
On the Complexity of Non-Adaptively Increasing
the Stretch of Pseudorandom Generators

Eric Miles? and Emanuele Viola??

Northeastern University
{enmiles,viola}@ccs.neu.edu

Abstract. We study the complexity of black-box constructions of linear-
stretch pseudorandom generators starting from a 1-bit stretch oracle
generator G. We show that there is no construction which makes non-
adaptive queries to G and then just outputs bits of the answers. The re-
sult extends to constructions that both work in the non-uniform setting
and are only black-box in the primitive G (not the proof of correctness),
in the sense that any such construction implies NP/poly 6= P/poly. We
then argue that not much more can be obtained using our techniques: via
a modification of an argument of Reingold, Trevisan, and Vadhan (TCC
’04), we prove in the non-uniform setting that there is a construction
which only treats the primitive G as black-box, has polynomial stretch,
makes non-adaptive queries to the oracle G, and outputs an affine func-
tion (i.e., parity or its complement) of the oracle query answers.

1 Introduction

The notion of a pseudorandom generator is fundamental to the study of both
cryptography and computational complexity. An efficient algorithmG : {0, 1}n →
{0, 1}n+s is a (cryptographic) pseudorandom generator (PRG) if no efficient ad-
versary can distinguish a random output from a uniformly random string, ex-
cept with some small advantage. That is, for all efficient adversaries A, we have
|Pr[A(G(Un)) = 1]− Pr[A(Un+s) = 1]| < ε.

A key parameter for any PRG is its stretch s, the difference between the
output and input lengths. Any PRG must have stretch s ≥ 1 to even satisfy
the definition, but in fact such a small amount of stretch is not useful for any
cryptographic or derandomization applications of which we are aware. For these,
one typically needs the stretch to be larger, e.g. linear (s = Ω(n)). An important
and well-known result is that the existence of a PRG with stretch s = 1 implies
the existence of a PRG with stretch s = poly(n) for any desired polynomial.
We begin by briefly recalling the construction that is typically used to prove
this result (due to Goldreich and Micali; see [4] Sect. 3.3.2 for a more thorough
treatment).

For a generator G : {0, 1}` → {0, 1}`+1 and a positive integer k, let Gk(x)
denote the (` + 1)-bit string resulting from k iterative applications of G, each

? Supported by NSF grant CCF-0845003.
?? Supported by NSF grant CCF-0845003.

time using the first ` bits of the previous output as input, and using x as input for
the first invocation. Then, the “stretch-increasing” construction H(·) : {0, 1}` →
{0, 1}m is defined as

HG(x) := G1(x)`+1 ◦G2(x)`+1 ◦ · · · ◦Gm(x)`+1. (1)

That is, H iteratively queries G as described above, and outputs the final bit of
each answer.

An aspect of the Goldreich-Micali construction that we would like to stress
is that the queries H makes to its oracle are adaptive, in the sense that the
ith query can be determined only after the answer to the (i − 1)th query has
been received. The presence of adaptivity in such constructions is of particular
importance when considering the existence of cryptographic primitives in “low”
complexity classes. The celebrated work of Applebaum et al. [1], in combination
with the recent (non-adaptive) construction of Haitner et al. [7], demonstrates
the existence of PRGs computable in NC0 under the assumption that there exist
one-way functions computable in NC1. However, the resulting PRGs have sub-
linear stretch, and the application of construction (1) would place them outside
of NC0.

Finally, we note that construction (1) only outputs bits of the answers it gets
back from the queries, with no additional computation performed.

Informal discussion of our results. In this paper we study the complexity of
increasing the stretch of cryptographic PRGs. We work in the setting of black-
box constructions, which is explained in detail later. Informally, our first main
result says that there can be no linear-stretch construction that makes non-
adaptive queries and outputs only bits of its answers. For example, this rules
out constructions which make non-adaptive queries and always output the last
bit of the query answers, or even the entire query answers. Thus, linear-stretch
constructions require either adaptive queries or postprocessing the queries in a
more sophisticated way than just projecting. Our proof of this result is simi-
lar to one by Gennaro, Gertner, Katz, and Trevisan [3] who prove that con-
structions of generators with stretch s from one-way permutations must make
≥ Ω(s/ log(security)) queries. But note that our work is incomparable to theirs
because we do not bound the number of queries (our constructions make one
query per output bit).

Our second main result complements the first by showing that not much
more can be obtained with the techniques in this paper. Specifically, we consider
a special type of construction which is termed weakly black-box by Reingold,
Trevisan, and Vadhan in [12], and for which we later advocate the alternative
terminology primitive black-box. Then we extend an argument also in [12] to
prove unconditionally, in the non-uniform setting, the existence of such con-
structions which have polynomial stretch, make non-adaptive queries, and just
compute affine functions (parities or their complement) of the query answers.
This complements the previous result because if instead of affine functions one
only allows for projections, we show that such a construction implies NP/poly

6= P/poly. This means that, at least in the non-uniform setting, to extend our
negative result to constructions with more postprocessing power requires differ-
ent techniques from the ones in this paper. Our extension of the argument in
[12] combines that argument with the Nisan-Wigderson generator [11].

Black-box constructions and formal statement of our results. To formally state
our result, we first define black-box constructions. To explain and motivate the
latter, we start by sketching the proof of correctness of the Goldreich-Micali
Construction (1). Suppose there is an adversary A that distinguishes HG(U`)
from Um with advantage greater than ε ·m. Using a hybrid argument, one can
show that there exists a k ∈ [m] such that A distinguishes the distributions
Uk−1 ◦

(
HG(U`)|[m−(k−1)]

)
and Uk ◦

(
HG(U`)|[m−k]

)
with advantage greater

than ε. Then, we define a probabilistic oracle circuit C(·) as follows: on input
(x, b) ∈ {0, 1}` × {0, 1}, CG,A computes HG(x) using its oracle to G, chooses
y ∈ {0, 1}k−1 uniformly at random, and then outputs A

(
y ◦ b ◦HG(x)|[m−k]

)
.

Depending on whether (x, b) was chosen from U`+1 or from G(U`), the input
C gives to A will come from one of the two hybrid distributions that A can
distinguish between, and so C distinguishes G with advantage greater than ε,
contradicting G’s pseudorandomness.

