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Abstract. Assuming the existence of one-way functions, we show that there
is no polynomial-time, differentially private algorithm A that takes a database
D ∈ ({0, 1}d)n and outputs a “synthetic database” D̂ all of whose two-way
marginals are approximately equal to those of D. (A two-way marginal is the
fraction of database rows x ∈ {0, 1}d with a given pair of values in a given pair
of columns.) This answers a question of Barak et al. (PODS ‘07), who gave an
algorithm running in time poly(n, 2d).
Our proof combines a construction of hard-to-sanitize databases based on digital
signatures (by Dwork et al., STOC ‘09) with encodings based on probabilistically
checkable proofs.
We also present both negative and positive results for generating “relaxed” syn-
thetic data, where the fraction of rows in D satisfying a predicate c are estimated
by applying c to each row of D̂ and aggregating the results in some way.
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1 Introduction

There are many settings in which it is desirable to share information about a database
that contains sensitive information about individuals. For example, doctors may want
to share information about health records with medical researchers, the federal gov-
ernment may want to release census data for public information, and a company like
Netflix may want to provide its movie rental database for a public competition to de-
velop a better recommendation system. However, it is important to do this in way that
preserves the “privacy” of the individuals whose records are in the database. This pri-
vacy problem has been studied by statisticians and the database security community for
a number of years (cf., [1,8,15]), and recently the theoretical computer science com-
munity has developed an appealing new approach to the problem, known as differential
privacy. (See the surveys [10,9].).
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Differential Privacy. A randomized algorithm A is defined to be differentially pri-
vate [11] if for every two databasesD = (x1, . . . , xn),D′ = (x′1, . . . , x

′
n) that differ on

exactly one row, the distributionsA(D) andA(D′) are “close” to each other. Formally,
we require thatA(D) andA(D′) assign the same probability mass to every event, up to
a multiplicative factor of eε ≈ 1 + ε, where ε is typically taken to be a small constant.
(In addition to this multiplicative factor, it is often allowed to also let the probabilities
to differ by a negligible additive term.) This captures the idea that no individual’s data
has a significant influence on the output of A (provided that data about an individual
is confined to one or a few rows of the database). Differential privacy has several nice
properties lacking in previous notions, such as being agnostic to the adversary’s prior
information and degrading smoothly under composition.

With this model of privacy, the goal becomes to design algorithms A that simul-
taneously meet the above privacy guarantee and give “useful” information about the
database. For example, we may have a true query function c in which we’re interested,
and the goal is to designA that is differentially private (with ε as small as possible) and
estimates c well (e.g. the error |A(D) − c(D)| is small with high probability). For ex-
ample, if c(D) is the fraction of database rows that satisfy some property — a counting
query — then it is known that we can take A(D) to equal c(D) plus random Laplacian
noise with standard deviationO(1/(εn)), where n is the number of rows in the database
and ε is the measure of differential privacy [5]. A sequence of works [7,13,5,11] has pro-
vided a very good understanding of differential privacy in an interactive model in which
real-valued queries c are made and answered one at a time. The amount of noise that
one needs when responding to a query c should be based on the sensitivity of c, as well
as the total number of queries answered so far.

However, for many applications, it would be more attractive to do a noninteractive
data release, where we compute and release a single, differentially private “summary”
of the database that enables others to determine accurate answers to a large class of
queries. What form should this summary take? The most appealing form would be
a synthetic database, which is a new database D̂ = A(D) whose rows are “fake”,
but come from the same universe as those of D and are guaranteed to share many
statistics with those of D (up to some accuracy). Some advantages of synthetic data are
that it can be easily understood by humans, and statistical software can be run directly
on it without modification. For example, these considerations led the German Institute
for Employment Research to adopt synthetic databases for the release of employment
statistics [25].

Previous Results on Synthetic Data. The first result on producing differentially private
synthetic data came in the work of Barak et al. [3]. Given a database D consisting of n
rows from {0, 1}d, they show how to construct a differentially private synthetic database
D̂, also of n rows from {0, 1}d, in which the full “contingency table,” consisting of all
conjunctive counting queries, is approximately preserved. That is, for every conjunction
c(x1, . . . , xn) = xi1 ∧ xi2 ∧ · · · ∧ xik for i1, . . . , ik ∈ [d], the fraction of rows in D̂
that satisfy c equals the fraction of rows in D that satisfy c up to an additive error
of 2O(d)/n. The running time of their algorithm is poly(n, 2d), which is feasible for
small values of d. They pose as an open problem whether the running time of their
algorithm can be improved for the case where we only want to preserve the k-way



marginals for small k (e.g. k = 2). These are the counting queries corresponding to
conjunctions of up to k literals. Indeed, there are onlyO(d)k such conjunctions, and we
can produce differentially private estimates for all the corresponding counting queries
in time poly(n, dk) by just adding noise O(d)k/n to each one. Moreover, a version of
the Barak et al. algorithm [3] can ensure that even these noisy answers are consistent
with a real database.1

A more general and dramatic illustration of the potential expressiveness of syn-
thetic data came in the work of Blum, Ligett, and Roth [6]. They show that for ev-
ery class C = {c : {0, 1}d → {0, 1}} of predicates, there is a differentially pri-
vate algorithm A that produces a synthetic database D̂ = A(D) such that all count-
ing queries corresponding to predicates in C are preserved to within an accuracy of
Õ((d log(|C|)/n)1/3), with high probability. In particular, with n = poly(d), the syn-
thetic data can provide simultaneous accuracy for an exponential-sized family of queries
(e.g. |C| = 2d). Unfortunately, the running time of the BLR mechanism is also expo-
nential in d.

