
Practical Adaptive Oblivious Transfer from
Simple Assumptions

Matthew Green? and Susan Hohenberger??

Johns Hopkins University
{mgreen,susan}@cs.jhu.edu

Abstract. In an adaptive oblivious transfer (OT) protocol, a sender
commits to a database of messages and then repeatedly interacts with a
receiver in such a way that the receiver obtains one message per inter-
action of his choice (and nothing more) while the sender learns nothing
about any of the choices. Recently, there has been significant effort to
design practical adaptive OT schemes and to use these protocols as a
building block for larger database applications. To be well suited for
these applications, the underlying OT protocol should: (1) support an
efficient initialization phase where one commitment can support an ar-
bitrary number of receivers who are guaranteed of having the same view
of the database, (2) execute transfers in time independent of the size of
the database, and (3) satisfy a strong notion of security under a simple
assumption in the standard model.
We present the first adaptive OT protocol simultaneously satisfying these
requirements. The sole complexity assumption required is that given
(g, ga, gb, gc, Q), where g generates a bilinear group of prime order p and
a, b, c are selected randomly from Zp, it is hard to decide if Q = gabc. All
prior protocols in the standard model either do not meet our efficiency
requirements or require dynamic “q-based” assumptions.
Our construction makes an important change to the established “assisted
decryption” technique for designing adaptive OT. As in prior works, the
sender commits to a database of n messages by publishing an encryption
of each message and a signature on each encryption. Then, each transfer
phase can be executed in time independent of n as the receiver blinds
one of the encryptions and proves knowledge of the blinding factors and
a signature on this encryption, after which the sender helps the receiver
decrypt the chosen ciphertext. One of the main obstacles to designing
an adaptive OT scheme from a simple assumption is realizing a suitable
signature for this purpose (i.e., enabling signatures on group elements in
a manner that later allows for efficient proofs.) We make the observation
that a secure signature scheme is not necessary for this paradigm, pro-
vided that signatures can only be forged in certain ways. We then show
how to efficiently integrate an insecure signature into a secure adaptive
OT construction.
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1 Introduction

Oblivious transfer OT [35, 39] is a two-party protocol, where a Sender with mes-
sages M1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact in
such a way that at the end the Receiver obtains Mσ1 , . . . ,Mσk without learn-
ing anything about the other messages and the Sender does not learn anything
about the choices σ1, . . . , σk. In the adaptive OT setting [33], the Receiver may
obtain Mσi−1 before deciding on σi [33].

Our Goals. Adaptive OT is an interesting primitive. Like non-adaptive OT, it is
a key building block for secure multi-party computation [40, 19, 28]. More practi-
cally, it captures the way an oblivious medical, financial or patent database would
be accessed. Recently, there has been a focus on designing practical, privacy-
preserving databases with access controls [15, 8] or pricing mechanisms [36] based
on adaptive OT. Unfortunately, researchers trying to design more-complex sys-
tems on top of current adaptive OT protocols do not have any ideal choices. For
a database with N messages supporting U Receivers with security parameter λ,
such a protocol must be:

1. Extremely efficient, even when N , the database size, is large. In particular,
the cost to transfer one message to one Receiver should depend only on the
security parameter and not on N . I.e., a Receiver should not have to do work
proportional to the size of the database to download one file. (This rules out
a number of naive approaches as discussed below.)

2. Furthermore, since few databases serve only one user, it should be possible
to extend the protocol to the case where there are many Receivers, each
of whom receives a consistent view of the database. In particular, the ideal
situation, which we achieve in this work, is to have a non-interactive initial-
ization phase, where the Sender can do O(λN) work to form a commitment
that can then be used for an arbitrary number of receivers. Several prior
works (e.g., [10, 22, 27, 36]) support a relatively efficient initialization phase
with O(λ(N + U)) total work. By adding a CRS and making some mod-
ifications, this can likely be reduced to O(λN) (although the complexity
assumptions will still be an issue.) What one wishes to avoid, however, is an
initialization phase that requires O(λNU) total work. I.e., the sender should
not have to set up a unique database containing all of its files for each of its
users. (This also rules out some basic approaches.)

