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Abstract. We put forward a zero-knowledge based definition of privacy.
Our notion is strictly stronger than the notion of differential privacy and
is particularly attractive when modeling privacy in social networks. We
furthermore demonstrate that it can be meaningfully achieved for tasks
such as computing averages, fractions, histograms, and a variety of graph
parameters and properties, such as average degree and distance to con-
nectivity. Our results are obtained by establishing a connection between
zero-knowledge privacy and sample complexity, and by leveraging recent
sublinear time algorithms.

1 Introduction

Data privacy is a fundamental problem in today’s information age. Enormous
amounts of data are collected by government agencies, search engines, social
networking systems, hospitals, financial institutions, and other organizations,
and are stored in databases. There are huge social benefits in analyzing this
data; however, it is important that sensitive information about individuals who
have contributed to the data is not leaked to users analyzing the data. Thus,
one of the main goals is to release statistical information about the population
who have contributed to the data without breaching their individual privacy.

Many privacy definitions and schemes have been proposed in the past (see
[4] and [11] for surveys). However, many of them have been shown to be insuffi-
cient by describing realistic attacks on such schemes (e.g., see [19]). The notion
of differential privacy [8, 7], however, has remained strong and resilient to these
attacks. Differential privacy requires that when one person’s data is added or re-
moved from the database, the output of the database access mechanism changes
very little so that the output before and after the change are “�-close” (where
a specific notion of closeness of distributions is used). This notion has quickly
become the standard notion of privacy, and mechanisms for releasing a variety of
functions (including histogram queries, principal component analysis, learning,
and many more (see [6] for a recent survey)) have been developed.
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As we shall argue, however, although differential privacy provides a strong
privacy guarantee, there are realistic social network settings where these guar-
antees might not be strong enough. Roughly speaking, the notion of differential
privacy can be rephrased as requiring that whatever an adversary learns about
an individual could have been recovered about the individual had the adver-
sary known every other individual in the database (see the appendix of [8] for
a formalization of this statement). Such a privacy guarantee is not sufficiently
strong in the setting of social networks where an individual’s friends are strongly
correlated with the individual; in essence, “if I know your friends, I know you”.
(Indeed, a recent study [17] indicates that an individual’s sexual orientation can
be accurately predicted just by looking at the person’s Facebook friends.) We
now give a concrete example to illustrate how a differentially private mechanism
can violate the privacy of individuals in a social network setting.

Example 1 (Democrats vs. Republicans). Consider a social network of n people
that are grouped into cliques of size 200. In each clique, either at least 80% of
the people are Democrats, or at least 80% are Republicans. However, assume
that the number of Democrats overall is roughly the same as the number of
Republicans. Now, consider a mechanism that computes the proportion (in [0, 1])
of Democrats in each clique and adds just enough Laplacian noise to satisfy �-
differential privacy for a small �, say � = 0.1. For example, to achieve �-differential
privacy, it suffices to add Lap( 1

200� ) noise1 to each clique independently, since
if a single person changes his or her political preference, the proportion for the
person’s clique changes by 1

200 (see Proposition 1 in [8]).
Since the mechanism satisfies �-differential privacy for a small �, one may

think that it is safe to release such information without violating the privacy of
any particular person. That is, the released data should not allow us to guess
correctly with probability significantly greater than 1

2 whether a particular per-
son is a Democrat or a Republican. However, this is not the case. With � = 0.1,
Lap( 1

200� ) is a small amount of noise, so with high probability, the data released
will tell us the main political preference for any particular clique. An adversary
that knows which clique a person is in will be able to correctly guess the political
preference of that person with probability close to 80%.

Remark 1. In the above example, we assume that the graph structure is known
and that the adversary can identify what clique an individual is in. Such infor-
mation is commonly available: Graph structures of (anonymized) social networks
are often released; these may include a predefined or natural clustering of the
people (nodes) into cliques. Furthermore, an adversary may often also figure out
the identity of various nodes in the graph (see [1, 16]); in fact, by participating
in the social network before the anonymized graph is published, an adversary
can even target specific individuals of his or her choice (see [1]).

Differential privacy says that the output of the mechanism does not depend
much on any particular individual’s data in the database. Thus, in the above ex-
ample, a person has little reason not to truthfully report his political preference.

1 Lap(�) is the Laplace distribution with probability density function f�(x) = 1
2�
e
∣x∣
� .
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However, this does not necessarily imply that the mechanism does not violate
the person’s privacy. In situations where a social network provides auxiliary in-
formation about an individual, that person’s privacy can be violated even if he
decides to not have his information included!

It is already known that differential privacy may not provide a strong enough
privacy guarantee when an adversary has specific auxiliary information about an
individual. For example, it was pointed out in [7] that if an adversary knows the
auxiliary information “person A is two inches shorter than the average Amer-
ican woman”, and if a differentially private mechanism accurately releases the
average height of American women, then the adversary learns person A’s height
(which is assumed to be sensitive information in this example). In this example,
the adversary has very specific auxiliary information about an individual that
is usually hard to obtain. However, in the Democrats vs. Republicans example,
the auxiliary information (the graph and clique structure) about individuals is
more general and more easily accessible. Since social network settings contain
large amounts of auxiliary information and correlation between individuals, dif-
ferential privacy is usually not strong enough in such settings.