The above argument is an example of a black-box reduction: the argument
applies to any (possibly hard to compute) functions G and A, provided that we
are given oracle access to them.

Definition 1 (Black-box stretch-increasing construction). An oracle func-
tion H(·) : {0, 1}n → {0, 1}n+s is a black-box stretch-increasing construction with
security reduction size t of a generator with stretch s and error ε from any one-
bit-stretch oracle generator G : {0, 1}` → {0, 1}`+1 with error δ if the following
holds:

For every 1-bit stretch generator G : {0, 1}` → {0, 1}`+1 and every adversary
A, if A distinguishes HG with advantage ε, i.e.∣∣Pr[A(HG(Un)) = 1]− Pr[A(Un+s) = 1]

∣∣ ≥ ε
then there is an oracle circuit C(·) of size t that, when given oracle access to both
A and G, distinguishes G with advantage δ, i.e.∣∣Pr[CA,G(G(U`)) = 1]− Pr[CA,G(U`+1) = 1]

∣∣ ≥ δ.
Poly-time computable stretch-increasing black-box constructions are useful

in constructing efficient PRGs, because if we start with an oracle G that is a
poly-time computable PRG with error δ(`) = 1/`ω(1) against circuits of size
s(`) = `ω(1), and we have t, n = poly(`), then HG is a poly-time computable
PRG with error ε(n) = 1/nω(1) against circuits of size s′(n) = nω(1). This can be
easily seen by noticing that any circuit of size poly(n) that distinguishes HG with
advantage 1/nO(1) can be transformed into a circuit of size at most poly(`) that
distinguishes G with advantage 1/`O(1), contradicting G’s pseudorandomness.

We can now state our first main result.

Theorem 1 For all sufficiently large ` and for n ≤ 2
√
`, there is no black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ log n
and error ε ≤ 1/4 from any one-bit stretch generator G : {0, 1}` → {0, 1}`+1

with error δ ≥ 2−
√
`/30 and with security reduction size t ≤ 2

√
`/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}` specifies the i-th query and bi : {0, 1}n → [` + 1]
specifies the bit of the i-th answer to output.

Note this holds even if the 1-bit stretch generator is hard against circuits (as
opposed to uniform algorithms).

An interesting open problem is to understand whether a result like Theorem
1 holds for arbitrary polynomial-time postprocess of the query answers. We do
not know how to solve this problem. However, as mentioned before we can show
that the techniques in this paper are unlikely to prove a negative result, even
if the postprocessing is just computing parities or their complements. For this,
we consider a special type of construction, which is termed weakly black-box in
[12]. Informally, a reduction is weakly black-box if the construction H treats the
primitive G as a black-box, but outputs a generator in the real-world, i.e. the
proof of correctness is arbitrary. We suggest the alternative terminology primitive
black-box, to signify both that only the primitive (and not the adversary) is
treated as a black-box, and that this is a “cruder” form of reduction.

We define next primitive constructions, working in the asymptotic setting
because the following results are cleaner to state in that setting. We also note
that our construction will hold for infinitely many input lengths (as opposed to
sufficiently large input), and for conciseness we incorporate this into the defini-
tion.

Definition 2 (Primitive black-box stretch-increasing construction). Let
` be a security parameter, and let n = n(`) and s = s(`) be functions of `. A
family of oracle functions H(·) : {0, 1}n → {0, 1}n+s is a primitive black-box
stretch-increasing construction with stretch s from any family of one-bit-stretch
generators G : {0, 1}` → {0, 1}`+1 if the following holds for infinitely many input
lengths `:

For every generator family G : {0, 1}` → {0, 1}`+1, if there exists a con-
stant c0 and a circuit family A of size at most nc0 which distinguishes HG from
uniform with advantage at least 1/nc0 , i.e.∣∣Pr

[
A
(
HG(Un)

)
= 1
]
− Pr [A (Un+s) = 1]

∣∣ ≥ 1/nc0

then there exists a constant c1 and a oracle circuit family C(·) of size at most
`c1 which distinguishes G from uniform with probability at least 1/`c1 , i.e.∣∣Pr

[
CG (G(U`)) = 1

]
− Pr

[
CG (U`+1) = 1

]∣∣ ≥ 1/`c1 .

Our second main results proves the existence of a non-adaptive primitive
black-box stretch-increasing construction of a slightly modified form which com-
putes a polynomial-stretch PRG. The additional power that this construction
has is the ability to compute parities or their complements of the query answers,
rather than just projections. Recall from Definition 2 that primitive construc-
tions only work for infinitely many input lengths.

Theorem 2 Let c > 1 be any constant. Then, for n = 17`2, there exists a
primitive black-box stretch-increasing construction H(·) : {0, 1}n → {0, 1}nc

with
stretch s := nc − n from any family of one bit stretch generators G : {0, 1}` →
{0, 1}`+1. In addition, H(·) is computable by a poly(n)-sized circuit family, and
has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qn+s(x)), rn+s(x)〉 ⊕ tn+s(x)

where qi : {0, 1}n → {0, 1}` specifies the ith query, ri : {0, 1}n → {0, 1}`+1

specifies the parity function for the ith answer, and ti : {0, 1}n → {0, 1} specifies
whether to flip the ith bit.

One weakness of the above theorem is that it works in the non-uniform
setting. It is an open problem whether something like this can be proved in the
uniform one.

To appreciate Theorem 2, we point out that the techniques used for our
previous negative result (Theorem 1) “extend” to primitive constructions as
well, in the sense that they can be used to show that any such construction
implies NP/poly 6⊆ P/poly. Note that primitive black-box constructions cannot
be ruled out without ruling out the existence of pseudorandom generators (if the
latter exist, a construction can just ignore the oracle and output a pseudorandom
generator).

Theorem 3 Let n = n(`) ≤ 2
√
` and s = s(n) ≥ 5n/ log n. Let H(·) : {0, 1}n →

{0, 1}n+s be a primitive black-box stretch-increasing construction with stretch s
from any family of one-bit stretch generators G : {0, 1}` → {0, 1}`+1. If H has
the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

and the qi and bi are computable by poly(n)-sized circuits, then NP/poly 6⊆
P/poly.

