are optimal or nearly
optimal up to small factors.

1.1 Our results

We let PAR denote parallel composition and CC denote concurrent composition.
We let CB (resp. SB, PB) denote computational (resp. statistical, perfect) binding
and CH (resp. SH) denote computational (resp. statistical) hiding. We give the
following constructions:

Theorem 1. The following hold via fully black-box reductions:

1. One-way permutations imply 4-round PAR-CBCH commitments exist.

2. t-round stand-alone SH commitments imply (t + 3)-round PAR-SB commit-
ments exist.

3. t-round stand-alone SH commitments imply w(tlogn)-round CC-SB commit-
ments exist.

In particular, Item 2 implies that collision-resistant hash functions (or even just
2-round statistically hiding commitments) suffice to construct 5-round PAR-SB
commitments.

Assuming the proof of security for such a commitment scheme is given by a
black-box simulator, we prove the following corresponding lower bounds:

Theorem 2 (Informal). The following hold relative to any oracle:
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There is no 3-round PAR-CBCH commitment.

There is no 4-round PAR-SB commitment.

3. There is a black-box reduction that uses a O(1)-round PAR-SB commitment
to build a O(1)-round statistically hiding commitment.

4. There is no o(logn/loglogn)-round CC-CBCH commitment.

o

We stress that besides the constraint that the simulator be black-box, these
results are otherwise unconditional. Namely, Theorem 2 implies that no such
commitments exist in the plain model (without oracles), but also implies that
such commitments do not exist even in say the random oracle model (or stronger
oracle models), where a priori one might have hoped to bypass impossibility
results in the plain model.

Combining the second item of Theorem 2 with the main theorem of [15],
which proves that there is no black-box reduction building a o(n/logn)-round
statistically hiding commitment from one-way permutations, we obtain the fol-
lowing corollary:

Corollary 1. There is no black-box reduction that uses a one-way permutation
to build a O(1)-round PAR-SB commitment.

Wee [23] independently proved via different techniques a theorem similar to
Corollary 1 for the very closely related case of trapdoor commitments.
In addition to the above impossibility results, we also prove:

Theorem 3 (Informal). Relative to any oracle, there exists no PAR-PB com-
mitments nor receiver public-coin PAR-CBCH commitments.

1.2 Comparison to previous constructions

Notions related to security against selective opening attacks have previously been
studied in the literature. Security against selective opening is closely related to
chameleon blobs [5, 6], trapdoor commitments [11], and equivocable commit-
ments [2, 9, 8]. Roughly speaking, these notions all allow a simulator that can
generate commit-phase transcripts that can be opened in many ways. Indeed,
our constructions will be based on the equivocable commitment of [8].

Security against selective opening may be weaker than the notions above,
and was directly studied in [10, 3]. Bellare et al. [3] give a construction of a
scheme that is CC-SB secure, but this construction is non-black-box and requires
applying a concurrent zero knowledge proof on a statement regarding the code
implementing a one-way permutation. In contrast, all constructions presented in
this paper are fully black-box.

Equivalence of statistical hiding and statistical binding. In this work we only
study commitments with computational hiding. [3] already noted that stand-
alone SH commitments satisfy a notion of PAR-SH security based on indistin-
guishability (this notion is different from ours). Independent of our work, Zhang



et al. [24] gave a black-box reduction that uses ¢-round stand-alone SH commit-
ments and one-way permutations to construct (¢t + 3)-round PAR-SH commit-
ments (under our definition of selective opening security). Their construction is
an extension of a recent trapdoor commitment of Pass and Wee [19].

With Item 2 of Theorem 2, this implies that O(1)-round statistical hiding
and O(1)-round statistical binding are equivalent via black-box reductions when
security against selective opening attacks is required. This contrasts sharply with
the stand-alone case, as 2-round statistically binding commitments are equivalent
to one-way functions, but no black-box reduction can build o(n/logn)-round
statistically hiding commitment from one-way functions [15].

1.3 Comparison to previous lower bounds

Bellare et al. [3] proved that non-interactive commitments and perfectly binding
commitments secure against selective opening attacks cannot be based on any
black-box cryptographic assumption. Our lower bounds are stronger than theirs
in that we can rule out 3- or 4-round rather than non-interactive commitments, as
well as ruling out certain types of commitment with non-zero statistical binding
error. However, our proof technique is incomparable to theirs.

Ways in which our lower bounds are stronger: first, the lower bounds
of [3] assume black-box access to a cryptographic primitive, and therefore do not
apply to constructions based on concrete assumptions (e.g. factoring, discrete
log, lattice problems) where one might hope to exploit the specific structure of
those problems to achieve security. In contrast, our results immediately rule out
all constructions in the plain model.