Dwork et al. [12] gave evidence that the large running time of the BLR mechanism
is inherent. Specifically, assuming the existence of one-way functions, they exhibit an
efficiently computable family C of predicates (e.g. consisting of circuits of size d2) for
which it is infeasible to produce a differentially private synthetic database preserving
the counting queries corresponding to C (for databases of any n = poly(d) number
of rows). For non-synthetic data, they show a close connection between the infeasibil-
ity of producing a differentially private summarization and the existence of efficient
“traitor-tracing schemes.” However, these results leave open the possibility that for nat-
ural families of counting queries (e.g. those corresponding to conjunctions), producing
a differentially private synthetic database (or non-synthetic summarization) can be done
efficiently. Indeed, one may have gained optimism by analogy with the early days of
computational learning theory, where one-way functions were used to show hardness
of learning arbitrary efficiently computable concepts in computational learning theory
but natural subclasses (like conjunctions) were found to be learnable [29].

Our Results. We prove that it is infeasible to produce synthetic databases preserving
even very simple counting queries, such as 2-way marginals:

Theorem 1. Assuming the existence of one-way functions, there is a constant γ > 0
such that for every polynomial p, there is no polynomial-time, differentially private
algorithmA that takes a databaseD ∈ ({0, 1}d)p(d) and produces a synthetic database
D̂ ∈ ({0, 1}d)∗ such that |c(D)− c(D̂)| ≤ γ for all 2-way marginals c.

(Recall that a 2-way marginal c(D) computes the fraction of database rows satisfying
a conjunction of two literals, i.e. the fraction of rows xi ∈ {0, 1}d such that xi(j) = b
and xi(j′) = b′ for some columns j, j′ ∈ [d] and values b, b′ ∈ {0, 1}.) In fact, our
impossibility result extends from conjunctions of 2 literals to any family of constant
arity predicates that contains a function depending on at least two variables, such as
parities of 3 literals.

1 Technically, this “real database” may assign fractional weight to some rows.



As mentioned earlier, all 2-way marginals can be easily summarized with non-
synthetic data (by just adding noise to each of the (2d)2 values). Thus, our result shows
that requiring a synthetic database may severely constrain what sorts of differentially
private data releases are possible. (Dwork et al. [12] also showed that there exists a
poly(d)-sized family of counting queries that are hard to summarize with synthetic
data, thereby separating synthetic data from non-synthetic data. Our contribution is to
show that such a separation holds for a very simple and natural family of predicates,
namely 2-way marginals.)

This separation between synthetic data and non-synthetic data seems analogous to
the separations between proper and improper learning in computational learning the-
ory [24,16], where it is infeasible to learn certain concept classes if the output hypoth-
esis is constrained to come from the same representation class as the concept, but it
becomes feasible if we allow the output hypothesis to come from a different represen-
tation class. This gives hope for designing efficient, differentially private algorithms
that take a database and produce a compact summary of it that is not synthetic data
but somehow can be used to accurately answer exponentially many questions about the
original database (e.g. all marginals). The negative results of [12] on non-synthetic data
(assuming the existence of efficient traitor-tracing schemes) do not say anything about
natural classes of counting queries, such as marginals.

To bypass the complexity barrier stated in Theorem 1, it may not be necessary
to introduce exotic data representations; some mild generalizations of synthetic data
may suffice. For example, several recent algorithms [6,27,14] produce several synthetic
databases, with the guarantee that the median answer over these databases is approxi-
mately accurate. More generally, we can consider summarizations of a database D that
that consist of a collection D̂ of rows from the same universe as the original database,
and where we estimate c(D) by applying the predicate c to each row of D̂ and then ag-
gregating the results via some aggregation function f . With standard synthetic data, f is
simply the average, but we may instead allow f to take a median of averages, or apply
an affine shift to the average. For such relaxed synthetic data, we prove the following
results:

– There is a constant k such that counting queries corresponding to k-juntas (func-
tions depending on at most k variables) cannot be accurately and privately sum-
marized as relaxed synthetic data with a median-of-averages aggregator, or with a
symmetric and monotone aggregator (that is independent of the predicate c being
queried).

– For every constant k, counting queries corresponding to k-juntas can be accurately
and privately summarized as relaxed synthetic data with an aggregator that applies
an affine shift to the average (where the shift does depend on the predicate being
queried).

Techniques. Our proof of Theorem 1 and our other negative results are obtained by
combining the hard-to-sanitize databases of Dwork et al. [12] with PCP reductions.
They construct a database consisting of valid message-signature pairs (mi, σi) under a
digital signature scheme, and argue that any differentially private sanitizer that preserves
accuracy for the counting query associated with the signature verification predicate can



be used to forge valid signatures. We replace each message-signature pair (mi, σi) with
a PCP encoding πi that proves that (mi, σi) satisfies the signature verification algo-
rithm. We then argue that if accuracy is preserved for a large fraction of the (constant
arity) constraints of the PCP verifier, then we can “decode” the PCP either to violate pri-
vacy (by recovering one of the original message-signature pairs) or to forge a signature
(by producing a new message-signature pair).