One may argue that there are versions of differential privacy that protect
the privacy of groups of individuals, and that the mechanism in the Democrats
vs. Republicans example does not satisfy these stronger definitions of privacy.
While this is true, the main point here is that differential privacy will not protect
the privacy of an individual, even though the definition is designed for individual
privacy. Furthermore, even if we had used a differentially private mechanism that
ensures privacy for groups of size 200 (i.e., the size of each clique), it might still
be possible to deduce information about an individual by looking at the friends
of the friends of the individual; this includes a significantly larger number of
individuals.2

1.1 Towards a Zero-Knowledge Definition of Privacy

In 1977, Dalenius [5] stated a privacy goal for statistical databases: anything
about an individual that can be learned from the database can also be learned
without access to the database. This would be a very desirable notion of privacy.
Unfortunately, Dwork and Naor [7, 9] demonstrated a general impossibility re-
sult showing that a formalization of Dalenius’s goal along the lines of semantic
security for cryptosystems cannot be achieved, assuming that the database gives
any non-trivial utility.

Our aim is to provide a privacy definition along the lines of Dalenius, and
more precisely, relying on the notion of zero-knowledge from cryptography. In
this context, the traditional notion of zero-knowledge says that an adversary
gains essentially “zero additional knowledge” by accessing the mechanism. More
precisely, whatever an adversary can compute by accessing the mechanism can
essentially also be computed without accessing the mechanism. A mechanism

2 The number of “friends of friends” is usually larger than the square of the number
of friends (see [23]).
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satisfying this property would be private but utterly useless, since the mecha-
nism provides essentially no information. The whole point of releasing data is to
provide utility; thus, this extreme notion of zero-knowledge, which we now call
“complete zero-knowledge”, is not very applicable in this setting.

Intuitively, we want the mechanism to not release any additional information
beyond some “aggregate information” that is considered acceptable to release.
To capture this requirement, we use the notion of a “simulator” from zero-
knowledge, and we require that a simulator with the acceptable aggregate infor-
mation can essentially compute whatever an adversary can compute by accessing
the mechanism. Our zero-knowledge privacy definition is thus stated relative to
some class of algorithms providing acceptable aggregate information.

Aggregate Information The question is how to define appropriate classes of
aggregate information. We focus on the case where the aggregate information
is any information that can be obtained from k random samples/rows (each of
which corresponds to one individual’s data) of the database, where the data of
the person the adversary wants to attack has been concealed. The value of k can
be carefully chosen so that the aggregate information obtained does not allow
one to infer (much) information about the concealed data. The simulator is given
this aggregate information and has to compute what the adversary essentially
computes, even though the adversary has access to the mechanism. This ensures
that the mechanism does not release any additional information beyond this “k
random sample” aggregate information given to the simulator.

Differential privacy can be described using our zero-knowledge privacy defi-
nition by considering simulators that are given aggregate information consisting
of the data of all but one individual in the database; this is the same as aggregate
information consisting of “k random samples” with k = n, where n is the num-
ber of rows in the database (recall that the data of the individual the adversary
wants to attack is concealed), which we formally prove later. For k less than n,
such as k = log n or k =

√
n, we obtain notions of privacy that are stronger

than differential privacy. For example, we later show that the mechanism in the
Democrats vs. Republicans example does not satisfy our zero-knowledge privacy
definition when k = o(n) and n is sufficiently large.

We may also consider more general models of aggregate information that
are specific to graphs representing social networks; in this context we focus on
random samples with some exploration of the neighborhood of each sample.

1.2 Our Results

We consider two different settings for releasing information. In the first setting,
we consider statistical (row) databases in a setting where an adversary might
have auxiliary information, such as from a social network, and we focus on re-
leasing traditional statistics (e.g., averages, fractions, histograms, etc.) from a
database. As explained earlier, differential privacy may not be strong enough in
such a setting, so we use our zero-knowledge privacy definition instead. In the
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second setting, we consider graphs with personal data that represent social net-
works, and we focus on releasing information directly related to a social network,
such as properties of the graph structure.

Setting #1. Computing functions on databases with zero-knowledge privacy: In
this setting, we focus on computing functions mapping databases to ℝm. Our
main result is a characterization of the functions that can be released with zero-
knowledge privacy in terms of their sample complexity—i.e., how accurate the
function can be approximated using random samples from the input database.
More precisely, functions with low sample complexity can be computed accu-
rately by a zero-knowledge private mechanism, and vice versa. It is already
known that functions with low sample complexity can be computed with dif-
ferential privacy (see [8]), but here we show that the stronger notion of zero-
knowledge privacy can be achieved. In this result, the zero-knowledge private
mechanism we construct simply adds Laplacian noise appropriately calibrated
to the sample complexity of the function.

Many common queries on statistical databases have low sample complexity,
including averages, sum queries, and coarse histogram queries. (In general, it
would seem that any “meaningful” query function for statistical databases should
have relatively low sample complexity if we think of the rows of the database
as random samples from some large underlying population). As a corollary of
our characterization we get zero-knowledge private mechanisms for all these
functions providing decent utility guarantees. These results can be found in
Section 3.

Setting #2. Releasing graph structure information with zero-knowledge privacy:
In this setting, we consider a graph representing a social network, and we fo-
cus on privately releasing information about the structure of the graph. We
use our zero-knowledge privacy definition, since the released information can be
combined with auxiliary information such as an adversary’s knowledge and/or
previously released data (e.g., graph structure information) to breach the privacy
of individuals.