Second, the lower bounds of [3] prove that non-interactive and perfectly bind-
ing commitments secure against selective opening attacks are impossible with
respect to a very specific message distribution that is defined in terms of a
random oracle. One could argue that the message distribution they consider is
artificial and would not arise in applications of these commitments. In partic-
ular, it may suffice for applications to build commitments that are secure only
for particular natural message distributions, such as the uniform distribution or
the distributions encountered when using commitments to build zero knowledge
proofs for NP. [3] does not rule out the existence of commitments that are secure
only for these message distributions, while our impossibility results do and in
fact apply simultaneously to all message distributions satisfying what we argue
are very natural constraints (see Definition 5). In particular, the results of [3]
also use the assumptions in Definition 5.

Ways in which our lower bounds are weaker: our results are weaker
because they only apply to constructions with black-box simulators, i.e. we re-
quire that there exists a single simulator that works given black-box access to
any cheating receiver. The results of [3] hold even for slightly non-black-box
simulation techniques: they only require that for every cheating receiver oracle
algorithm (Rec’)(') that accesses the underlying crypto primitive as a black-box,
there exists an efficient oracle algorithm Sim®) that accesses the underling crypto
primitive as a black box that generates an indistinguishable transcript. However,



[3] do not rule out techniques such as Barak’s simulator [1], because the simula-
tor there includes a PCP encoding of the code of the underlying cryptographic
primitive, and thus treats the crypto primitive itself in a non-black-box way.

1.4 Our techniques

Our constructions for parallel composition are essentially the equivocable
commitment scheme of [8], while the case for concurrent composition follows
in a straight-forward way by combining the commitment of [8] with the pream-
ble from the concurrent zero knowledge proof of [21].

Our lower bounds are proven by observing that most known lower bounds
for zero knowledge (e.g. [13, 17, 7, 16, 20]) extend naturally to the case of
commitment schemes. Lower bounds for zero knowledge show that if a zero
knowledge proof for L satisfies certain restrictions (e.g. 3 rounds, constant-round
public coin [13], etc.), then L € BPP.

As was observed by [10, 3], plugging a ¢t-round PAR-CBCH commitment into
the GMW zero knowledge protocol for NP allows the zero knowledge property
to be preserved under parallel repetition, thus allowing one to reduce soundness
error while preserving zero knowledge and without increasing round complexity.
Furthermore, the resulting protocol has ¢ + 2 rounds, and has a black-box sim-
ulator if the commitment had a black-box simulator. This immediately implies
the following;:

Proposition 1 ([13], weak impossibility of PAR-CBCH, informal). In the
plain model, there exist no black-box simulator non-interactive or constant-round
public-coin PAR-CBCH commitment schemes.

To see why, suppose there were such a scheme, then by the above discussion
one would obtain either a 3-round or constant-round public-coin zero knowledge
argument for NP with a black-box simulator that remains zero knowledge under
parallel repetition. By [13], this implies that NP = BPP. But this contradicts
the existence of a PAR-CBCH commitment scheme, since by the Cook-Levin
reduction we can use an algorithm solving NP to break any commitment.

Our results improve upon Proposition 1 as they apply to broader categories of
commitments (e.g. 3-round vs. non-interactive). In addition, Proposition 1 uses
the Cook-Levin reduction and therefore does not apply when considering schemes
that might use random oracles. In contrast, Theorem 2 does hold relative to any
oracle, and in the case of Item 3 of Theorem 2, is black-box. This is important
for two reasons: first, Proposition 1 does not say whether such constructions are
possible in the random oracle model, which is often used to prove the security
of schemes for which we cannot prove security in the plain model. Second, if
we want to compose our impossibility result with other black-box lower bounds,
then our impossibility result had better also be black-box. For example, in order
to obtain Corollary 1 we must combine Item 3 of Theorem 2 with the black-box
lower bound of Haitner et al.. This is only possible if Item 3 of Theorem 2 is a
black-box reduction, which would not be true using the approach of the weak
impossibility result Proposition 1.



To prove Theorem 2, we construct what we call “equivocal senders”: senders
that run the commit phase without knowing the bits that must be revealed. We
show that the existence of such equivocal senders implies that binding can be
broken. We then construct equivocal senders for various kinds of protocols by
applying the proof strategy for zero knowledge lower bounds originally outlined
by Goldreich and Krawczyk [13]. By arguing directly, we avoid the Cook-Levin
step in Proposition 1 and therefore our results hold relative to any oracle.