We remark that error-correcting codes were already used in [12] for the purpose of
producing a fixed polynomial-sized set of counting queries that can be used for all ver-
ification keys. Our observation is that by using PCP encodings, we can reduce not only
the number of counting queries in consideration, but also their computational complex-
ity.

Our proof has some unusual features among PCP-based hardness results:

– As far as we know, this is the first time that PCPs have been used in conjunction with
cryptographic assumptions for a hardness result. (They have been used together
for positive results regarding computationally sound proof systems [21,22,4].) It
would be interesting to see if such a combination could be useful in, say, compu-
tational learning theory (where PCPs have been used for hardness of “proper” learn-
ing [2,17] and cryptographic assumptions for hardness of representation-independent
learning [29,20]).

– While PCP-based inapproximability results are usually stated as Karp reductions,
we actually need them to be Levin reductions — capturing that they are reductions
between search problems, and not just decision problems. (Previously, this prop-
erty has been used in the same results on computationally sound proofs mentioned
above.)

2 Preliminaries

2.1 Sanitizers

Let a databaseD ∈ ({0, 1}d)n be a matrix of n rows, x1, . . . , xn, corresponding to peo-
ple, each of which contains d binary attributes. A sanitizer A : ({0, 1}d)n → R takes
a database and outputs some data structure inR. In the case whereR = ({0, 1}d)n̂ (an
n̂-row database) we say that A outputs a synthetic database.

We would like such sanitizers to be both private and accurate. In particular, the
notion of privacy we are interested in is as follows

Definition 2 (Differential Privacy). [11] A sanitizer A : ({0, 1}d)n → R is (ε, δ)-
differentially private if for every two databases D1, D2 ∈ ({0, 1}d)n that differ on
exactly one row, and every subset S ⊆ R

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S] + δ

In the case where δ = 0 we say that A is ε-differentially private.

Since a sanitizer that always outputs 0 satisfies Definition 2, we also need to de-
fine what it means for a database to be accurate. In this paper we consider accuracy



with respect to counting queries. Consider a set C consisting of boolean predicates
c : {0, 1}d → {0, 1}, which we call a concept class. Then each predicate c induces
a counting query that on database D = (x1, . . . , xn) ∈ ({0, 1}d)n returns

c(D) =
1

n

n∑
i=1

c(xi)

If the output of A is a synthetic database D̂ ∈ ({0, 1}d)∗, then c(A(D)) is simply the
fraction of rows of D̂ that satisfy the predicate c. However, ifA outputs a data structure
that is not a synthetic database, then we require that there is an evaluator function
E : R × C → R that estimates c(D) from the output of A(D) and the description of
c. For example, A may output a vector Z = (c(D) + Zc)c∈C where Zc is a random
variable for each c ∈ C, and E(Z, c) is the c-th component of Z ∈ R = R|C|. Abusing
notation, we will write c(A(D)) as shorthand for E(A(D), c).

We will say that A is “accurate” for the concept class C if the estimates c(A(D))
are close to the fractional counts c(D). Formally

Definition 3 (Accuracy). An output Z of sanitizer A(D) is α-accurate for a concept
class C if

∀c ∈ C, |c(Z)− c(D)| ≤ α.

A sanitizer A is (α, β)-accurate for a concept class C if for every database D,

Pr
A′s coins

[∀c ∈ C, |c(A(D))− c(D)| ≤ α] ≥ 1− β

In this paper we say f(n) = negl(n) if f(n) = o(n−c) for every c > 0 and say that
f(n) is negligible. We use |s| to denote the length of the string s, and s1‖s2 to denote
the concatenation of s1 and s2.

2.2 Hardness of Sanitizing

Differential privacy is a very strong notion of privacy, so it is common to look for hard-
ness results that also apply to weaker notions of privacy. These hardness results show
that every sanitizer must be “blatantly non-private” in some sense. In this paper our
notion of blatant non-privacy roughly states that there exists an efficient adversary who
can find a row of the original database using only the output from any efficient sani-
tizer. Such definitions are also referred to as “row non-privacy.” We define hardness-of-
sanitization with respect to a particular concept class, and want to exhibit a distribution
on databases for which it would be infeasible for any efficient sanitizer to give accurate
output without revealing a row of the database. Specifically, following [12], we define
the following notions

Definition 4 (Database Distribution Ensemble). Let D = Dd be an ensemble of dis-
tributions on d-column databases with n+1 rowsD ∈ ({0, 1}d)n+1. Let (D,D′, i)←R

D̃ denote the experiment in which we choose D0 ←R D and i ∈ [n] uniformly at ran-
dom, and set D to be the first n rows of D0 and D′ to be D with the i-th row replaced
by the (n+ 1)-st row of D0.



Definition 5 (Hard-to-sanitize Distribution). Let C be a concept class, α ∈ [0, 1] be
a parameter, and D = Dd be a database distribution ensemble.

The distribution D is (α, C)-hard-to-sanitize if there exists an efficient adversary T
such that for any alleged polynomial-time sanitizer A the following conditions hold:

1. Whenever A(D) is α-accurate, then T (A(D)) outputs a row of D:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[(A(D) is α-accurate for C) ∧ (T (A(D)) ∩D = ∅)] ≤ negl(d).