3. Finally, since this protocol is designed to be a building block of larger ap-
plications, it is critical that it be a solid one. In particular, it should satisfy
a strong notion of security (i.e., full-simulatability or UC) under a mild
complexity assumption in the standard model. Unfortunately, while suffi-
ciently practical protocols exist, they either require random oracles [10, 22],
dynamic1 assumptions [10, 22, 27, 36] or interactive assumptions [38].

Thus, a new construction based on new techniques is needed.
1 These are also called parametric or q-based assumptions. An example is q-Strong
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From Non-Adaptive to Adaptive OT for Single Receivers. Since it is known
how to build non-adaptive OT protocols based on simple assumptions [21, 32,
34] such as Decisional Diffie-Hellman and Quadratic Residuosity, it is natural
to ask why constructing adaptive protocols has proven so difficult. Given any
fully-simulatable 1-out-of-N non-adaptive OT protocol, one can build a fully-
simulatable k-out-of-N adaptive OT protocol for a single Receiver by sequen-
tially executing k instances of the non-adaptive protocol and, before each execu-
tion, having the sender prove in zero-knowledge that the sequence of N messages
used in execution i is the same as the sequence of N messages used in execution
i − 1 [10]. Unfortunately, for security parameter λ, this protocol requires a to-
tal of O(Nkλ) work to transfer k messages for (only) one Receiver and is thus
impractical for any application involving large databases.

Thus, when Camenisch, Neven and shelat [10] began to reinvestigate this
problem in 2007, they stressed that the real challenge was to build an OT scheme
where the sender makes an initial commitment to the database (which is assumed
to be broadcast to all receivers), and then the two parties only exchange a
constant number of group elements per transfer.

Our Contributions. We present an efficient, adaptive oblivious transfer protocol
which is fully-simulatable under a simple, static assumption. The sole complexity
assumption required is that given (g, ga, gb, gc, Q), where g generates a bilinear
group of prime order p and a, b, c are selected randomly from Zp, it is hard to
decide if Q = gabc. This assumption called Decisional 3-Party Diffie-Hellman
has been used in prior works [31, 5, 25]. Our protocol is practical, although more
costly than the very efficient Camenisch et al. protocol [10] by a constant fac-
tor. The database commitment in our scheme requires roughly (9 + 7N) group
elements, whereas the commitment in [10] required roughly (3 + 2N) group ele-
ments. By including the mild Decision Linear assumption [4], we can efficiently
make this initialization phase non-interactive as we discuss in Section 4.

Our construction introduces a twist on the assisted decryption approach to
OT design, where the underlying signatures need not be existentially unforgeable
provided that certain forgeries are not permitted. As we discuss, these techniques
may be useful in simplifying the complexity assumptions in schemes beyond OT
such as F -signatures and anonymous credentials [1].

Intuition behind our OTNk×1 Construction. As with most previous OTNk×1 con-
structions, our construction uses a technique known as assisted decryption. For
i = 1 to N , the Sender commits to his database by encrypting each message as
Ci = Enc(Mi), and publishes a public key and ciphertexts (pk , C1, . . . , CN ). The
Receiver then checks that each ciphertext is well-formed. To obtain a message,
the Sender and Receiver engage in a blind decryption protocol, i.e., an interac-

of prime order p and x is a random value in Zp, it is hard to compute (g1/(x+c), c)
for any c ∈ Z∗p. Typically, when q-SDH is used as the foundation of an adaptive OT
scheme, q must dynamically adjust to the number of files in the database. Thus, the
assumption required actually changes based on how the protocol is used.



Protocol Initialization Transfer Assumption Security
Cost Cost Defn

Folklore · O(λN) general assumptions Full Sim
KN [29] O(λ(N + U)) O(λN) Decisional nth Residuosity/DDH Full Sim

NP [33] · O(λ lg(N)) DDH + OT2
1 Half Sim

KNP [30] O(λNU) O(λ) DDH Full Sim∗

CNS [10] O(λ(N + U)) O(λ) q-Power DDH + q-Strong DH Full Sim
GH [22] O(λ(N + U)) O(λ) Decision Linear + q-Hidden LRSW UC
JL [27] O(λ(N + U)) O(λ) Comp. Dec. Residuosity + q-DDHI Full Sim
RKP [36] O(λ(N + U)) O(λ) DLIN + q-Hidden SDH + q-TDH UC
§3.2 O(λ(N + U)) O(λ) Decision 3-Party DH Full Sim