2 Preliminaries

For a random variable X, we let z «5 X denote a sample drawn according to
X. We let Uy, denote the uniform distribution over {0,1}*. For a set S, we let
z < S denote a uniform element of S. Let 2° denote the set of all subsets of
S. All security definitions in this paper are with respect to non-uniform circuits.
We say that an event occurs with overwhelming probability if it occurs with
probability 1 — (M) and that it occurs with negligible probability if it occurs
with probability n=«(). Two families of random variables (X, )nen, (Y; )nen over
{0,1}™ are computationally indistinguishable, or equivalently X =, Y, if for all
circuits C of size poly(n) it holds that | Pr[C(X) = 1] —Pr[C(Y) = 1]| < n~«1),

2.1 Commitment schemes

We formally define commitments for single-bit messages; since we will be con-
cerned with commitments that are composable, multi-bit messages can be han-
dled by just repeating the single-bit protocol in parallel or concurrently.

Definition 1. A t-round (stand-alone) commitment protocol is a pair of effi-
cient algorithms Send and Rec. Given a sender input b € {0,1}, we define:

1. The commit phase transcript is 7 = (Send(b; wsend ), ReC(Wrec)) where wsend, Wrec
are the random coins of the sender and receiver, respectively. Ezxactly t mes-
sages are exchanged in the commit phase t.

2. The decommit phase transcript consists of Send sending (b,open) to Rec.
Rec(T, b,open) = 1 if open is a valid opening, and outputs 0 otherwise.

Notation and variable definitions: We assume that a commitment scheme is
put in a canonical form, where each party alternates speaking. We assume the
number of rounds is even and the receiver speaks first. If the number of rounds
is 2t, then we label the sender’s messages ag, ..., a; and the receiver’s messages
Bi,..., B, and we let ap;) = (v, ..., ;) and likewise for ;). For a commitment
protocol (Send,Rec), we write that the receiver’s i’th response §; is given by
computing 3};; = Rec(af;_1);w) where a;_y) are the first ¢ — 1 sender messages,
and w are the receiver’s random coins. We let Rec(L;w) = 3; denote the first
receiver message.

Let k denote the number of parallel or concurrent repetitions of a com-
mitment protocol. Let n denote the security parameter of the protocol. Given a



stand-alone commitment (Send, Rec), let Send” denote the k-fold repeated sender
(context will determine whether we mean parallel or concurrent composition).
Let Rec® denote the k-fold parallel receiver, and let Reclg denote the k-fold con-
current receiver with schedule Y. Underlined variables denote vectors of message
bits (e.g. b € {0,1}*) and plain letters with indices the bit at each coordinate
(e.g. b; is the i’th bit of b).

Definition 2 (Binding). 4 commitment scheme (Send,Rec) is computation-
ally (resp. statistically) binding if for all polynomial-time (resp. unbounded)
sender strategies Send’, only with negligible probability can Send interact with an
honest Rec to generate a commit-phase transcript T and then produce open, open’
such Rec(r,0,0pen) = 1 and Rec(r,1,0pen’) = 1. A scheme is perfectly binding
if the above probability of cheating is 0.

It is straight-forward to prove that all the variants of the binding property are
preserved under parallel/concurrent composition.

Hiding under selective opening attacks. We only study the case of computational
hiding. In the following, Z C 2*! is a family of subsets of [k], which denotes the
set of legal subsets of commitments that the receiver is allowed to ask to be
opened.

Definition 3 (Hiding under selective opening: k-fold parallel compo-
sition security game). Sender input: b € {0,1}*. Let Rec’ be the (possibly
cheating) sender.

1. Send” Rec’ run k executions of the commit phase in parallel using indepen-
dent random coins, obtaining k commit-phase transcripts ™% = (11,..., 7).

2. Rec’ chooses a set I «—, I and sends it to Send”.

3. Send® sends (bi,w;) for all i € I, where w; is an opening of the i’th commit-
ment.

In Item 2, the honest receiver is defined to pick I € 7 uniformly, while a malicious
receiver may pick I adversarially.

Definition 4 (Hiding under selective opening, parallel composition).
Let T C 2% be a family of subsets and B be a family of message distributions
over {0,1}* for all k. Let (Send, Rec) be a commitment and Simy, be a simulator.
We say that (Send, Rec) is secure against selective opening attacks for (Z,B) if
for all k < poly(n):

— Let (Send®(b),Rec’) = (7%, 1,{(bs,w;i)}icr) be the complete interaction be-
tween Rec’ and the honest sender, including the commit-phase transcript %,
the subset I of coordinates to be opened and the openings (b;,w;)icr-

— Let (Sim,'jecl | b) denote the following: first, Simgec/ interacts with Rec’ (with-
out knowledge of b) and outputs a subset I of bits to be opened. Then Simy,
is given {b; }icr. Using this, Simy, interacts with Rec’ some more and outputs
a commit-phase transcript 7%, the set I, and the openings {(b;,w;)}icr-



— It holds that (SimR | b) ~, (Send”(b), Rec’) where b —, B

Definition 5. We say that (Z,B) is non-trivial if (the uniform distribution
over) T, B are efficiently samplable, and (1) |Z| = k") and (2) Prr—z[Hoo(By) >
1/poly(n)] > 1/poly(n).