2. For every efficient sanitizer A, T cannot extract xi from the database D′:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[T (A(D′)) = xi] ≤ negl(d)

where xi is the i-th row of D.

In [12], it was shown that every distribution that is (α, C)-hard-to-sanitize in the
sense of Definition 5, is also hard to sanitize while achieving even weak differential
privacy

Claim 6. [12] If a distribution ensemble D = Dd on n(d)-row databases is (α, C)-
hard-to-sanitize, then for every constant a > 0 and every β = β(d) ≤ 1− 1/poly(d),
no efficient sanitizer that is (α, β)-accurate with respect to C can achieve (a log(n), (1−
8β)/2n1+a)-differential privacy.

In particular, for all constants ε, β > 0, no polynomial-time sanitizer can achieve
(α, β)-accurateness and (ε,negl(n))-differential privacy.

We could use a weaker definition of hard-to-sanitize distributions, which would still
suffice to rule out differential privacy, that only requires that for every efficientA, there
exists an adversary TA that almost always extracts a row of D from every α-accurate
output of A(D). In our definition we require that there exists a fixed adversary T that
almost always extracts a row of D from every α-accurate output of any efficient A.
Reversing the quantifiers in this fashion only makes our negative results stronger.

In this paper we are concerned with sanitizers that output synthetic databases, so
we will relax Definition 5 by restricting the quantification over sanitizers to only those
sanitizers that output synthetic data.

Definition 7 (Hard-to-sanitize Distribution as Synthetic Data). A database distribu-
tion ensemble D is (α, C)-hard-to-sanitize as synthetic data if the conditions of Defini-
tion 5 hold for every sanitizer A that outputs a synthetic database.

3 Relationship with Hardness of Approximation

The objective of a privacy-preserving sanitizer is to reveal some properties of the un-
derlying database without giving away enough information to reconstruct that database.
This requirement has different implications for sanitizers that produce synthetic databases
and those with arbitrary output.



The SuLQ framework of [5] is a well-studied, efficient technique for achieving
(ε, δ)-differential privacy, with non-synthetic output. To get accurate, private output for
a family of counting queries with predicates in C, we can release a vector of noisy counts
(c(D) + Zc)c∈C where the random variables (Zc)c∈C are drawn independently from a
distribution suitable for preserving privacy. (e.g. a Laplace distribution with standard
deviation O(|C| /εn)).

Consider the case of an n-row database D that contains satisfying assignments to
a 3CNF formula ϕ, and suppose our concept class includes all disjunctions on three
literals (or, equivalently, all conjunctions on three literals). Then the technique above
releases a set of noisy counts that describes a database in which every clause of ϕ is
satisfied by most of the rows of D. However, sanitizers that output accurate synthetic
databases are required to produce a database that consists of rows that satisfy most of
the clauses of ϕ.

Because of the noise added to the output, the requirement of a synthetic database
does not strictly force the sanitizer to find a satisfying assignment for the given 3CNF.
However, it is known to be NP-hard to find even approximate satisfying assignments for
many constraint satisfaction problems. In our main result, Theorem 14, we will show
that there exists a distribution over databases that is hard-to-sanitize with respect to
synthetic data for any concept class that is sufficient to express a hard-to-approximate
constraint satisfaction problem.

3.1 Hard to Approximate CSPs

We define a constraint satisfaction problem to be the following.

Definition 8 (Constraint Satisfaction Problem (CSP)). For a function q = q(d) ≤ d,
a family of q(d)-CSPs, denoted Γ = (Γd)d∈N, is a sequence of sets Γd of boolean
predicates on q(d) variables. If q(d) and Γd do not depend on d then we refer to Γ as a
fixed family of q-CSPs.

For every d ≥ q(d), let C(d)Γ be the class consisting of all predicates c : {0, 1}d → R
of the form c(u1, . . . , ud) = γ(ui1 , . . . , uiq(d)) for some γ ∈ Γd and i1, . . . , iq(d) ∈ [d].

We call CΓ = ∪∞d=0C
(d)
Γ the class of constraints of Γ . Finally, we say a multisetϕ ⊆ C(d)Γ

is a d-variable instance of CΓ and each ϕi ∈ ϕ is a constraint of ϕ.
We say that an assignment x satisfies the constraint ϕi if ϕi(u) = 1. For ϕ =

{ϕ1, . . . , ϕm}, define

val(ϕ, u) =

∑m
i=1 ϕi(u)

m
and val(ϕ) = max

u∈{0,1}d
val(ϕ, u).

Our hardness results will apply to concept classes C(d)Γ for CSP families Γ with
certain additional properties. Specifically we define,

Definition 9 (Nice CSP). A family Γ = (Γd)d∈N of q(d)-CSPs nice if

1. q(d) = d1−Ω(1),
2. for every d ∈ N, Γd contains a non-constant predicate ϕ∗ : {0, 1}q(d) → {0, 1}.

Moreover, ϕ∗ and two assignments u∗0, u
∗
1 ∈ {0, 1}q(d) such that ϕ∗(u0) = 0 and

ϕ∗(u1) = 1 can be found in time poly(d).



We note that any fixed family of q-CSP that contains a non-constant predicate is a
nice CSP. Indeed, these CSPs (e.g. conjunctions of 2 literals) are the main application
of interest for our results. However it will sometimes be useful to work with general-
izations to nice CSPs with predicates of non-constant arity.