Note that the parameters in Theorem 2 are within the range of parameters
considered by Theorem 3 – the only difference is the amount of postprocess.

1.1 More related work

The earlier work [13] (which was later extended by [10]) analyzes a type of pseu-
dorandom generator construction that is very similar to ours. The constructions
in [13] make non-adaptive queries to an oracle one-way function, and then ap-
ply an arbitrary unbounded-fan-in constant-depth circuit (AC0) to the outputs;

[13] shows that such constructions cannot have linear stretch. At first glance
this construction is incomparable to Theorem 1, because it starts from a weaker
primitive (one-way function instead of one-bit stretch generator) but on the other
hand allows for AC0 postprocessing instead of just projections.

However, it was pointed out to us by Benny Applebaum that a strengthening
of Theorem 1 follows from [13] when combined with the works [1] and [7]. Specifi-
cally, a version of Theorem 1 holds even if the construction H is allowed to apply
an AC0 circuit to the output of the one-bit stretch oracle PRG G (rather than
just taking projections). We now elaborate on this improvement. (We also re-
mark that at the moment this establishes a strengthened negative result only for
constructions that start from a uniform hardness assumption, because Theorem
1.1 in [13] is only proved for those.)

Let H(·) : {0, 1}n → {0, 1}n+s be a a black-box construction of a PRG from
a one-bit stretch PRG of the form HG(x) := Cx(G(q1(x)), . . . , G(qpoly(n)(x))),
where Cx is an AC0 circuit generated arbitrarily from x and the functions qi
are arbitrary as before. Let G

(·)
HRV : {0, 1}` → {0, 1}`+1 be the black-box con-

struction of a PRG from a OWF given by [7] Theorem 6.1. This construction

has the form GfHRV(x) := C ′(x, f(x′1), . . . , f(x′t)) where C ′ is an NC1 circuit
and the x′i are disjoint projections of the input x. Then, we can apply the
compiler from [1] (cf. Remark 6.7 in that work) to obtain a black-box con-

struction G
(·)
AIK : {0, 1}` → {0, 1}`+1 of a PRG from a OWF of the form

GfAIK(x) := C ′′(x, f(x′1), . . . , f(x′t)), where now C ′′ is an NC0 circuit (and thus is
also an AC0 circuit). (For both GHRV and GAIK the seed length is ` = poly(m),
where m is the input length of the oracle OWF, though the compiler from [1]
does increase the seed length.) Finally, by combining H and GAIK, we obtain

a black-box construction H
(·)
∗ : {0, 1}n → {0, 1}n+s of a PRG from a OWF

which has the form Hf
∗ (x) := C ′′′x (f(q1(x)), . . . , f(qpoly(n)(x))) where C ′′′x is an

AC0 circuit. This is a contradiction to Theorem 1.1 of [13] when the oracle

f : {0, 1}m → {0, 1}k has logω(1)m < k ≤ mO(1) and the stretch s is greater

than n · logO(1)m/k = o(n).
Finally, we mention that in a concurrent work, Bronson, Juma, and Papakon-

stantinou [2] also study non-adaptive black-box PRG constructions and obtain
results which are incomparable to ours.

1.2 Techniques

We now explain the ideas behind the proof of Theorem 1. For simplicity, we
first explain our proof in the case in which the construction always outputs the
same bit of the answers, say the first bit (i.e., bi(x) = 1 for every i, in Theorem
1). We start by considering a non-explicit oracle pseudorandom generator G :
{0, 1}` → {0, 1}`+1 that is hard to break even for circuits that have access
to G. Such oracles are obtained in an unpublished manuscript of Impagliazzo
[9] and in a work by Zimand [15]. (They work in a slightly different setting,
however, obtaining PRGs with high probability in the random oracle model,
where we instead require an unconditional (but non-explicit) generator that is

secure against adversaries which can query it. For completeness we present a
streamlined version of their arguments in Sect. 4, and for the moment continue
with the description of the proof of Theorem 1.) By padding, we can modify our
oracle to have the extra property that G(x)1 = x1 for every x. Now, the point
is that the construction doesn’t need to query the oracle, since each output bit
G(qi(x))bi(x) can be replaced with qi(x)1. So we can consider an adversary A that
breaks the construction H by simply checking, given a challenge z ∈ {0, 1}m,
whether there exists an input to H that produces z. This breaks H as soon as
the output length is ≥ |x|+ 1. Since H doesn’t use G anymore, neither does the
adversary A. Hence the ability to access A does not compromise the security of
G, contradicting Definition 1.

To obtain the result for primitive constructions, we observe that A can be
computed in NP/poly, and hence under the assumption that NP/poly = P/poly
we obtain a distinguisher.

Moreover, this simplified argument says nothing about, for example, a con-
struction which outputs the entirety of the answers received from the oracle,
which a priori may seem to be a plausible candidate. To generalize our result to
constructions that output different bits (i.e. not always the first one), we identify
a set of indices T ⊆ [` + 1] of size `(1 − Θ(1/ log `)), such that for most input
strings x ∈ {0, 1}n, most of the bits bi(x) chosen by H fall inside T . We exploit
this fact by designing an oracle PRG G that reveals the first |T | bits of its input
on the set T ; that is, G(x)|T = x1x2 · · ·x|T | for every input x. We then design
an (inefficient) adversary A that distinguishes HG from uniform by examining,
for every x ∈ {0, 1}n, only the bits i such that bi(x) ∈ T , and checking if each
bit matches the corresponding bit from the query qi(x). This turns out to break
H as soon as the the output length is ≥ |x|+Ω(|x|/ log |x|) (we do not attempt
to optimize this value and content ourselves with anything sublinear). On the
other hand, A depends on G just because of the knowledge of the set T , which
means that oracle access to A does not compromise the security of G, again
contradicting 1.

We now explain the proof of Theorem 2. Here we follow closely an argu-
ment of Reingold, Trevisan, and Vadhan in [12]. We proceed by case analysis,
depending on the existence or non-existence of one-way functions (OWFs). For
our argument, we define OWFs as computable by a family of poly-size circuits
and hard to invert by any family of poly-size circuits.