Here B; is the joint distribution of bits B, for ¢ € I. Property 1 says that if the
receiver asks for a random set in Z to be opened, then the sender cannot guess
the set with noticeable probability. This restriction is natural because in many
contexts if the sender can guess the set to be opened then it can cheat in the
larger protocol where the commitment is being used (e.g. in a zero knowledge
proof). Property 2 says that with noticeable probability over the choice of I, there
is non-negligible entropy in the bits revealed. This is very natural as otherwise
any receiver is trivially simulable since it always sees the same constant bits.

Stronger definitions of hiding Our definitions are chosen to be as weak as possible
in order to make our lower bounds stronger. Nevertheless, our positive results
also satisfy a stronger definition of security, where security holds simultaneously
for all Z,B. For such a notion, we prepend STR to the name of the security
property (e.g. STR-PAR-SB).

Definition 6 (Security game for k-fold concurrent composition). Identi-
cal to the parallel case, except that the receiver has the power to schedule messages
as he wishes, rather than sending them in parallel. In addition, we allow the re-
cetver to pick the set I incrementally subject to the constraint that at the end,
I € I. For example, the receiver can generate one commit-phase transcript, ask
the sender to decommit that instance, then use this information in its interaction
to generate the second commit-phase transcript, and so forth.

Definition 7 (Hiding under selective opening, concurrent composition).
Same as the parallel case, except that the simulator can incrementally ask for
the values (b;);er before completing all commit-phase executions, subject to the
constraint that at the end I € .

Discussion of definitional choices: One could weaken Definition 6 to re-
quire that although all the commit-phase transcripts may be generated concur-
rently, the openings happen simultaneously. Indeed, this was the definition used
in [3]. We do not work with this weakening because it makes the definition not
truly concurrent: forcing all the openings to occur simultaneously “synchronizes”
the sessions.

3 Constructions

Di Crescenzo and Ostrovsky [8] (see also [9]) showed how to build an equivocable
commitment scheme. Equivocable means that for every cheating receiver Rec’,
there exists a simulator that generates a commit-phase transcript that is compu-
tationally indistinguishable from a real transcript, but which the simulator can



decommit to both 0 and 1. Equivocation seems even stronger than STR-PAR-
CBCH security, except that STR-PAR-CBCH explicitly requires security to hold
in many parallel sessions. Although it is not clear how to generically convert
any stand-alone equivocable commitment to an equivocable commitment that is
composable in parallel/concurrently, the particular construction of Di Crescenzo
and Ostrovsky can be composed by using a suitable preamble.

The DO construction consists of a preamble, which is a coin-flipping scheme
that outputs a random string, followed by running Naor’s commitment based
on OWF [18] using the random string of the preamble as the receiver’s first
message. Depending on how the preamble is constructed, we get either a STR-
PAR-CBCH, STR-PAR-SB, or STR-CC-SB commitment. Therefore, Theorem 1
follows by Theorem 6 and Theorem 8 about the following protocol.

Protocol 4 ([8, 9, 18]) Sender’s bit: b. Let G : {0,1}"™ — {0,1}*" be a PRG.

Preamble: Use a coin-flipping protocol to obtain o« {0,1}3".
Commit phase: The sender picks random s <5 {0,1}" and sends ¢ =
(o AND) ® G(s) (where we use the notation (o Ab); = o; AD).
Decommit phase: The sender sends b, s. Receiver checks that ¢ = (o A
b) ® G(s).

We now present three different preambles that when used in the protocol
above, provide STR-PAR-CBCH, STR-PAR-SB, and STR-CC-SB security, respec-
tively.

Protocol 5 ([8]) Preambles for STR-PAR-CBCH or STR-PAR-SB:

1. Using the non-interactive stand-alone CH commitment based on one-way per-
mutations (to achieve STR-PAR-CBCH) or a t-round stand-alone SH com-
mitment (to achieve STR-PAR-SB), the receiver sends a commitment to
a5 {0,1}3",

2. The sender replies with 3 «—, {0,1}3".

3. The receiver opens c.

4. Output 0 = a @ (.

Theorem 6 ([8]). Protocol 4 with the STR-PAR-CBCH (resp. STR-PAR-SB)
version of the preamble of Protocol 5 gives a STR-PAR-CBCH (resp. STR-PAR-
SB) commitment.

Proof (Proof sketch of Theorem 6). We include a proof sketch for the sake of
completeness, and refer the reader to [18, 12, 8] for full proofs. The binding
properties are easy to verify, given the fact that Naor’s commitment scheme is
statistically binding.