The connection between sample complexity and zero-knowledge privacy high-
lights an interesting connection between sublinear time algorithms and privacy.
As it turns out, many of the recently developed sublinear algorithms on graphs
proceed by picking random samples (and next performing some local explo-
ration); we are able to leverage these algorithms to privately release graph
structure information, such as average degree and distance to properties such
as connectivity and cycle-freeness. We discuss these results in Section 4.

2 Zero-Knowledge Privacy

2.1 Definitions

Let D be the class of all databases whose rows are tuples from some rela-
tion/universe X. For convenience, we will assume that X contains a tuple ⊥,
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which can be used to conceal the true value of a row. Given a database D, let
∣D∣ denote the number of rows in D. For any integer n, let [n] denote the set
{1, . . . , n}. For any database D ∈ D, any integer i ∈ [∣D∣], and any v ∈ X, let
(D−i, v) denote the database D with row i replaced by the tuple v.

In this paper, mechanisms, adversaries, and simulators are simply randomized
algorithms that play certain roles in our definitions. Let San be a mechanism
that operates on databases in D. For any database D ∈ D, any adversary A,
and any z ∈ {0, 1}∗, let OutA(A(z) ↔ San(D)) denote the random variable
representing the output of A on input z after interacting with the mechanism
San operating on the database D. Note that San can be interactive or non-
interactive. If San is non-interactive, then San(D) sends information (e.g., a
sanitized database) to A and then halts immediately; the adversary A then tries
to breach the privacy of some individual in the database D.

Let agg be any class of randomized algorithms that provide aggregate infor-
mation to simulators, as described in Section 1.1. We refer to agg as a model of
aggregate information.

Definition 1. We say that San is �-zero-knowledge private with respect
to agg if there exists a T ∈ agg such that for every adversary A, there exists
a simulator S such that for every database D ∈ Xn, every z ∈ {0, 1}∗, every
integer i ∈ [n], and every W ⊆ {0, 1}∗, the following hold:

– Pr[OutA(A(z)↔ San(D)) ∈W ] ≤ e� ⋅ Pr[S(z, T (D−i,⊥), i, n) ∈W ]
– Pr[S(z, T (D−i,⊥), i, n) ∈W ] ≤ e� ⋅ Pr[OutA(A(z)↔ San(D)) ∈W ]

The probabilities are over the random coins of San and A, and T and S, respec-
tively.

Intuitively, the above definition says that whatever an adversary can compute
by accessing the mechanism can essentially also be computed without accessing
the mechanism but with certain aggregate information (specified by agg). The
adversary in the latter scenario is represented by the simulator S. The definition
requires that the adversary’s output distribution is close to that of the simulator.
This ensures that the mechanism essentially does not release any additional
information beyond what is allowed by agg. When the algorithm T provides
aggregate information to the simulator S, the data of individual i is concealed
so that the aggregate information does not depend directly on individual i’s data.
However, in the setting of social networks, the aggregate information may still
depend on people’s data that are correlated with individual i in reality, such as
the data of individual i’s friends. Thus, the role played by agg is very important
in the context of social networks.

To measure the closeness of the adversary’s output and the simulator’s out-
put, we use the same closeness measure as in differential privacy (as opposed to,
say, statistical difference) for the same reasons. As explained in [8], consider a
mechanism that outputs the contents of a randomly chosen row. Suppose agg is
defined so that it includes the algorithm that simply outputs its input (D−i,⊥)
to the simulator (which is the case of differential privacy; see Section 1.1 and
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2.2). Then, a simulator can also choose a random row and then simulate the
adversary with the chosen row sent to the simulated adversary. The real adver-
sary’s output will be very close to the simulator’s output in statistical difference
(1/n to be precise); however, it is clear that the mechanism always leaks private
information about some individual.

Remark 2. Our �-zero-knowledge privacy definition can be easily extended to
(�, �(⋅))-zero-knowledge privacy, where we also allow an additive error of �(n) on
the RHS of the inequalities. We can further extend our definition to (c, �, �(⋅))-
zero-knowledge privacy to protect the privacy of any group of c individuals si-
multaneously. To obtain this more general definition, we would change “i ∈ [n]”
to “I ⊆ [n] with ∣I∣ ≤ c”, and “S(z, (D−i,⊥), i, n)” to “S(z, (D−I ,⊥), I, n)”.
We use this more general definition when we consider group privacy.

Remark 3. In our zero-knowledge privacy definition, we consider computation-
ally unbounded simulators. We can also consider PPT simulators by requiring
that the mechanism San and the adversary A are PPT algorithms, and agg is
a class of PPT algorithms. All of these algorithms would be PPT in n, the size
of the database. With minor modifications, the results of this paper would still
hold in this case.

The choice of agg determines the type and amount of aggregate information
given to the simulator, and should be decided based on the context in which the
zero-knowledge privacy definition is used. The aggregate information should not
depend much on data that is highly correlated with the data of a single person,
since such aggregate information may be used to breach the privacy of that per-
son. For example, in the context of social networks, such aggregate information
should not depend much on any person and the people closely connected to that
person, such as his or her friends. By choosing agg carefully, we ensure that
the mechanism essentially does not release any additional information beyond
what is considered acceptable. We first consider the model of aggregate informa-
tion where T in the definition of zero-knowledge privacy chooses k(n) random
samples. Let k : ℕ→ ℕ be any function.