For our hardness result, we will need to consider a strong notion of hard constraint
satisfaction problems, which is related to probabilistically checkable proofs. First we
recall the standard notion of hardness of approximation under Karp reductions. (stated
for additive, rather than multiplicative approximation error)

Definition 10 (inapproximability under Karp reductions). For functions α, γ : N→
[0, 1]. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Karp reduc-
tions if there exists a polynomial-time computable function R such that for every circuit
C with input size d, if we set ϕC = R(C) ⊆ C(d)Γ for some d = poly(d), then

1. if C is satisfiable, then val(ϕC) ≥ γ(d), and
2. if C is unsatisfiable, then val(ϕC) < γ(d)− α(d).

For our hardness result, we will need a stronger notion of inapproximability, which
says that we can efficiently transform satisfying assignments of C into solutions to ϕC
of high value, and vice-versa.

Definition 11 (inapproximability under Levin reductions). For functionsα, γ : N→
[0, 1]. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Levin re-
ductions if there exist polynomial-time computable functions R,Enc,Dec such that for
every circuit C with input of size d if we set ϕC = R(C) ⊆ C(d)Γ for some d = poly(d),
then

1. for every u ∈ {0, 1}d such that C(u) = 1, val(ϕC ,Enc(u,C)) ≥ γ(d),
2. and for every π ∈ {0, 1}d such that val(ϕC , π) ≥ γ(d)−α(d),C(Dec(π,C)) = 1,
3. and for every u ∈ {0, 1}d, Dec(Enc(u,C)) = u

When we do not wish to specify the value γ we will simply say that the family Γ is
α-hard-to-approximate under Levin reductions to indicate that there exists such a γ ∈
(α, 1]. If we drop the requirement that R is efficiently computable, then we say that Γ
is (α, γ)-hard-to-approximate under inefficient Levin reductions.

The notation Enc,Dec reflects the fact that we think of the set of assignments π
such that val(ϕC , π) ≥ γ as a sort of error-correcting code on the satisfying assign-
ments to C. Any π′ with value close to γ can be decoded to a valid satisfying assign-
ment.

Levin reductions are a stronger notion of reduction than Karp reductions. To see
this, let Γ be α-hard-to-approximate under Levin reductions, and let R,Enc,Dec be
the functions described in Definition 11. We now argue that for every circuit C, the
formula ϕC = R(C) satisfies conditions 1 and 2 of Definition 10. Specifically, if there
exists an assignment u ∈ {0, 1}d that satisfies C, then Enc(u,C) satisfies at least a γ
fraction of the constraints of ϕC . Conversely if any assignment π ∈ {0, 1}d satisfies at
least a γ−α fraction of the constraints of ϕC , then Dec(π,C) is a satisfying assignment
of C.



Variants of the PCP Theorem can be used to show that essentially every class of
CSP is hard-to-approximate in this sense. We restrict to CSP’s that are closed under
complement as it suffices for our application.

Theorem 12 (variant of PCP Theorem). For every fixed family of CSPs Γ that is
closed under negation and contains a function that depends on at least two variables,
there is a constant α = α(Γ ) > 0 such that Γ is α-hard to approximate under Levin
reductions.

It seems likely that optimized PCP/inapproximability results (like [19]) are also
Levin reductions, which would yield fairly large values for α for natural CSPs (e.g.
α = 1/8−ε if Γ contains all conjunctions of 3-literals, because then CΓ contains MAX
3-SAT.)

For some of our results we will need CSPs that are very hard to approximate (un-
der possibly inefficient reductions), which we can obtain by “sequential repetition” of
constant-error PCPs.

Theorem 13 (variant of PCP Theorem with subconstant error). There is a constant
C such that for every ε = ε(d) > 2−poly(d), the constraint family Γ = (Γd)d∈N
of k(d)-clause 3-CNF formulas is (1 − ε(d), 1)-hard-to-approximate under inefficient
Levin reductions, for k(d) = C log(1/ε(d)).

Further discussion of these theorems can be found in the full version of this paper.

4 Hard-to-Sanitize Distributions from Hard CSPs

In this section we prove that to efficiently produce a synthetic database that is accu-
rate for the constraints of a CSP that is hard-to-approximate under Levin reductions,
we must pay constant error in the worst case. Following [12], we start with a digital
signature scheme, and a database of valid message-signature pairs. There is a verifying
circuit Cvk and valid message-signature pairs are satisfying assignments to that circuit.
Now we encode each row of database using the function Enc, described in Defini-
tion 11, that maps satisfying assignments to Cvk to assignments of the CSP instance
ϕCvk

= R(Cvk) with value at least γ. Then, any assignment to the CSP instance that
satisfies a γ − α fraction of clauses can be decoded to a valid message-signature pair.
The database of encoded message-signature pairs is what we will use as our hard-to-
sanitize distribution.

4.1 Main Hardness Result

We are now ready to state and prove our hardness result. Let Γ = (Γd)d∈N be a family
of q(d)-CSPs and let CΓ = ∪∞d=1C

(d)
Γ be the class of constraints of Γ , which was

constructed in Definition 8. We now state our hardness result.

Theorem 14. Let Γ = (Γd)d∈N be a family of nice q(d)-CSPs such that Γd ∪ ¬Γd is
α(d)-hard-to-approximate under (possibly inefficient) Levin reductions for α = α(d) ∈
(0, 1/2). Assuming the existence of one-way functions, for every polynomial n(d), there
exists a distribution ensembleD = Dd on n(d)-row databases that is (α(d), C(d)Γ )-hard-
to-sanitize as synthetic data.