The following simulator proves security against selective opening attacks for
both the computational and statistical binding variants. Consider the k-fold
repetition Send”, Rec® of the protocol. Following the proof of Goldreich and
Kahan [12], one can construct a simulator such that, by rewinding the first step
of the preamble (i.e. Step 1 of Protocol 5), can learn the value of the a, ... ax



used in each of the k parallel sessions. Care must be taken to ensure this finishes
in expected polynomial time, but the same technique as in [12] works in our
setting and we refer the reader to that paper for details.

Now for each ¢ € [k] in the i’th session the simulator can sample sg, 81 <x
{0,1}" and reply with 8; = G(s9) ® G(s1) ® «;. This sets o; = G(sg) ® G(s1)-
Then the simulator sets ¢ = G(sg). Now the simulator can decommit to both 0
(by sending sp) and to 1 (by sending s1). |

Protocol 7 ([21]) Preamble for STR-CC-SB:

1. The receiver picks a <5 {0,1}3" and for ¢ = w(logn) picks a?’j — {0,1}3"

fori,j € [€] and sets a}_j =a® a?ﬁj. The recetver commits in parallel to
a, a?,j, aij via a t-round statistically hiding commitment.

2. For each j =1 to £ sequentially, do the following:
(a) The sender sends qi,...,qe <5 {0,1}.
(b) The receiver opens the commitment to af; for all i € [€].

3. The sender sends (3 <5 {0,1}3".

The receiver opens the commitment to «, a?’j, a%’j for alli,j € [f].

5. The sender checks that indeed o = a?’j & ozll’j for all i,5 € [£]. If so output
o =a® [, otherwise abort.

-~

Theorem 8 ([21, 22]). Protocol 4 using the preamble of Protocol 7 gives a
STR-CC-SB commitment.

Proof. Binding is straightforward. For hiding, observe that this is the preamble
of the concurrent zero knowledge proof of Prabhakaran et al. [21]. They prove
the following:

Theorem 9 (Theorem 5.2 of [21], informal). There is black-box simula-
tor strategy that, given access to any efficient receiver for Protocol 7 with any
concurrent scheduling, outputs with high probability in every session a string «
before Step 3 such that the receiver opens to « in step 5.

Namely, [21] show that by using an appropriate rewinding schedule, the simulator
can obtain the value of « in all of the concurrent executions before the sender is
supposed to send 3, regardless of how the receiver schedules the messages. Once
the simulator knows «, one can apply the simulator strategy of [12, 8], as in the
proof sketch of Theorem 6. |

4 Optimality of constructions

We now define our main tool for proving lower bounds, equivocal senders. Intu-
itively, an equivocal sender must run its commit phase without knowing what
it is committing to, so if it can cause the receiver to accept with non-negligible
probability, then it must be able to open its commitments in many ways.



4.1 Equivocal senders
For a pair of algorithms T' = (Teom, Tdecom), define the following game:

1. (Teom, Reck> = (7%, I,state o). Here, state,,,, is the internal state of T,
to be transmitted to Tyecom- I is the set Rec” asks to be opened. Notice Teom
runs without knowledge of b, hence T is “equivocal” during the commit
phase.

2. Ticcom(b, 7F, I, statecom) = {(bi, open;) }icr-

The overall transcript is ((T,Rec”) | b,NoAbortp) = (7%, 1,{(b;,open;)}ic1),
where NoAbort7 denotes the event that 7" does not abort. Say that (7%, I, state.o,,)
is d-openable if with probability at least d over the choice of b, Rec’ accepts
(7%, I,{(b;,open;)}icr), where {(b;, open;)}icr = Taccom(b, 75, I, stateom).-

Definition 8 (Equivocal sender). We say that T = (Teom, Tdecom) S a k-
equivocal sender for (Send, Rec, Simy,) if it holds that

Pr[(7", I, statecom) = (Teom, Rec®) is (1 — n~“MW)-openable A NoAbort] > 1/poly(n)

Using equivocal senders to break binding. To prove our impossibility results,
we will apply the following theorem, which says that the existence of equivocal
senders imply that a commitment is not secure.

Theorem 10. Fiz any non-trivial (Z,B) and k-fold repeated commitment scheme
(Sendk, Reck) with a simulator Simy, that proves computational hiding. If this
commitment has a k-equivocal sender T = (Teom, Tdecom) for any k < poly(n),
then this commitment cannot be statistically binding. If furthermore T is effi-
cient, then this commitment cannot be computationally binding.