– RS(k(⋅)) = k(⋅) random samples: the class of algorithms T such that on
input a database D ∈ Xn, T chooses k(n) random samples (rows) from D
uniformly without replacement, and then performs any computation on these
samples without reading any of the other rows of D. Note that with such
samples, T can emulate choosing k(n) random samples with replacement, or
a combination of without replacement and with replacement.

k(n) should be carefully chosen so that the aggregate information obtained
does not allow one to infer (much) information about the concealed data. For
k(n) = 0, the simulator is given no aggregate information at all, which is the
case of complete zero-knowledge. For k(n) = n, the simulator is given all the
rows of the original database except for the target individual i, which is the case
of differential privacy (as we prove later). For k(n) strictly in between 0 and
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n, we obtain notions of privacy that are stronger than differential privacy. For
example, one can consider k(n) = o(n), such as k(n) = log n or k(n) =

√
n.

In the setting of a social network, k(n) can be chosen so that when k(n) ran-
dom samples are chosen from (D−i,⊥), with very high probability, for (almost)
all individuals j, very few of the k(n) chosen samples will be in individual j’s
local neighborhood in the social network graph. This way, the aggregate infor-
mation released by the mechanism depends very little on data that is highly
correlated with the data of a single individual. The choice of k(n) would depend
on various properties of the graph structure, such as clustering coefficient, edge
density, and degree distribution. The choice of k(n) would also depend on the
amount of correlation between the data of adjacent or close vertices (individuals)
in the graph, and the type of information released by the mechanism. In this
model of aggregate information, vertices (individuals) in the graph with more
adjacent vertices (e.g., representing friends) may have less privacy than those
with fewer adjacent vertices. However, this is often the case in social networks,
where having more links/connections to other people may result in less privacy.

In the remainder of this section, we focus primarily on the RS(k(⋅)) model
of aggregate information. In Section 4, we consider other models of aggregate
information that take more into consideration the graph structure of a social
network. Note that zero-knowledge privacy does not necessarily guarantee that
the privacy of every individual is completely protected. Zero-knowledge privacy
is defined with respect to a model of aggregate information, and such aggregate
information may still leak some sensitive information about an individual in
certain scenarios.

Composition: Just as for differentially private mechanisms, mechanisms that are
�-zero-knowledge private with respect to RS(k(⋅)) also compose nicely.

Proposition 1. Suppose San1 is �1-zero-knowledge private with respect to RS(k1(⋅))
and San2 is �2-zero-knowledge private with respect to RS(k2(⋅)). Then, the mech-
anism obtained by composing San1 with San2 is (�1 +�2)-zero-knowledge private
with respect to RS((k1 + k2)(⋅)).

See the full version of this paper ([12]) for the proof.

Graceful Degradation for Group Privacy: A nice feature of differential privacy
is that �-differential privacy implies (c, c�)-differential privacy for groups of size
c (see [7] and the appendix in [8]). However, the c� appears in the exponent of e
in the definition of (c, c�)-differential privacy, so the degradation is exponential
in c. Thus, the group privacy guarantee implied by �-differential privacy is not
very meaningful unless the group size c is small. We do not have a group privacy
guarantee for pure �-zero-knowledge privacy; however, we do have a group pri-
vacy guarantee for (�, �(⋅))-zero-knowledge privacy with respect to RS(k(⋅)) that
does not degrade at all for �, and only degrades linearly for �(⋅) with increasing
group size.
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Proposition 2. Suppose San is (�, �(⋅))-zero-knowledge private with respect to
RS(k(⋅)). Then, for every c ≥ 1, San is also (c, �, �c(⋅))-zero-knowledge private

with respect to RS(k(⋅)), where �c(n) = �(n) + e�(c− 1) ⋅ k(n)n .

See the full version of this paper for the proof. Intuitively, for k(n) sufficiently
smaller than n, (�, �(⋅))-zero-knowledge privacy with respect to RS(k(⋅)) actually
implies some notion of group privacy, since the algorithm T (in the privacy
definition) chooses each row with probability k(n)/n. Thus, T chooses any row
of a fixed group of c rows with probability at most ck(n)/n. If this probability
is very small, then the output of T and thus the simulator S does not depend
much on any group of c rows.

2.2 Differential Privacy vs. Zero-Knowledge Privacy

In this section, we compare differential privacy to our zero-knowledge privacy
definition. We first state the definition of differential privacy in a form similar to
our zero-knowledge privacy definition in order to more easily compare the two.
For any pair of databases D1, D2 ∈ Xn, let H(D1, D2) denote the number of
rows in which D1 and D2 differ, comparing row-wise.

Definition 2. We say that San is �-differentially private if for every adver-
sary A, every z ∈ {0, 1}∗, every pair of databases D1, D2 ∈ Xn with H(D1, D2) ≤
1, and every W ⊆ {0, 1}∗, we have

Pr[OutA(A(z)↔ San(D1)) ∈W ] ≤ e� ⋅ Pr[OutA(A(z)↔ San(D2)) ∈W ],

where the probabilities are over the random coins of San and A. For (c, �)-
differential privacy (for groups of size c), the “H(D1, D2) ≤ 1” is changed to
“H(D1, D2) ≤ c”.

Proposition 3. Suppose San is �-zero-knowledge private with respect to any
class agg. Then, San is 2�-differentially private.

Proposition 4. Suppose San is �-differentially private. Then, San is �-zero-
knowledge private with respect to RS(n).

See the full version of this paper for the proof of Propositions 3 and 4.

Remark 4. If we consider PPT simulators in the definition of zero-knowledge
privacy instead of computationally unbounded simulators, then we require San
in Proposition 4 to be PPT as well.