If OWFs exist, we use the result of H̊astad et al. [8] that efficiently computable
PRGs also exist; the construction then ignores its oracle and simply outputs the
PRG, by letting ti(x) be the ith output bit of the PRG, and setting ri = 0, for
every i.

If OWFs do not exist, this means that the oracle cannot be computable
by poly-size circuits (since it is assumed to be hard to invert). We can then
use Goldreich-Levin [6] to transform the oracle into a Boolean function that
is hard to compute by any family of poly-size circuits. Until now this is the
argument in [12]. (Actually [12] is more involved because it works even in the
uniform setting.) Our contribution is to apply at this point the Nisan-Wigderson

construction [11] to get a PRG. Since this construction is non-adaptive and has
arbitrary polynomial stretch, and the hard function given by Goldreich-Levin is
just the inner product of the oracle with a random vector, this has the desired
form.

We note that, as is well-known, the proof of correctness of the Nisan-Wigderson
construction requires non-uniformity, and this is what prevents this result to ap-
ply to the uniform setting.

Organization In Sect. 2 we prove Theorems 1 and 3, the two negative results. In
Sect. 3 we prove Theorem 2, the complementing positive result. Finally, in Sect.
4 we construct the one-bit-stretch oracle generator used in Sect. 2.

2 Black-box stretch-increasing constructions

In this section we prove Theorems 1 and 3. We use the following definition of an
oracle pseudorandom generator.

Definition 3 (Oracle pseudorandom generator). Let G : {0, 1}n → {0, 1}n+s
be a function. G is a (T, ε)-pseudorandom generator if s ≥ 1 and for every oracle
circuit C of size at most T , we have

∣∣Pr[CG(G(Un)) = 1]− [CG(Un+s) = 1]
∣∣ < ε.

The quantity on the left-hand side of the inequality is referred to as C’s advantage
in distinguishing G, and s is referred to as G’s stretch.

The key property we require of our one-bit stretch oracle G, stated in the
next theorem, is that it reveals a large portion of its input, i.e. most of the output
bits are simply copied from the input.

Theorem 4 Let `, d ∈ N be sufficiently large with d ≤ `/2. Then, for any sub-
set T ⊆ [` + 1] with |T | = ` − d and any oracle A, there exists a generator
G : {0, 1}` → {0, 1}`+1 such that

1. G is a (2d/30, 2−d/30)-PRG against adversaries with oracle access to A
(and G).

2. For every input x ∈ {0, 1}`, G(x)|T = x1x2 · · ·x`−d.

We defer the proof of this theorem to Sect. 4, and instead start by showing
how it is used to prove the main theorem. First, we need a simple technical lemma
showing that for any stretch-increasing construction of the specified form, we can
find a large set of indices inside which most bi(x) fall for most choices of x.

Lemma 1. Let n, d, s, ` ∈ N with d < `. Let {bi : {0, 1}n → [`+ 1]}i∈[n+s] be a
collection of n + s functions. Then, there exists a set T ⊆ [` + 1] of size ` − d
such that

Pr
x

[
|{i : bi(x) ∈ T}| ≥ (n+ s) ·

(
1− 4(d+ 1)

`+ 1

)]
≥ 3

4
.

Proof. Let S ⊆ [`+1] denote a random subset of size d+1. We have Prx,i,S [bi(x) ∈
S] = (d + 1)/(` + 1), and so we can fix some S so that Prx,i[bi(x) ∈ S] ≤
(d+ 1)/(`+ 1). This can be restated as Ex [Pri [bi(x) ∈ S]] ≤ (d+ 1)/(`+ 1), and
so by Markov’s inequality we have Prx[Pri[bi(x) ∈ S] ≥ 4(d+ 1)/(`+ 1)] ≤ 1/4.
Letting T := [`+ 1] \ S completes the proof.

We now prove Theorem 1, restated for convenience.

Theorem 1 For all sufficiently large ` and for n ≤ 2
√
`, there is no black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ log n
and error ε ≤ 1/4 from any one-bit stretch generator G : {0, 1}` → {0, 1}`+1

with error δ ≥ 2−
√
`/30 and with security reduction size t ≤ 2

√
`/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}` specifies the i-th query and bi : {0, 1}n → [` + 1]
specifies the bit of the i-th answer to output.

Proof. Let H(·) be a construction of the specified form. Fix a parameter d :=
`/ log n. Fix T ⊆ [` + 1] to be the subset of size `− d guaranteed by Lemma 1.
For each x ∈ {0, 1}n, let Ix denote the set {i : bi(x) ∈ T} ⊆ [n + s]. Using
s = 5n/ log n, the chosen value for d, and the fact that |Ix| is an integer, the
bound from Lemma 1 can be restated as Prx [|Ix| ≥ n+ 1] ≥ 3/4 for sufficiently
large n and `. In the remainder of the proof, we refer to x such that |Ix| ≥ n+ 1
as good.

Let T−1 denote a transformation such that T−1(j) = k if j is the kth smallest
element of T (this is simply to provide a mapping from G’s output bits to the
corresponding revealed input bits). The adversary A : {0, 1}n+s → {0, 1} is
defined as the function which accepts exactly the set

{z : ∃x ∈ {0, 1}n such that x is good and ∀i ∈ Ix, zi = qi(x)T−1(bi(x))}.

Let G : {0, 1}` → {0, 1}`+1 be the PRG guaranteed by Theorem 4 using these
choices of T and A. We claim that A distinguishes HG(Un) from Un+s with
advantage at least 1/4. To see this, consider z which is a uniformly chosen
output of HG, i.e. z = HG(x) for x ← Un. Because x is good with probability
at least 3/4, and because HG(x)i = qi(x)T−1(bi(x)) for all i ∈ Ix by item 2 of

Theorem 4, we have Pr[A(HG(Un)) = 1] ≥ 3/4. Conversely, for the case where
A’s input is chosen from Un+s, we have the following calculation:

Pr
z←Un+s

[A(z) = 1] = Pr
z

[
∃x : x is good ∧ ∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]
≤

∑
x∈{0,1}n
x is good

Pr
z

[
∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]
≤

∑
x∈{0,1}n
x is good

2−(n+1)

≤ 1

2
.