Proof. The idea is to convert a k-equivocal T sender into a sender Send’ that
breaks binding in a single execution of the commitment, Send’ emulates T in-
ternally and chooses one of the k parallel instances to insert its interaction with
the real receiver Rec. By the non-triviality of (Z, B), with high probability over
I <y 7 the coordinates in I have significant min-entropy, and in particular some
coordinate must have significant min-entropy. Therefore if Send’ picks this coor-
dinate, then since T is able to open its commitment with non-trivial probability
for I <5 T and b <« B, it follows that Send’ can open its commitment to both
0 and 1 with non-negligible probability.

We now proceed formally by constructing a malicious sender Send” and prov-
ing that this sender breaks binding.

Algorithm 11
Malicious sender Send’, interacting with a single honest receiver Rec:
1. Pick a random j. For each j' # j, sample random coins W) to run an
honest receiver.
2. Respond to the i’th message 3; from Rec as follows.
(a) If i > 1, let (afilll], ceey agi)l]) be Teom’s Tesponse from previous queries.



(b) For j' # j, compute Bi(j’) = Rec(ag;)l];w(j/)). Set ﬁi(j) = 0.

c) Feed ﬁ-(l), . ,ﬁ(k) to Teom to obtain response oz(.l), . ,a(,k) assum-
% ) [i] (il
ing Teom does not abort).
(d) Forward 041(]) back to Rec.

3. If T.om does not abort, Send’ successfully generates a commit-phase transcript
distributed according to (Teom, Reck>. Send’ picks a random I «—; T to be
opened.

4. If j ¢ I, Send’ aborts. Otherwise, it independently picks two b,b' « B, and
runs Tgecom(b, I) to obtain a decommitment for (b;)icr and runs Tygecom (b, T)
to obtain openings for (b})icr. In particular, the malicious sender obtains
openings for b; and V.

Analyzing Send’: By hypothesis, T is a (k, ¢, 1 —n""(l))—equivocal server for
some ¢ = 1/poly(n). This implies that with probability at least &, (Tyom, Rec”)
produces an (1 —n~“())-openable (7¥, I, state .o, ). Therefore, since the proba-
bility of producing an accepting opening for a random b at least (1 —n~«(1), it
holds with probability at least e(1 — n~“(1))2 that Rec” accepts both openings
Tdecom(ba Tkv Ia Statecom) and Tdecom(blv Tka I» Statecom)~

Since (Z,B) is non-trivial, it follows that Pry, ;[V i € I, b = bj] <
n~“() Therefore with probability e(l— n"*’(l))2 —n~“M T produces accepting
openings for b and b’ and furthermore there exists i such that b, # b}. Since the
sender picked at random the coordinate j that contains the real interaction, with
probability 1/k it chooses j = i and therefore with non-negligible probability
produces decommitments for both 0 and 1 in an interaction with the real receiver,
breaking binding. |

4.2 Impossibility results for parallel composition

We present the proofs for the case of 3-round PAR-CBCH and 4-round PAR-SB
commitments, while the cases in Theorem 3 are deferred to the full version.

We construct equivocal senders using the strategy of Goldreich and Krawczyk
[13]. Intuitively, the idea is to construct a sender T' whose output distribution is
the same as Sim,fech. Here, Recy, is intuitively a cheating receiver that, for each
sender message, uses its hash function h to generate a response that looks com-
pletely random, and therefore Simy, gains no advantage by rewinding Recy,. From
this cheating property, we will be able to conclude that T satisfies Definition 8

Goldreich and Krawczyk [13] observe that we can make the following sim-
plifying assumptions w.l.o.g.: (1) Sim; makes exactly p(n) = poly(n) queries to
its receiver black box, (2) all queries made by Simj are distinct, and (3) Simy
always outputs a transcript 7% that consists of queries it made to the receiver
and the corresponding receiver responses.

The following lemma from [13] says that simply by guessing uniformly at
random, one can pick with some noticeable probability the queries/responses
that the simulator outputs as its final transcript.



Lemma 1 ([13]). Fiz a black-box simulator Simy, for a protocol with t sender
messages, and suppose Simy makes p(n) queries. Draw uy,...,u; g [p(n)],
then with probability > 1/p(n)t, the final transcript output by Simy consists of
the uq, ..., us 'th queries (along with the corresponding receiver responses).

3-round commitments

Theorem 12. For all non-trivial (Z,B) and relative to any oracle, there exists
no 3-round PAR-CBCH commitment protocol secure for (Z,B).

Proof. We construct a polynomial-time k-equivocal sender for (Send,Rec) for
k = n. By Theorem 10, this contradicts the binding property of the commitment.

Algorithm 13
Equivocal sender T = (T com, Tdecom) for 3-round commitments:

1. Teom picks uy,us < [p(n)].
2. Teom internally runs Simy, answering its queries as follows:

— For the uy,us th queries, if the ui th query is a first sender message oy
and the ug’th query is a second sender message g that extends i,
then Teom forwards them to the real receiver and forwards the receiver’s
responses to the simulator. Otherwise, T,y aborts.