Combining Propositions 3 and 4, we see that our zero-knowledge privacy
definition includes differential privacy as a special case (up to a factor of 2 for
�).
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2.3 Revisiting the Democrats vs. Republicans Example

Recall the Democrats vs. Republicans example in the introduction. The mecha-
nism in the example is �-differentially private for some small �, even though the
privacy of individuals is clearly violated. However, the mechanism is not zero-
knowledge private in general. Suppose that the people’s political preferences are
stored in a database D ∈ Xn.

Proposition 5. Fix � > 0, c ≥ 1, and any function k(⋅) such that k(n) = o(n).
Let San be a mechanism that on input D ∈ Xn computes the proportion of
Democrats in each clique and adds Lap( c

200� ) noise to each proportion indepen-
dently. Then, San is (c, �)-differentially private, but for every sufficiently large
n, San is not �′-zero-knowledge private with respect to RS(k(⋅)) for any constant
�′ > 0.

See the full version of this paper for the proof. Intuitively, the last part
of the proposition holds because for sufficiently large n, with high probability
there exists some clique such that an adversary having only k(n) = o(n) random
samples would not have any samples in that clique. Thus, with high probability,
there exists some clique that the adversary knows nothing about. Therefore, the
adversary does gain knowledge by accessing the mechanism, which gives some
information about every clique since the amount of noise added to each clique
is constant.

Remark 5. In the Democrats vs. Republicans example, even if San adds Lap( 1
� )

noise to achieve (200, �)-differential privacy so that the privacy of each clique
(and thus each person) is protected, the mechanism would still fail to be �′-
zero-knowledge private with respect to RS(k(⋅)) for any constant �′ > 0 when
n is sufficiently large (see Proposition 5). Thus, zero-knowledge privacy with
respect to RS(k(⋅)) with k(n) = o(n) seems to provide an unnecessarily strong
privacy guarantee in this particular example. However, this is mainly because
the clique size is fixed and known to be 200, and we have assumed that the only
correlation between people’s political preferences that exists is within a clique.
In a more realistic social network, there would be cliques of various sizes, and
the correlation between people’s data would be more complicated. For example,
an adversary knowing your friends’ friends may still be able to infer a lot of
information about you.

3 Characterizing Zero-Knowledge Privacy

In this section, we focus on constructing zero-knowledge private mechanisms that
compute a function mapping databases in Xn to ℝm, and we characterize the
set of functions that can be computed with zero-knowledge privacy. These are
precisely the functions with low sample complexity, i.e., can be approximated
(accurately) using only limited information from the database, such as k random
samples.
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We quantify the error in approximating a function g : Xn → ℝm using
L1 distance. Let the L1-sensitivity of g be defined by �(g) = max{∣∣g(D′) −
g(D′′)∣∣1 : D′, D′′ ∈ Xn s.t. H(D′, D′′) ≤ 1}. Let C be any class of randomized
algorithms.

Definition 3. A function g : Xn → ℝm is said to have (�, �)-sample com-
plexity with respect to C if there exists an algorithm T ∈ C such that for every
input D ∈ Xn, we have T (D) ∈ ℝm and

Pr[∣∣T (D)− g(D)∣∣1 ≤ �] ≥ 1− �.

T is said to be a (�, �)-sampler for g with respect to C.

Remark 6. If we consider PPT simulators in the definition of zero-knowledge
privacy instead of computationally unbounded simulators, then we would require
here that C is a class of PPT algorithms (PPT in n, the size of the database).
Thus, in the definition of (�, �)-sample complexity, we would consider a family
of functions (one for each value of n) that can be computed in PPT, and the
sampler T would be PPT in n.

It was shown in [8] that functions with low sample complexity with respect
to RS(k(⋅)) have low sensitivity as well.

Lemma 1 ([8]). Suppose g : Xn → ℝm has (�, �)-sample complexity with re-

spect to RS(k(⋅)) for some � < 1−k(n)/n
2 . Then, �(g) ≤ 2�.

As mentioned in [8], the converse of the above lemma is not true, i.e., not
all functions with low sensitivity have low sample complexity (see [8] for an
example). This should be no surprise, since functions with low sensitivity have
accurate differentially private mechanisms, while functions with low sample com-
plexity have accurate zero-knowledge private mechanisms. We already know that
zero-knowledge privacy is stronger than differential privacy, as illustrated by the
Democrats vs. Republicans example.

We now state how the sample complexity of a function is related to the
amount of noise a mechanism needs to add to the function value in order to
achieve a certain level of zero-knowledge privacy.

Proposition 6. Suppose g : Xn → [a, b]m has (�, �)-sample complexity with
respect to some C. Then, the mechanism San(D) = g(D) + (X1, . . . , Xm), where

Xj ∼ Lap(�) for j = 1, . . . ,m independently, is ln((1 − �)e
�(g)+�

� + �e
(b−a)m

� )-
zero-knowledge private with respect to C.

The intuition is that the sampling error gets blurred by the noise added.

Proof. Let T be a (�, �)-sampler for g with respect to C. Let A be any ad-
versary. Let S be a simulator that, on input (z, T (D−i,⊥), i, n), first checks
whether T (D−i,⊥) is in [a, b]m; if not, S projects T (D−i,⊥) onto the set [a, b]m

(with respect to L1 distance) so that the accuracy of T (D−i,⊥) is improved and
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∣∣g(D)−T (D−i,⊥)∣∣1 ≤ (b−a)m always holds, which we use later. From here on,
T (D−i,⊥) is treated as a random variable that reflects the possible modification
S may perform. The simulator S computes T (D−i,⊥)+(X1, . . . , Xm), which we
will denote using the random variable S′(z, T (D−i,⊥), i, n). S then simulates
the computation of A(z) with S′(z, T (D−i,⊥), i, n) sent to A as a message, and
outputs whatever A outputs.