Proof. Let Π = (Gen,Sign,Ver) be a digital signature scheme where it is even hard
to produce a new signature for a previously signed message2. and let Γ be a family
of CSPs that is α-hard-to-approximate under Levin reductions. Let R,Enc,Dec be the
polynomial-time functions and γ = γ(d) ∈ (α, 1] be the parameter from Definition 11.
Let κ = dτ for a constant τ > 0 to be defined later.

Let n = n(d) = poly(d). We define the database distribution ensemble D = Dd to
generate n+1 random message-signature pairs and then encode them as PCP witnesses
with respect to the signature-verification algorithm. We also encode the verification key
for the signature scheme using the non-constant constraint ϕ∗ : {0, 1}q(d) → {0, 1} in
Γd and the assignments u∗0, u

∗
1 ∈ {0, 1}q(d) such that ϕ∗(u∗0) = 0 and ϕ∗(u∗1) = 1, as

described in the definition of nice CSPs (Definition 9).

Database Distribution Ensemble D = Dd:
(sk, vk)←R Gen(1

κ), let vk = vk1vk2 . . . vk`, where ` = |vk| = poly(κ)
(m1, . . . ,mn+1)←R ({0, 1}κ)n+1

for i = 1 to n+ 1 do
xi := Enc(mi‖Signsk(mi), Cvk)‖u∗vk1‖u

∗
vk2
‖ . . . ‖u∗vk` , padded with zeros to be

of length exactly d
end for
return D0 := (x1, . . . , xn+1)

Recall that s1‖s2 denotes the concatenation of the strings s1 and s2. Note that the
length of xi before padding is poly(κ) + q(d)poly(κ) ≤ d1−Ω(1)poly(dτ ), so we can
choose the constant τ > 0 to be small enough that the length of x before padding is at
most d and the above is well defined.

Every valid pair (m,Signsk(m)) is a satisfying assignment of the circuitCvk, hence
every row of D0 constructed in this way will satisfy at least a γ fraction of the clauses
of the formula ϕCvk

= R(Cvk). Additionally, for every bit of the verification key,
there is a block of q(d) bits in each row that contains either a satisfying assignment
or a non-satisfying assignment of ϕ∗, depending on whether that bit of the key is 1
or 0. Specifically, let L = |Enc(mi‖Signsk(mi))| in the construction of D0 and for
j = 1, 2, . . . , `, let ϕ∗j (x) = ϕ∗(xL+(j−1)q+1, xL+(j−1)q+2, . . . , xL+jq). Then, by

construction, ϕ∗j (D0) = vkj , the j-th bit of the verification key. Note that ϕ∗j ∈ C
(d)
Γ

for j = 1, 2, . . . , `, by our construction of C(d)Γ (Definition 8).
We now prove the following two lemmas that will establish D is hard-to-sanitize:

Lemma 15. There exists a polynomial-time adversary T such that for every polynomial-
time sanitizer A,

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[
(A(D) is α-accurate for C(d)Γ ) ∧ (T (A(D)) ∩D = ∅)

]
≤ negl(d)

(1)

2 These digital signature schemes are defined formally in the full version of this paper. In [18]
it is shown how to modify known constructions [23,26] to obtain a such a digital signature
scheme from any one-way function.



Proof. Our privacy adversary tries to find a row of the original database by trying to
PCP-decode each row of the “sanitized” database and then re-encoding it. In order to
do so, the adversary needs to know the verification key used in the construction of
the database, which it can discover from the answers to the queries ϕ∗j , defined above.
Formally, we define the privacy adversary by means of a subroutine that tries to learn
the verification key and then PCP-decode each row of the input database:

Subroutine K(D̂):
Let d be the dimension of rows in D̂, κ = dτ , ` = |vk| = poly(κ).
for j = 1 to ` do
v̂kj =

[
ϕ∗j (D̂) rounded to {0, 1}

]
end for
return v̂k1‖v̂k2‖ . . . ‖v̂k`

Subroutine T0(D̂):
Let n̂ be the number of rows in D̂, v̂k = K(D̂)
for i = 1 to n̂ do

if C
v̂k
(Dec(x̂i, Cv̂k)) = 1 then

return Dec(x̂i, Cv̂k)
end if

end for
return ⊥

Privacy Adversary T (D̂):
Let v̂k = K(D̂).
return Enc(T0(D̂), C

v̂k
)

Let A be a polynomial-time sanitizer, we will show that Inequality (1) holds.

Claim 16. If D̂ = A(D) is α-accurate for C(d)Γ , then T0(D̂) outputs a pair (m,σ) s.t.
Cvk(m,σ) = 1.

Proof. First we argue that if D̂ is α-accurate for C(d)Γ for α < 1/2, then K(D̂) =
vk, where vk is the verification key used in the construction of D0. By construction,
ϕ∗j (D) = vkj . If vkj = 0 and D̂ is α-accurate for D then ϕ∗j (D̂) ≤ α < 1/2, and

v̂kj = vkj . Similarly, if vkj = 1 then ϕ∗j (D̂) ≥ 1 − α > 1/2, and v̂kj = vkj . Thus,

for the rest of the proof we will be justified in substituting vk for v̂k.
Next we show that if D̂ is α-accurate, then T0(D̂) 6= ⊥. It is sufficient to show there

exists x̂i ∈ D̂ such that val(ϕCvk
, xi) ≥ γ−α, which implies Cvk(Dec(x̂i, Cvk)) = 1.