(The second inequality follows from the fact that |Ix| ≥ n + 1 for x that are
good.)

Finally, note that item 1 in Theorem 4 (along with the choice of d and the

upper bound on n) implies that there is no oracle circuit C of size at most 2
√
`/30

such that CA,G distinguishes G with advantage at least 2−
√
`/30. Therefore, H

does not meet the conditions of Definition 1 for the stated parameters.

Next, we show that this theorem can be extended to the primitive black-box
setting.

Theorem 3 Let n = n(`) ≤ 2
√
` and s = s(n) ≥ 5n/ log n. Let H(·) : {0, 1}n →

{0, 1}n+s be a primitive black-box stretch-increasing construction with stretch s
from any family of one-bit stretch generators G : {0, 1}` → {0, 1}`+1. If H has
the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

and the qi and bi are computable by poly(n)-sized circuits, then NP/poly 6⊆
P/poly.

Proof. Let H be a primitive black-box stretch-increasing construction of the
specified form. Let G and Ix be defined as in Theorem 1 (the oracle A against
which G is secure is not relevant here). Because the qi, bi functions are com-
putable by poly(n)-size circuits, there is a poly(n)-size circuit family which
computes the string HG(x)|Ix on input x, while making no oracle calls to G.
As a result, we can define a non-deterministic poly(n)-size circuit family which
distinguishes HG from uniform with advantage 1/4: on input z ∈ {0, 1}n+s, the
circuit non-deterministically guesses x ∈ {0, 1}n, and accepts iff |Ix| ≥ n+1 and
z|Ix = HG(x)|Ix . The proof that this is indeed a distinguisher for HG is identical
to the argument given for Theorem 1.

Now assume for contradiction that NP/poly = P/poly, i.e. that every non-
deterministic circuit family can be simulated by a deterministic circuit family
with only a polynomial increase in size. Then, there is a poly(n)-size determin-
istic circuit family which distinguishes HG from uniform with noticeable advan-
tage. By the definition of a primitive black-box construction, there must also be
such a circuit family that distinguishes G, contradicting G’s pseudorandomness.

3 A non-adaptive primitive black-box construction

In this section we prove Theorem 2, showing that there exists a non-adaptive
primitive black-box reduction with slightly more post-processing power (namely
the ability to compute inner products) that computes a polynomial-stretch PRG.
We remind the reader that this construction produces a PRG on infinitely many
input lengths. For the sake of brevity, we state two standard definitions that are
used in this section and the next.

Definition 4 (Hard to invert). Let f : {0, 1}n → {0, 1}m be a function. f
is (T, ε)-hard to invert if for every oracle circuit C of size at most T , we have
Pr[f(Cf (f(Un))) = f(Un)] < ε.

Definition 5 (Hard to compute). Let f : {0, 1}n → {0, 1} be a Boolean
function. f is (T, ε)-hard to compute if for every circuit C of size at most T , we
have Pr[C(Un) = f(Un)] < 1/2 + ε.

We now state the prior results that we will use, and prove a simple lemma.
In what follows, we will sometimes make the assumption that “OWFs do not
exist”, which means that, for any family of functions f : {0, 1}` → {0, 1}poly(`)
that is (p(`), 1/p(`))-hard to invert for all polynomials p and sufficiently large
`, every poly(`)-sized circuit family fails to compute f on infinitely many input
lengths. This corresponds to one-way functions computable by circuits and hard
to invert by circuits.

Theorem 5 ([8]). Assume that there exists a family of functions G : {0, 1}` →
{0, 1}`+1 that is computable by a poly(`)-size circuit family and is (p(`), 1/p(`))-
hard to invert for all polynomials p and sufficiently large `. Then, for any con-
stant c, there exists a family of generators H : {0, 1}n → {0, 1}nc

that is com-
putable by a poly(n)-size circuit family and is (p(n), 1/p(n))-pseudorandom for
all polynomials p and sufficiently large n.

A version of the following result was proved in [12] for the uniform compu-
tation model. This proof, which relies on non-uniformity, is a bit simpler.

Lemma 2. Assume that OWFs do not exist and let G : {0, 1}` → {0, 1}`+1

be a generator family. If G is (p(`), 1/p(`))-pseudorandom for all polynomials p
and sufficiently large `, then the Boolean function family f(x, r) := 〈G(x), r〉 is
(p(`), 1/p(`))-hard to compute for all polynomials p and infinitely many input
lengths.

Proof. First, we show that ifG is (p(`), 1/p(`))-pseudorandom for all polynomials
p and sufficiently large `, then it is also (p(`), 1/p(`))-hard to invert for all poly-
nomials p and sufficiently large `. Let C be a poly(`)-size circuit family which,
for sufficiently large `, inverts G with probability = ε for some ε = 1/poly(`).
Then, define an adversary A : {0, 1}`+1 → {0, 1} as follows: on input y, A com-
putes x = C(y), uses its oracle to G to check if G(x) = y, and outputs 1 iff
this holds. We clearly have Pr[A(G(U`)) = 1] = ε. Let T ⊆ Im(G) be the set of
outputs that C inverts, and note that

∑
y∈T Pr[G(U`) = y] = ε. For each y ∈ T

we have Pr[G(U`) = y] ≥ 1/2`, and so |T |/2` ≤ ε. Then, since A will only output
1 on inputs that C can invert and since no string outside Im(G) can be inverted,
we have Pr[A(U`+1) = 1] = |T |/2`+1 ≤ ε/2, and thus A distinguishes G from
uniform with advantage ≥ ε/2 = 1/poly(`).

Now, assume for contradiction that there exists a polynomial p and a cir-
cuit family C of size p(`) which computes f correctly with probability at least
1/2 + 1/p(`) over the input, for sufficiently large `. Then by the Goldreich-Levin
theorem [6], there exists a polynomial p′ and a circuit family C ′ of size p′(`) such
that Pr[C ′(U`) = G(U`)] ≥ 1/p′(`), for sufficiently large `. Notice that (the func-
tion computed by) C ′ can only be inverted on strictly less than a 1− 1/(2p′(`))
fraction of inputs by poly(`)-size circuits, because any circuit which inverts C ′ on

a 1−1/(2p′(`)) fraction of inputs also inverts G on at least a 1/(2p′(`)) fraction of
inputs. However, using the standard direct product construction (originally due
to Yao [14]; see also [4] Theorem 2.3.2), this implies the existence of a one-way
function, contradicting the assumption that OWFs do not exist.