Let D ∈ Xn, z ∈ {0, 1}∗, i ∈ [n]. Fix x ∈ T (D−i,⊥) and s ∈ ℝm. Then, we
have

max

{
f�(s− g(D))

f�(s− x)
,

f�(s− x)

f�(s− g(D))

}
= max

{
e(

1
� ⋅(∣∣s−x∣∣1−∣∣s−g(D)∣∣1)), e(

1
� ⋅(∣∣s−g(D)∣∣1−∣∣s−x∣∣1))

}
≤ e(

1
� ⋅∣∣g(D)−x∣∣1) ≤ e( 1

� ⋅(∣∣g(D)−g(D−i,⊥)∣∣1+∣∣g(D−i,⊥)−x∣∣1))

≤ e(
1
� ⋅(�(g)+∣∣g(D−i,⊥)−x∣∣1)). (1)

Since ∣∣g(D)− x∣∣1 ≤ (b− a)m always holds, we also have

max

{
f�(s− g(D))

f�(s− x)
,

f�(s− x)

f�(s− g(D))

}
≤ e( 1

� ⋅∣∣g(D)−x∣∣1) ≤ e
(b−a)m

� . (2)

Since T is a (�, �)-sampler for g, we have Pr[∣∣g(D−i,⊥) − T (D−i,⊥)∣∣1 ≤ �] ≥
1− �. Thus, using (1) and (2) above, we have

ln

(∑
x∈T (D−i,⊥) f�(s− x) ⋅ Pr[T (D−i,⊥) = x]

f�(s− g(D))

)
≤ ln((1− �)e

�(g)+�
� + �e

(b−a)m
� ).

Now, using (1) and (2) again, we also have

ln

(
f�(s− g(D))∑

x∈T (D−i,⊥) f�(s− x) ⋅ Pr[T (D−i,⊥) = x]

)

= − ln

(∑
x∈T (D−i,⊥) f�(s− x) ⋅ Pr[T (D−i,⊥) = x]

f�(s− g(D))

)
≤ − ln((1− �)e−

�(g)+�
� + �e−

(b−a)m
� ) = ln(((1− �)e−

�(g)+�
� + �e−

(b−a)m
� )−1)

≤ ln((1− �)e
�(g)+�

� + �e
(b−a)m

� ),

where the last inequality follows from the fact that the function f(x) = x−1 is
convex for x > 0. Then, for every s ∈ ℝn, we have∣∣∣∣ln( Pr[San(D) = s]

Pr[S′(z, T (D−i,⊥), i, n) = s]

)∣∣∣∣
=

∣∣∣∣∣ln
(

f�(s− g(D))∑
x∈T (D−i,⊥) f�(s− x) ⋅ Pr[T (D−i,⊥) = x]

)∣∣∣∣∣
≤ ln((1− �)e

�(g)+�
� + �e

(b−a)m
� ).
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Thus, for every W ⊆ {0, 1}∗, we have
∣∣∣ln(Pr[OutA(A(z)↔San(D))∈W ]

Pr[S(z,T (D−i,⊥),i,n)∈W ]

)∣∣∣ ≤ ln((1−

�)e
�(g)+�

� + �e
(b−a)m

� ). ⊓⊔

Corollary 1. Suppose g : Xn → [a, b]m has (�, �)-sample complexity with re-

spect to RS(k(⋅)) for some � < 1−k(n)/n
2 . Then, the mechanism San(D) =

g(D) + (X1, . . . , Xm), where Xj ∼ Lap(�) for j = 1, . . . ,m independently, is

ln((1− �)e
3�
� + �e

(b−a)m
� )-zero-knowledge private with respect to RS(k(⋅)).

Proof. This follows from combining Proposition 6 and Lemma 1.

Using Proposition 6, we can recover the basic mechanism in [8] that is �-
differentially private.

Corollary 2. Let g : Xn → [a, b]m and � > 0. A mechanism San for g that

adds Lap(�(g)
� ) noise to g(D) is �-zero-knowledge private with respect to RS(n).

Proof. We note that every function g : Xn → ℝm has (0, 0)-sample complexity
with respect to RS(n). The corollary follows by applying Proposition 6.

We now show how the zero-knowledge privacy and utility properties of a
mechanism computing a function is related to the sample complexity of the
function. A class of algorithms agg is said to be closed under postprocessing if
for any T ∈ agg and any algorithm M , the composition of M and T (i.e., the
algorithm that first runs T and then runs M on the output of T ) is also in agg.
We note that RS(k(⋅)) is closed under postprocessing.

Proposition 7. Let agg be any class of algorithms that is closed under postpro-
cessing, and suppose a function g : Xn → ℝm has a mechanism San such that
the following hold:

– Utility: Pr[∣∣San(D)− g(D)∣∣1 ≤ �] ≥ 1− � for every D ∈ Xn

– Privacy: San is �-zero-knowledge private with respect to agg.

Then, g has (�, �+(e�−1)
e� )-sample complexity with respect to agg.