Since every (mi,Signsk(mi)) pair is a satisfying assignment to Cvk, the definition
of Enc (Definition 11) implies that each row xi of D has val(ϕCvk

, xi) ≥ γ. Thus if
ϕCvk

= {ϕ1, . . . , ϕm}, then

1

m

m∑
j=1

ϕj(D) =
1

m

m∑
j=1

(
1

n

n∑
i=1

ϕj(xi)

)
=

1

n

n∑
i=1

val(ϕCvk
, xi) ≥ γ.



Since D̂ is α-accurate for C(d)Γ , and for every constraint ϕj , either ϕj ∈ Γ or ¬ϕj ∈ Γ ,
then for every constraint ϕj ∈ ϕCvk

, we have ϕj(D̂) ≥ ϕj(D)− α. Thus

1

n̂

n̂∑
i=1

val(ϕCvk
, x̂i) =

1

m

m∑
j=1

ϕj(D̂) ≥ 1

m

m∑
j=1

ϕj(D)− α ≥ γ − α.

So for at least one row x̂ ∈ D̂ it must be the case that val(ϕCvk
, x̂) ≥ γ − α. The

definition of Dec (Definition 11) implies Cvk(Dec(x̂, Cvk)) = 1.

Now notice that if T0(A(D)) outputs a valid message-signature pair but T (A(D))∩
D = ∅, then this means T0(A(D)) is forging a new signature not among those used to
generate D, violating the security of the digital signature scheme. Formally, we con-
struct a signature forger as follows:

Forger F(vk) with oracle access to Signsk:
Use the oracle Signsk to generate an n-row database D just as in the definition of
Dd (consisting of PCP encodings of valid message-signature pairs and an encoding
of vk).
Let D̂ := A(D)

return x̂∗ := T0(D̂)

Notice that running F in a chosen-message attack is equivalent to running T in the
experiment of inequality (1), except that F does not re-encode the output of T0(A(D)).
By the super-security of the signature scheme, if the x̂∗ output by F is a valid message-
signature pair (as holds if A(D) is α-accurate for C(d)Γ , by Claim 16), then it must
be one of the message-signature pairs used to construct D (except with probability
negl(κ) = negl(d)). This implies that T (A(D)) = Enc(x̂∗, Cvk) ∈ D (except with
negligible probability). Thus, we have

Pr
(D,D′,i)←RD̃
A′s coins

[A(D) is α-accurate for C(d)Γ ⇒ T (A(D)) ∈ D] ≥ 1− negl(d),

which is equivalent to the statement of the lemma.

Lemma 17.
Pr

(D,D′,i)←RD̃
A′s and T ′s coins

[T (A(D′)) = xi] ≤ negl(d)

Proof. Since the messages mi used in D0 are drawn independently, D′ contains no
information about the message mi, thus no adversary can, on input A(D′) output the
target row xi except with probability 2−κ = negl(d).

These two claims suffice to establish that D is (α, CΓ )-hard-to-sanitize as synthetic
data.

Theorem 1 in the introduction follows by combining Theorems 12 and 14.



5 Relaxed Synthetic Data

The proof of Theorem 14 requires that the sanitizer output a synthetic database. In this
section we present similar hardness results for sanitizers that produce other forms of
output, as long as they still produce a collection of elements from {0, 1}d, that are in-
terpreted as the data of (possibly “fake”) individuals. More specifically, we consider
sanitizers that output a database D̂ ∈ ({0, 1}d)n̂ but are evaluated by applying a
predicate c to each row and then applying a function f to the resulting bits and the
predicate c. For example, when the sanitizer outputs a synthetic database, we have
f(b1, . . . , bn̂, c) = (1/n̂)

∑n̂
i=1 bi, which is just the fraction of rows that get labeled

with a 1 by the predicate c (independent of c).
We now give a formal definition of relaxed synthetic data

Definition 18 (Relaxed Synthetic Data). A sanitizer A : ({0, 1}d)n → ({0, 1}d)n̂
with evaluator E outputs relaxed synthetic data for a family of predicates C if there
exists f : {0, 1}n̂ × C → [0, 1] such that for every c ∈ C

E(D̂, c) = f(c(x̂1), c(x̂2), . . . , c(x̂n̂), c),

and f is monotone3 in the first n̂ inputs.

This relaxed notion of synthetic data is of interest because many natural approaches
to sanitizing yield outputs of this type. In particular, several previous sanitization al-
gorithms [6,27,14] produce a set of synthetic databases and answer a query by taking
a median over the answers given by the individual databases. We view such databases
as a single synthetic database but require that f have a special form. Unfortunately,
the sanitizers of [14] and [27] run in time exponential in the dimension of the data, d,
and the results of the next subsection show this limitation is inherent even for simple
concept classes.

We now give an informal description of our hardness results for different forms
of relaxed synthetic data. Our proofs use the same construction of hard-to-sanitize
databases as Theorem 14 with a modified analysis and parameters to show that the
output must still contain a PCP-decodable row. Formal statements and proofs of all of
the following statements can be found in the full version of this paper.