By virtue of the above proof, Theorem 2 actually establishes a primitive
black-box stretch-increasing construction which works when the oracle is any
hard-to-invert function, and not only the special case of one-bit-stretch PRGs.

In order to apply the Nisan-Wigderson construction, we recall the notion of
designs.

Definition 6 (Design). A collection of sets S1, . . . , Sd ⊆ [n] is an (n, d, `, α)-
design if

1. ∀i : |Si| = `.
2. ∀i 6= j : |Si ∩ Sj | ≤ α.

Lemma 3 ([11]). For any integers d and ` such that log d ≤ ` ≤ d, there exists a
poly(d)-time constructible collection S1, . . . , Sd which is a (4`2, d, `, log d)-design.

We now give the proof of Theorem 2.

Theorem 2 Let c > 1 be any constant. Then, for n = 17`2, there exists a
primitive black-box stretch-increasing construction H(·) : {0, 1}n → {0, 1}nc

with
stretch s := nc − n from any family of one bit stretch generators G : {0, 1}` →
{0, 1}`+1. In addition, H(·) is computable by a poly(n)-sized circuit family, and
has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qn+s(x)), rn+s(x)〉 ⊕ tn+s(x)

where qi : {0, 1}n → {0, 1}` specifies the ith query, ri : {0, 1}n → {0, 1}`+1

specifies the parity function for the ith answer, and ti : {0, 1}n → {0, 1} specifies
whether to flip the ith bit.

Proof. Assume that OWFs exist, and letH ′ : {0, 1}n → {0, 1}nc

be the generator
guaranteed by Theorem 5. Then, the construction H(·) is HG(z) := H ′(z) for
any oracle G. (Note that this can be achieved in the form stated in the theorem
by setting ri(z) = 0`+1 for all i and z, and choosing the ti appropriately to
compute each bit of H ′.)

Now assume that OWFs do not exist. Let G : {0, 1}` → {0, 1}`+1 be any
generator family, and define f : {0, 1}2`+1 → {0, 1} as f(x, r) := 〈G(x), r〉.
Fix a constant c > 1, and define n = 4(2` + 1)2 (which is at most 17`2 for
sufficiently large `). Let S1, . . . , Snc be the (n, nc, 2`+1, c log n) design guaranteed
by Lemma 3. Then, the construction HG : {0, 1}n → {0, 1}nc

is defined as

HG(z) := f(z|S1
) ◦ · · · ◦ f(z|Snc).

If there exists a polynomial p and a circuit family of size p(`) which distin-
guishes G from uniform with advantage at least 1/p(`), then the theorem is

trivially true. Thus, we can take G to be (p(`), 1/p(`))-pseudorandom for all
polynomials p and sufficiently large `. Assume for contradiction that there exists
a constant c0 and a circuit family A of size nc0 that distinguishes HG(Un) from
Unc with advantage 1/nc0 . Using the equivalence of distinguishing and next-bit
predicting [14], this implies the existence of an i ∈ [nc] and a circuit family A′ :
{0, 1}i−1 → {0, 1} of size nO(c0) such that Pr

[
A′(HG(Un)|[i−1]) = HG(Un)i

]
≥

1/2 + 1/nc+c0 . Separating out the part of the input indexed by Si, this can be
rewritten as

Pr
(x,y)←(U2`+1,Un)

[
A′(HG(z)|[i−1]) = HG(z)i

]
≥ 1/2 + 1/nc+c0 , (2)

where z ∈ {0, 1}n is defined by z|Si = x and z|Si
= y|Si

. By an averaging argu-
ment, there is a way to fix y ∈ {0, 1}n such that (2) holds; from here on we assume
that this y is fixed. For each j ∈ [i−1], define the function fj : {0, 1}2`+1 → {0, 1}
as fj(x) := f(z), where now z is defined by z|Si∩Sj

= x1x2 · · ·x|Si∩Sj | and
z|Si∩Sj

= y|Si∩Sj
. Note that since Si ∩ Sj ≤ c log n and y is fixed, each fj is

computable by a circuit family of size poly(n) = poly(`). Finally, define the cir-
cuit family A′′ : {0, 1}2`+1 → {0, 1} as A′′(x) := A′(f1(x), . . . , fi−1(x)). It can
be easily checked that A′′ has size poly(`) and correctly computes f on a random
input with probability at least 1/2 + 1/nc+c0 , contradicting Lemma 2.

4 Constructing the oracle generator

In this section we prove Theorem 4 (restated for convenience), which gives the
one-bit-stretch oracle generator used in the proofs of our negative results (The-
orems 1 and 3).

Theorem 4 Let `, d ∈ N be sufficiently large with d ≤ `/2. Then, for any sub-
set T ⊆ [` + 1] with |T | = ` − d and any oracle A, there exists a generator
G : {0, 1}` → {0, 1}`+1 such that

1. G is a (2d/30, 2−d/30)-PRG against adversaries with oracle access to A
(and G).

2. For every input x ∈ {0, 1}`, G(x)|T = x1x2 · · ·x`−d.

On constructing the oracle. A direct proof that a random function G : {0, 1}` →
{0, 1}`+1 is a pseudorandom generator even for circuits that have oracle access
to G does not seem immediate to us. The existence of such oracles is shown via
an indirect route in an unpublished manuscript of Impagliazzo [9] and – in a
slightly different scenario – in a work by Zimand [15]. Both works proceed by
considering an oracle one-way function, and then applying standard construc-
tions of generators from one-way functions (for which one can now use [8] or
[7]).