See the full version of this paper for the proof. The intuition is that the zero-
knowledge privacy of San guarantees that San can be simulated by a simulator
S that is given aggregate information provided by some algorithm T ∈ agg.
Thus, an algorithm that runs T and then S will be able to approximate g with
accuracy similar to that of San.

3.1 Some Simple Examples of Zero-Knowledge Private Mechanisms

Example 2 (Averages). Fix n > 0, k = k(n). Let avg : [0, 1]n → [0, 1] be

defined by avg(D) =
∑n
i=1Di
n , and let San(D) = avg(D)+Lap(�), where � > 0.

Let T be an algorithm that, on input a database D ∈ [0, 1]n, chooses k random
samples from D (uniformly), and then outputs the average of the k random
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samples. By Hoeffding’s inequality, we have Pr [∣T (D)− avg(D)∣ ≤ �] ≥ 1 −
2e−2k�

2

. Thus, avg has (�, 2e−2k�
2

)-sample complexity with respect to RS(k(⋅)).
By Proposition 6, San is ln(e

1
� (

1
n+�) + 2e

1
�−2k�

2

)-zero-knowledge private with
respect to RS(k(⋅)).

Let � ∈ (0, 1]. We choose � = 1
k1/3

and � = 1
� ( 1
n + �) = 1

� ( 1
n + 1

k1/3
) so

that ln(e
1
� (

1
n+�) + 2e

1
�−2k�

2

) = ln(e� + 2e
�

1/n+k−1/3
−2k1/3

) ≤ ln(e� + 2e−k
1/3

) ≤
�+ 2e−k

1/3

. Thus, we have the following result:

– By adding Lap( 1
� ( 1
n + 1

k1/3
)) = Lap(O( 1

�k1/3
)) noise to avg(D), San is (�+

2e−k
1/3

)-zero-knowledge private with respect to RS(k(⋅)).

Example 3 (Fraction of rows satisfying some property P ). Let P : X →
{0, 1} be the predicate representing some property of a row. Let g : Xn → [0, 1]

be defined by g(D) =
∑n
i=1 P (Di)

n , which is the fraction of rows satisfying property
P . Since g(D) can be viewed as the average of the numbers {P (Di)}ni=1, we can
get the same result as in the example for averages.

Example 4 (Histograms). We can easily construct a zero-knowledge private
mechanism (with respect to RS(k(⋅))) that computes a histogram with m bins
by estimating each bin count separately using k(n)/m random samples each
and then applying Proposition 6. Alternatively, we can construct a mechanism
by composing Sani for i = 1, . . . ,m, where Sani is any zero-knowledge private
mechanism (with respect to RS( 1

mk(⋅))) for estimating the number of rows in
the ith bin, and then applying our composition result (Propsition 1).

Example 5 (Sample and DP-Sanitize). Our example mechanism for comput-
ing averages comes from the general connection between sample complexity and
zero-knowledge privacy (Proposition 6), which holds for any model of aggregate
information. For computing averages, we can actually construct a mechanism
with (usually) better utility by choosing k(n) random samples without replace-
ment from the input database D ∈ Xn and then running a differentially private
mechanism on the chosen samples. It is not hard to show that such a mechanism
is zero-knowledge private with respect to RS(k(⋅)). In general, this “sample and
DP-sanitize” method works for query functions that can be approximated us-
ing random samples (e.g., averages, fractions, and histograms), and allows us to
convert differentially private mechanisms to zero-knowledge private mechanisms
with respect to RS(k(⋅)). (See the full version of this paper for more details.)

3.2 Answering a Class of Queries Simultaneously

In the full version of this paper, we generalize the notion of sample complexity
(with respect to RS(k(⋅)) to classes of query functions and show a connection
between differential privacy and zero-knowledge privacy for any class of query
functions with low sample complexity. In particular, we show that for any class
Q of query functions that can be approximated simultaneously using random



15

samples, any differentially private mechanism that is useful for Q can be con-
verted to a zero-knowledge private mechanism that is useful for Q, similar to
the “Sample and DP-sanitize” method. We also show that any class of fraction
queries (functions that compute the fraction of rows satisfying some property
P ) with low VC dimension can be approximated simultaneously using random
samples, so we can use the differentially private mechanisms in [2] and [10] to
obtain zero-knowledge private mechanisms (with respect to RS(k(⋅)) for any
class of fraction queries with low VC dimension.

4 Zero-Knowledge Private Release of Graph Properties

In this section, we first generalize statistical (row) databases to graphs with
personal data so that we can model a social network and privately release in-
formation that is dependent on the graph structure. We then discuss how to
model privacy in a social network, and we construct a sample of zero-knowledge
private mechanisms that release certain information about the graph structure
of a social network.

We represent a social network using a graph whose vertices correspond to
people (or other social entities) and whose edges correspond to social links be-
tween them, and a vertex can have certain personal data associated with it.
There are various types of information about a social network one may want
to release, such as information about the people’s data, information about the
structure of the social network, and/or information that is dependent on both.
In general, we want to ensure privacy of each person’s personal data as well as
the person’s links to other people (i.e., the list of people the person is linked to
via edges).