– We say that a sanitizer outputs medians of synthetic data if it satisfies Definition 18
with

E(x̂1, . . . , x̂n̂, c) = median

{
1

|S1|
∑
i∈S1

c(x̂i), . . . ,
1

|S`|
∑
i∈S`

c(x̂i)

}

for some partition [n̂] = S1∪S2 · · ·∪S`. We rule out efficient sanitizers with medi-
ans of synthetic data for CSPs that are hard-to-approximate under Levin reductions
within a multiplicative factor larger than 2. By Theorem 13, these CSPs include
k-clause 3-CNF formulas for some constant k.

3 Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) we say b � a iff bi ≥ ai for every
i ∈ [n]. We say a function f : {0, 1}n → [0, 1] is monotone if b � a =⇒ f(b) ≥ f(a).



– We say that a sanitizer outputs symmetric relaxed synthetic data if it satisfies Def-
inition 18 with E(x̂1, . . . , x̂n̂, c) = g((1/n̂)

∑n̂
i=1 c(x̂i)) for a monotone function

g : [0, 1] → [0, 1]. These evaluators are symmetric both in that g does not depend
on the predicate and that g only depends on the fraction of rows that satisfy the
predicate. We rule out efficient sanitizers with symmetric relaxed synthetic data for
CSPs that are hard-to-approximate under Levin reductions within an additive factor
larger than 1/2. By Theorem 13, these CSPs include k-clause CNF formulas, for
some constant k.

– We show that no efficient sanitizer can produce accurate relaxed synthetic data for
a sequence of CSPs that is (1 − negl(d))-hard-to-approximate under inefficient
Levin reductions. By Theorem 13, these CSPs include 3-CNF formulas of ω(log d)
clauses.

5.1 Positive Results for Relaxed Synthetic Data

We also show that there exists an efficient sanitizer for the family of all constant-arity
predicates. As an intermediate step, we also show there exists an efficient sanitizer as
symmetric relaxed synthetic data for any family of parity predicates. Our results show
that relaxed synthetic data allows for more efficient sanitization than standard synthetic
data, since Theorem 14 rules out an accurate, efficient sanitizer with standard synthetic
data, even for 3-literal parity predicates. Our result for parities also shows that our
hardness result for symmetric relaxed synthetic data is tight with respect to the required
hardness of approximation, since the class of 3-literal parity predicates is (1/2 − ε)-
hard-to-approximate [19]

A function f : {0, 1}d → {0, 1} is a k-junta if it depends on at most k variables.
Let Jd,k be the set of all k-juntas on d variables.

Theorem 19. There exists an ε-differentially private sanitizer that runs in time poly(n, d)
and produces relaxed synthetic data and is (α, β)-accurate for Jd,k when

n ≥
C
(
d
≤k
)
log
((

d
≤k
)
/β
)

αε

for a sufficiently large constant C, where
(
d
≤k
)
=
∑k
i=0

(
d
i

)
.

To prove Theorem 19, we start with a sanitizer for parity predicates. A function
χ : {0, 1}d → {−1, 1} is a parity predicate4 if there exists a vector s ∈ {0, 1}d s.t.
χ(x) = χs(x) = (−1)〈x,s〉.

Theorem 20. Let P be a family of parity predicates such that χ0d 6∈ P . There exists
an ε-differentially private sanitizer A(D,P) that runs in time poly(n, d) and produces
symmetric relaxed synthetic data that is (α, β)-accurate for P when

n ≥ 2|P| log (2|P|/β)
αε

.

4 In the preliminaries we define a predicate to be a {0, 1}-valued function but our definition
naturally generalizes to {−1, 1}-valued functions. For c : {0, 1}d → {−1, 1} and database
D = (x1, . . . , xn) ∈ ({0, 1}d)n, we define c(D) = 1

n

∑n
i=1 c(xi)



Without relaxed synthetic data, Theorems 19 and 20 can be achieved by simply
releasing a vector of noisy answers to the queries [11]. Our sanitizer begins with this
vector of noisy answers and constructs relaxed synthetic data from those answers. Our
technique is similar to that of Barak et. al. [3], which also begins with noisy answers and
constructs a (standard) synthetic database that gives approximately the same answers.
However, they construct their synthetic database by solving a linear program over a
set of 2d variables, each of which represents the frequency of one of the possible rows
x ∈ {0, 1}d. Thus their sanitizer runs in time exponential in d.

Our sanitizer also starts with a vector of noisy answers to parity queries and effi-
ciently constructs symmetric relaxed synthetic data that gives answers to each query
that are close to the initial noisy answers after applying a fixed linear scaling. To con-
struct each row of the synthetic database, D̂, we select a random parity query in χ ∈ P
and then sample a row x ∈ {0, 1}d such that the expectation of χ(x) is equal to the
initial noisy estimate of χ(D); it can be shown that for every χ′ 6= χ (except χ0d ), the
expectation of χ′(x) is zero. Thus we can estimate the value of χ(D) by taking χ(D̂)
and multiplying by |P|. We then show that if we apply our sanitizer to the family Pd,k
containing all parity predicates on d variables that depend on at most k variables, the
result is also accurate for the family Jd,k of k-juntas after applying an affine shift that
depends on the average value of the junta of interest.

A complete discussion of these results is deferred to the full version of this paper.
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