— For all other queries: if the query is oy, then Teom returns Reck(algw)
for uniform w. If the query is oy then T returns a random I <, T.

8. When Simy, requests that a subset I of bits be revealed, T.om checks to see if
I equals the set that the real receiver asked to be opened. If not, Teop, aborts.

4. In the opening phase, Tqecom receives b and feeds (b;)icr to the simulator
and obtains (7% 1, (b;,open;)icr). Ticcom checks that 7% and I consists of
queries to/from the real receiver, and if not aborts. Otherwise it outputs
these openings.

Analyzing equivocal sender T. It is clear that T runs in polynomial time.
Lemma 1 implies that with probability 1/p(n)?, Simy, picks the set to be revealed
I using the receiver’s responses to the guessed queries uy, us.

Lemma 2. The probability that Simy makes two queries oz[z],a&] that are both
answered with the same I is negligible

This claim holds because |Z| = n*(!) and Simj makes at most p(n) = poly(n)
queries. Lemma 2 implies that when 7" emulates Simy, Simj cannot pick I using
the real receiver’s messages but then find a different commit-phase transcript
that leads to the same set I. Therefore the probability that T" does not abort and
outputs the queries to and responses from the real receiver is at least 1/p(n)? —
n=*M > 1/poly(n).

Lemma 3. Rec® accepts ((T,Rec®) | b, NoAbortr) with overwhelming probabil-
1ty.



This claim combined with the above assertion that T" does not abort with non-
negligible probability implies that T satisfies Definition 8.

We now prove Lemma 3 by comparing the output of T" to (Sim,fech | b) where
Recy, is defined as follows: h is a p(n)-wise independent hash function, it responds
to first sender queries o by computing 8; = Rec(ay; h(ay)) and to second sender
queries ajg by sampling uniform [ <y Z using h(ay)) as random coins.

As observed by [13], ((T,Rec) | b, NoAborty) = (SimFe" | b) for a uniform
choice of h. Since Recy, is efficient, by the hiding property this is indistinguishable
from (Send® (b), Recy,). This in turn is equal to a true interaction (Send®(b), Rec®),
since by the definition of Recj, the two receivers Recy, and Rec® behave identically
when there is no rewinding. Since Rec® always accepts a real interaction, there-
fore Rec” accepts ((T',Rec) | b, NoAborts) with overwhelming probability. |

4-round commitments

Theorem 14. For all non-trivial (Z,B) and relative to any oracle, there exists
no 4-round PAR-SB commitment protocol secure for (Z,B).

Proof (Proof). As before, it suffices to construct a k-equivocal sender for k = n.

Algorithm 15

Equivocal sender T = (Teom, Taecom) for 4-round PAR-SB commitments
1. Teom picks uy,us <5 [p(n)].

2. Teom Teceives the first message (31 from the receiver.

8. Teom internally runs Simy, answering its queries as follows:

— For the simulator’s uy, us th queries, if the ui th query is a first sender
message a1 and the uz’th query is a second sender message oy that
extends aq, then Teom forwards them to the real receiver and forwards
the receiver’s responses to the simulator. Otherwise, Teom aborts.

— For all other queries: if the query is oy then Ty, samples a random
W' e, {w | Rec(L;w) = B} and returns B2 = Rec(Br,a1;w’) to the
simulator. If the query is aqg) then the simulator picks a random I «, T
and returns it to the simulator.

4. When Simy, requests that a subset I of bits be revealed, Teom checks to see if
I equals the set that the real receiver asked to be opened. If not, Teop, aborts.

5. In the opening phase, Tgecom receives b and feeds (b;)icr to the simulator
and obtains (7% 1, (b;,open;)icr). Ticcom checks that 7% and I consists of
queries to/from the real receiver, and if not aborts. Otherwise it outputs the
openings.

Analyzing equivocal sender 7. T may not run in polynomial time because
sampling w’ < {w | f1 = Rec(L;w)} may be inefficient. This implies the sender
breaking binding given by Theorem 10 may be inefficient, which is why we can
only handle PAR-SB commitments.

Applying Lemma 1, T' does not abort with probability > 1/p(n)?. Lemma 2
applies here for the same reason as in the proof of Theorem 12, therefore it holds



with probability 1/p(n)? —n=“(M) > 1/poly(n) that T’s messages to/from the
receiver are exactly those in the output of its emulation of Simy.