To formally model privacy in social networks, let Gn be a class of graphs
on n vertices where each vertex includes personal data. (When we refer to a
graph G ∈ Gn, the graph always includes the personal data of each vertex.)
The graph structure is represented by an adjacency matrix, and each vertex’s
personal data is represented by a tuple in X. For the privacy of individuals, we
use our zero-knowledge privacy definition with some minor modifications:

– �-zero-knowledge privacy is defined as before except we change “database
D ∈ Xn” to “graph D ∈ Gn”, and we define (D−i,⊥) to be the graph D
except the personal data of vertex i is replaced by ⊥, and all the edges
incident to vertex i are removed (by setting the corresponding entries in
the adjacency matrix to 0); thus (D−i,⊥) is essentially D with person i’s
personal data and links removed.

We now consider functions g : Gn → ℝm, and we redefine the L1-sensitivity
of g to be �(g) = max{∣∣g(D′) − g(D′′)∣∣1 : D′, D′′ ∈ Gn s.t. (D′−i,⊥) =
(D′′−i,⊥) for some i ∈ [n]}. We also redefine RS(k(⋅)) so that the algorithms
in RS(k(⋅)) are given a graph D ∈ Gn and are allowed to choose k(n) random
vertices without replacement and read their personal data; however, the algo-
rithms are not allowed to read the structure of the graph, i.e., the adjacency
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matrix. It is easy to verify that all our previous results still hold when we con-
sider functions g : Gn → ℝm on graphs and use the new definition of �(g) and
RS(k(⋅)).

Since a social network has more structure than a statistical database contain-
ing a list of values, we consider more general models of aggregate information
that allow us to release more information about social networks:

– RSE(k(⋅), s) = k(⋅) random samples with exploration: the class of algorithms
T such that on input a graph D ∈ Gn, T chooses k(n) random vertices
uniformly without replacement. For each chosen vertex v, T is allowed to
explore the graph locally at v until s vertices (including the sampled vertex)
have been visited. The data of any visited vertex can be read. (RSE stands
for “random samples with exploration”.)

– RSN(k(⋅), d) = k(⋅) random samples with neighborhood: same asRSE(k(⋅), s)
except that while exploring locally, instead of exploring until s vertices have
been visited, T is allowed to explore up to a distance of d from the sampled
vertex. (RSN stands for “random samples with neighborhood”.)

Note that these models of aggregate information include RS(k(⋅)) as a special
case. We can also consider variants of these models where instead of allowing the
data of any visited vertex to be read, only the data of the k(n) randomly chosen
vertices can be read. (The data of the “explored” vertices cannot be read.)

Remark 7. In the above models, vertices (people) in the graph with high degree
may be visited with higher probability than those with low degree. Thus, the
privacy of these people may be less protected. However, this is often the case
in social networks, where people with very many friends will naturally have less
privacy than those with few friends.

We now show how to combine Proposition 6 (the connection between sample
complexity and zero-knowledge privacy) with recent sublinear time algorithms
to privately release information about the graph structure of a social network.
For simplicity, we assume that the degree of every vertex is bounded by some
constant dmax (which is often the case in a social network anyway).3

Let Gn be the set of all graphs on n vertices where every vertex has degree
at most dmax. We assume that dmax is publicly known. Let M = dmaxn

2 be an
upper bound on the number of edges of a graph in Gn. For any graph G ∈ G, the
(relative) distance from G to the some property �, denoted dist(G,�), is the
least number of edges that need to be modified (added/removed) in G in order
to make it satisfy property �, divided by M .

Theorem 1. Let Conn, Eul, and CycF be the property of being connected,
Eulerian4, and cycle-free, respectively. Let d̄(G) denote the average degree of a
vertex in G. Then, for the class of graphs Gn, we have the following results:

3 Weaker results can still be established without this assumption.
4 A graph G is Eulerian if there exists a path in G that traverses every edge of G

exactly once.
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1. The mechanism San(G) = dist(G,Conn)+Lap( 2/n+�
� ) is �+e−(K−�/�)-zero-

knowledge private with respect to RSE(k(⋅), s), where k(n) = O( K
(�dmax)2

)

and s = O( 1
�dmax

).

2. The mechanism San(G) = dist(G,Eul) +Lap( 4/n+�
� ) is �+ e−(K−�/�)-zero-

knowledge private with respect to RSE(k(⋅), s), where k(n) = O( K
(�dmax)2

)

and s = O( 1
�dmax

).

3. The mechanism San(G) = dist(G,CycF ) + Lap( 2/n+�
� ) is � + e−(K−�/�)-

zero-knowledge private with respect to RSE(k(⋅), s), where k(n) = O(K�2 )
and s = O( 1

�dmax
).

4. The mechanism San(G) = d̄(G) + Lap( 2dmax/n+�L
� ) is � + e−(K−�/�)-zero-

knowledge private with respect to RSN(k(⋅), 2), where k(n) = O(K
√
n log2 n⋅

1
�9/2

log( 1
� )). (Here, we further assume that every graph in G has no isolated

vertices and the average degree of a vertex is bounded by L.)

The results of the above theorem are obtained by combining Proposition 6
(the connection between sample complexity and zero-knowledge privacy) with
sublinear time algorithms from [22] (for results 1, 2, and 3) and [15] (for result
4). Intuitively, the sublinear algorithms give bounds on the sample complexity of
the functions (dist(G,Conn), etc.) with respect to RSE(k(⋅), s) or RSN(k(⋅), d).

There are already many (non-private) sublinear time algorithms for comput-
ing information about graphs whose accuracy is proved formally (e.g., see [15,
3, 22, 13, 18, 14, 24]) or demonstrated empirically (e.g, see [21, 20]). We leave for
future work to investigate whether these (or other) sublinear algorithms can be
used to get zero-knowledge private mechanisms.
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