We proceed by first considering a hard-to-invert oracle permutation π, and
then using the Goldreich-Levin hardcore bit [6] to get one bit of stretch. This

approach will have security exponential in the input length of π, and so we
can apply π to the relatively few (Θ(`/ log `)) bits outside of |T |, and then use
padding to get a generator G on ` bits that reveals most of its input

We know of two ways to demonstrate the existence of such a permutation π.
One is via a theorem in [3] which uses a clever encoding argument to prove that
a random permutation is hard to invert with very high probability. They show
that if there exists a small circuit which inverts a permutation π on some fraction
of inputs, then π can be succinctly encoded when the circuit is given as advice.
Then, since only a small number of permutations have succinct encodings, the
probability that a random π can be sufficiently inverted by a fixed circuit is
small, and a union bound over circuits gives the result.

The second way, and the one that we use here, is an arguably more direct
argument showing that any fixed circuit with access to a fixed auxiliary oracle
has negligible probability (over the choice of permutation) of sufficiently invert-
ing the permutation. This method is from [9] and [15] (though they consider
general length-preserving functions rather than permutations), and hinges on a
combinatorial trick which originally appeared in [5]. Briefly, it is shown that for
a fixed circuit C, the expected number of subsets of size k that are inverted by C
is not too large. Then, Markov’s inequality is used to show that the probability
that C inverts any set of size m ≈ k2 is small, since to do so C would have to
invert each of its

(
m
k

)
subsets of size k (this is the combinatorial trick).

We now turn to the formal proof of Theorem 4. There are two main ingre-
dients; the first is the well-known Goldreich-Levin hard-core bit theorem [6]. It
can be checked that the standard proof of this theorem relativizes; we omit the
details.

Theorem 6. Let f : {0, 1}d → {0, 1}m be a function, and let A be any oracle.
Let C be an oracle circuit of size T such that Pr[CA(f(Ud), U

′
d) = 〈Ud, U ′d〉] ≥

1/2 + ε. Then, for d sufficiently large, there exists an oracle circuit B of size at
most α · T · (d/ε)2 (where α is a universal constant) such that Pr[BA(f(Ud)) =
Ud] ≥ ε3/8d.

The second ingredient is the fact that there exist permutations π which are
hard to invert even for adversaries that have access to π and to an arbitrary
fixed auxiliary oracle.

Theorem 7. Let d ∈ N be sufficiently large. Then for any oracle A, there exists
a permutation π : {0, 1}d → {0, 1}d that is (2d/5, 2−d/5)-hard to invert against
adversaries with oracle access to π and A.

Before giving the proof, we state and prove two lemmas. The aforementioned
combinatorial trick, due to [5], is given by the following lemma.

Lemma 4. Let U be a finite set, let Γ = {φ : U → {0, 1}} be a family of
predicates on U , and let pk be an upper bound on the probability that φ chosen
uniformly from Γ returns true for every element in a subset of size k, i.e.

∀K ⊆ U, |K| = k : Pr
φ←Γ

[∏
x∈K

φ(x) = 1

]
≤ pk.

Then, for any m such that k ≤ m ≤ |U |, we have

Pr
φ←Γ

[
∃M ⊆ U, |M | ≥ m :

∏
x∈M

φ(x) = 1

]
≤
(|U |
k

)
· pk(

m
k

) .

Proof. Let φ(X) denote
∏
x∈X φ(x). We have E [|{K ⊆ U : |K| = k and φ(K) = 1}|] ≤(|U |

k

)
·pk by linearity of expectation. Then the lemma follows from double count-

ing, because for any set M ⊆ U of size m, φ(M) = 1 iff φ(K) = 1 for every one
of the

(
m
k

)
subsets K ⊆M of size k.

We now explain why this lemma is helpful. Following [9] and [15], we bound
the probability (over the permutation π) that a fixed circuit C of size s inverts
a fixed set K of size k; this is done by considering the probability that any k out
of the at most ks distinct queries made by C on inputs from K are mapped by
π to K; specifically, we bound

pk ≤
(
ks

k

)
·
(
k

|U |

)k
≈ sk(|U |

k

) .
The factor of sk means that we cannot use a union bound over all

(|U |
k

)
subsets

of size k. So we instead use Lemma 4, choosing m so that
(
m
k

)
≈ s2.3k, which

makes the probability of inverting a set of size m small enough to use a union
bound over all circuits.

We also require a bound on the number of oracle circuits of a given size.

Lemma 5. There are at most 2s(3+4 log s) oracle circuits of size s which have
access to two oracles π and A.

Proof. We define the size of a circuit to be the number of wires it has; this is
also an upper bound on the number of gates. For each wire in the circuit, we
must specify two things:

– which gate it is an output of (or if it is an input wire) and which position it
is in for this gate

– which gate it is an input of (or if it is an output wire) and which position it
is in for this gate

Note that the positions are relevant for wires incident on oracle gates, as the
functions computed by these gates may not be symmetric. Specifying either
incident gate for a given wire takes log s bits (as there are at most s gates), and
likewise each position can be specified with log s bits. Therefore, each of the s
wires can be specified with 4 log s bits. Finally, for each gate, we must specify
which of the five types it is (∧,∨,¬, π-oracle or A-oracle), which takes three bits.

Proof (Proof of Theorem 7). We will in fact show that a random π has the

desired property with probability at least 1 − 2−2
d/4

. Fix an oracle A and an
oracle circuit C of size s. Fix a subset K ⊆ {0, 1}d of size k; we will first bound

the probability that C inverts all of K. Let Qπx denote the set of at most s
distinct queries that CA,π(x) makes to π (for some choice of x and π), and let
QπK :=

⋃
x∈K Q

π
x . We assume without loss of generality that the last query that

C makes to π is the string that C outputs (this is justified because any circuit
which does not query its output string can be modified into one that does with
an increase in size that is so small as to not affect the union bound below).

A necessary condition for C to invert all of K is that π−1(x) ∈ QπK for all
x ∈ K. Since |QπK | ≤ ks, we can bound this by

Pr
π

[
∀x ∈ K : π−1(x) ∈ QπK

]
≤ Pr

π

[
∃X ⊆ QπK :

⋃
x∈X

π(x) = K

]

≤
(
ks

k

)
·
(
k

2d

)(
k − 1

2d − 1

)
· · ·
(

1

2d − k + 1

)
≤
(
eks

2d

)k
.