We claim that Lemma 3 holds in this case as well, which would imply that
T satisfies Definition 8. We prove Lemma 3 in this setting by comparing the

PR
output of T to (Sim;:ech | b), where we use the cheating receiver strategy

Rec;"** defined by Katz [17]: s will be set below, and the w; are random
coins for the honest receiver algorithm such that Rec(L;w;) = Rec(L;w;) for all
i,7 € [s], and h is a p(n)-wise independent hash function with output range [s].
The first message of Rec;"“* is 3; = Rec(L;w;) and given sender message o,
the second message is o = Rec(f1, a1;wh(g,,a,))- Given sender messages oy,
the set I to be opened is sampled using Wh(Bpay o) random coins.

As observed in [17], for s = 50p(n)?/§ it holds that the statistical distance

between ((T, Rec*) | b, NoAbortr) and (Simgech’ly o | b) is at most &, where the
randomness is over uniform p(n)-wise independent h, uniform w; and uniform
wa,...,ws conditioned on Rec(L;w;) = Rec(L;wy) for all j € [s]. By the com-
mitment’s hiding property this is indistinguishable from (Sendk(b), Recy %),
which in turn is equal to (Send®(b), Rec”) by the definition of Rec’ . Finally,
since Rec® always accepts a real interaction, therefore it accepts (T, Reck> |
b, NoAbort7) with probability 1 — & —n=«(1),

We can apply the above argument for any § > 1/poly(n) to conclude that
Rec” accepts ((T',Rec®) | b, NoAbort) with probability 1 — & — n=“() for all
0 > 1/poly(n).

Therefore Rec” must accept ((T, Rec®) | b, NoAbortr) with probability 1 —

n~*M) and so T satisfies Definition 8. |

4.3 PAR-SB commitments imply (stand-alone) SH commitments

To prove Item 2 of Theorem 2, we show that PAR-SB commitments can be used
to generate a gap between real and accessible entropy [16]. Then we apply the
transformation of [16] that converts an entropy gap into a statistically hiding
commitment.

To simplify the statement of our result, we assume that Z = 2] and B = Uy;
see the full version for the general treatment. We also defer the definitions of
real min-entropy and accessible max-entropy and the formal proof of the main
technical lemma (Lemma 4) to the full version.

Theorem 16. For (I = 2*1. B = Uy), if there exists O(1)-round (Send, Rec)
that is PAR-SB secure for (Z,B), then there exists O(1)-round statistically hiding
commitments.

Proof. Assume without loss of generality that Rec® sends all his random coins
at the end of the opening phase, and that Rec uses m random coins in a single
stand-alone instance.

Lemma 4. Rec® has real min-entropy at least km(1 —1/k'/3) and has context-
independent accessible maz-entropy < km — k/4.



Lemma 4 implies there is an entropy gap, and so the theorem follows by
combining it with the black-box construction of statistically hiding commitments
from entropy gaps given by Lemmas 6.7, 4.7, and 4.18 of [16]. |

Proof (Proof of Lemma 4.). The real min-entropy part of the claim follows from
the definitions and amplification by parallel repetition (Proposition 3.8 in [16]).
For the accessible entropy part, we use the following:

Claim. If there exists efficient A* sampling context-independent max-entropy
> km — k/4 for Reck7 then there exists a k-equivocal sender.

By Theorem 10 this contradicts the binding property of the commitment,
and so A* cannot exist. The proof follows from ideas of [16] and we defer a
formal proof to the full version.

4.4 Impossibility results for concurrent composition

Again, we state our theorem for the natural case Z = 2/¥! and B = Uy, and defer
the general statement to the full version.

Theorem 17. For (Z =21, B = U}), and relative to any oracle, no o(logn/ loglogn)-
round commitment is CC-CBCH secure for Z,B.

Proof. Building the equivocal sender: The message schedule we use is ex-
actly that of [7], which we call X, and is defined in the full version. The high-level
idea of T, also adapted from [7], is to execute Simy and to insert the real re-
ceiver’s messages into one session j chosen at random, and where T aborts if
the simulator tries to rewind queries in session j. Messages for other sessions are
computed using the partial transcripts generated by the simulator so far. We
defer a more explicit description to the full version.
Analyzing equivocal sender T [7] prove the following lemma:

Lemma 5 ([7], informal). It holds with non-negligible probability that there

. . . . . Reck . . .
exists a “good session” in the ewecution of Sim, ~, i.e. a session where Simy

does not rewind Recg.

The only place where T may abort is if in its emulation of Simy, the simulator
tries to rewind the receiver in session j. Therefore, with probability 1/k, T inserts
the real receiver into the good session that is guaranteed to exist by Lemma 5
with non-negligible probability. Furthermore, since the k£ concurrent simulation is
indistinguishable from a real interaction, it follows that Reck: accepts ((T', Reck.) |
b, NoAbortr) with overwhelming probability.
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