We now apply Lemma 4 in the obvious way: U is {0, 1}d, and there is a
predicate φπ ∈ Γ for each permutation π, where φπ(x) = 1 iff CA,π(x) = π−1(x).
By the lemma, the probability that there exists a set M of size m ≥ k such that
C inverts every element of M is bounded from above by (e2 ·k ·s/m)k. Choosing

k = 2d/3,m = 24d/5 and s = 2d/5, this is bounded by 2−2
d/3

for sufficiently

large d. By Lemma 5, there are at most 22
d/5·Θ(d) circuits of size 2d/5, and

so the probability over the choice of π that there exists a circuit of size 2d/5

which inverts a set of size at least 24d/5 is at most 2−2
d/3+2d/5·Θ(d) < 2−2

d/4

for
sufficiently large d. Therefore, π is (2d/5, 2−d/5)-hard to invert with probability

at least 1− 2−2
d/4

.

We may now give the proof of Theorem 4.

Proof (Proof of Theorem 4). Let the oracle A and the subset T be given. Recall
that |T | = ` − d, and let π : {0, 1}d → {0, 1}d be the permutation guaranteed
by Theorem 7 which is (2d/5, 2−d/5)-hard to invert against adversaries with or-
acle access to π and A. Then, the generator G treats its input x ∈ {0, 1}` as
(x1, x2, x3) ∈ {0, 1}`−2d × {0, 1}d × {0, 1}d, and outputs the (` + 1)-bit string
defined as follows:

G(x)|[`+1]\T = π(x3) ◦ 〈x3, x2〉 G(x)|T = x1 ◦ x2.

Now assume for contradiction that there exists an oracle circuit C : {0, 1}`+1 →
{0, 1} of size at most 2d/30 such that Pr[CA,G(G(U`)) = 1] − Pr[CA,G(U`+1) =
1] ≥ 2−d/30 (dropping the absolute value w.l.o.g.). Because the permutation π is
the only part ofG’s output which may be “difficult” to compute, we can take C to
have oracles (A, π) instead of (A,G) at the cost of increasing C’s size by a factor
of poly(d). We construct a probabilistic oracle circuit IP : {0, 1}d × {0, 1}d →
{0, 1} which, on input (x, y), tries to compute 〈π−1(x), y〉. IPA,π(x, y) performs
the following steps:

1. chooses a random string z ∈ {0, 1}`−2d and a random bit b ∈ {0, 1}
2. constructs the (`+ 1)-bit string w defined by w|[`+1]\T = x ◦ b, w|T = z ◦ y
3. computes CA,π(w) and outputs CA,π(w)⊕ 1⊕ b

We clearly have |IP | ≤ |C| · poly(d) ≤ 2d/30 · poly(d). Consider the behavior of
IPA,π on a uniformly random input (x, y). It is easy to see that the string w is
distributed according to U`+1. If we condition on the chosen bit b being equal to
〈π−1(x), y〉 (which happens with probability 1/2), then w is distributed according
to G(U`). For brevity, let EIP denote the event IPA,π(x, y) = 〈π−1(x), y〉, and
let Eb denote the event b = 〈π−1(x), y〉. Then,

Pr[EIP] =
1

2

(
Pr[EIP | Eb] + Pr[EIP | Eb]

)
=

1

2

(
Pr[CA,π(w) = 1 | Eb] +

(
1− Pr[CA,π(w) = 1 | Eb]

))
= 1/2 + Pr[CA,π(w) = 1 | Eb]− Pr[CA,π(w) = 1]

= 1/2 + Pr[CA,π(G(U`)) = 1]− Pr[CA,π(U`+1) = 1]

≥ 1/2 + 2−d/30.

The probabilities are over both (x, y) and the internal randomness of IP ; by
a standard averaging argument, we can fix the internal randomness of IP to
get a deterministic circuit which computes 〈π−1(x), y〉 on a random (x, y) with
the same success probability. Then for sufficiently large d, Theorem 6 gives an
oracle circuit of size at most 2d/30 · poly(d) · O(d2 · 22d/30) ≤ 2d/5 that, when
given access to A and π, inverts π with probability at least 2−3d/30/8d ≥ 2−d/5

over its input, contradicting the hardness of π.

Acknowledgements. We are very grateful to Benny Applebaum for several useful
comments, and especially for pointing out the strengthening of Theorem 1 and
allowing us to include a proof in §1.1. We also would like to thank Russell
Impagliazzo for sharing [9] with us, and the anonymous TCC referees for helpful
feedback.

References

1. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0.
SIAM J. Comput., 36(4):845–888, 2006.

2. Josh Bronson, Ali Juma, and Periklis A. Papakonstantinou. Limits on the stretch
of non-adaptive constructions of pseudo-random generators. In 8th Theory of Cryp-
tography Conference (TCC), 2011.

3. Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

4. Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, 2001.

5. Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudo-
random generators. SIAM J. Comput., 22(6):1163–1175, 1993.

6. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
In 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32,
1989.

7. Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements
in constructing pseudorandom generators from one-way functions. In 42nd ACM
Symposium on Theory of Computing (STOC), pages 437–446, 2010.

8. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396
(electronic), 1999.

9. Russell Impagliazzo. Very strong one-way functions and pseudo-random generators
exist relative to a random oracle. Manuscript, 1996.

10. Chi-Jen Lu. On the complexity of parallel hardness amplification for one-way
functions. In 3rd Theory of Cryptography Conference (TCC), pages 462–481, 2006.

11. Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Computer & Systems
Sciences, 49(2):149–167, 1994.

12. Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between
cryptographic primitives. In Proceedings of the 1st Theory of Cryptography Con-
ference (Feb 19-21, 2004: Cambridge, MA, USA). Springer-Verlag, 2004.

13. Emanuele Viola. On constructing parallel pseudorandom generators from one-way
functions. In 20th Annual Conference on Computational Complexity (CCC), pages
183–197. IEEE, 2005.

14. Andrew Yao. Theory and applications of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 80–91. IEEE,
1982.

15. Marius Zimand. Efficient privatization of random bits. In “Random-
ized Algorithms” satellite workshop of the 23rd International Symposium
on Mathematical Foundations of Computer Science, 1998. Available at
http://triton.towson.edu/∼mzimand/pub/rand-privat.ps.