§4 O(λN) O(λ) Decision 3-Party DH + DLIN Full Sim

Fig. 1. Survey of adaptive k-out-of-N Oblivious Transfer protocols secure in the stan-
dard model. Let λ be the security parameter, N the size of the database and U the
number of receivers. The horizontal lines separate the schemes into efficiency categories,
which improve as one scans down the table. While the least efficient categories can be
realized using assumptions such as DDH, all prior attempts to achieve practicality
have required a dynamic q-based complexity assumption. A ∗ denotes the construction
meets a strictly weaker notion than the standard used in the other works.

tive protocol in which the Sender does not view the ciphertext he decrypts, but
where the Receiver is convinced that decryption was done correctly.

The difficulty here is to prevent the Receiver from abusing the decryption
protocol, e.g., by requesting decryptions of ciphertexts which were either not
produced by the Sender or have been mauled. The folklore solution is to have
the Receiver provide a proof that his request corresponds to C1 ∨C2 ∨ ... ∨CN .
Of course, the cost of each transfer is now dependent on the total database size
and thus this solution is no (asymptotically) better than the trivial solution
mentioned above.

In Eurocrypt 2007, Camenisch, Neven and shelat [10] were the first to pro-
pose a method for executing “assisted decryption” efficiently. The sender signed
each ciphertext value. The receiver was required to prove knowledge of a corre-
sponding signature before the sender would assist him in decrypting a ciphertext.
This clever approach reduced the O(Nλ) work per transfer required above, to
only O(λ) work, where λ is a security parameter.

More specifically, Camenisch, Neven and shelat [10] used a deterministic en-
cryption scheme and a signature with a particular structure: for pk = (g, gx, H =
e(g, h)) and sk = h, let Ci =

(
g

1
x+i ,Mi · e(g, h)

1
x+i

)
. Recall that g1/(x+i) is a

weak Boneh-Boyen signature [3] on i under gx, and here only a polynomial num-
ber of “messages” (1 to N) are signed. While this scheme supports an elegant and
efficient blind decryption protocol, it also requires strong q-based assumptions
for both the indistinguishability of the ciphertexts as well as the unforgeability
of the weak Boneh-Boyen signature. It is based on the q-Strong Diffie-Hellman
and the q-Power Decisional Diffie-Hellman assumptions. The latter assumption
states that given (g, gx, gx
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, H), where g ∈ G and H ∈ GT , it is hard to



distinguish the vector of elements (Hx, Hx2
, . . . ,Hxq ) from a vector of random

elements in GT . In essence, the rigid structure of this (and all prior) construc-
tions appear to require a similarly structured complexity assumption, which
grows with the database size.

To move past this, we will “loosen” the structure of the ciphertext and sig-
nature enough to break the dependence on a structured assumption, but not
so much as to ruin our ability to perform efficient proofs. Finding this balance
proved highly non-trivial.

We now turn to how our construction works. We will encrypt using the Boneh-
Boyen IBE [2], which has a public key pk = (g, g1 = ga, g2, h) and encrypts M
as (gr, (gi1h)r, e(g1, g2)rM) for identity i and randomness r ∈ Zp. Then we will
sign r. To do this, we need a standard model signature scheme from a simple
assumption (which is itself somewhat rare.) We choose the stateful signatures
of Hohenberger-Waters [26], which has a public key pk = (g, gb, u, v, d, w, z, h)
and signs M as (σ1, σ2, s, i) for state i and randomness s, t ∈ Zp, where σ1 =
gt, σ2 = (uMvsd)b(wdlg(i)ezih)t.

Attempt 1. Now, consider the construction obtained by combining the BB IBE,
secure under Decisional Bilinear Diffie-Hellman, with the HW signature, secure
under the Computational Diffie-Hellman assumption. Here we will encrypt the
ith message using identity i (in the BB IBE) and state i (in the HW signature),
with an extra ur term to allow the Receiver to verify well-formedness:

gr, (gi1h)r, e(g1, g2)rM, gt, (urvsd)b(wdlg(i)ezih)t, ur, s

The Receiver can verify the well-formedness of the ith ciphertext (c1, . . . , c7) by
checking that e((gi1h), c1) = e(g, c2), e(g, c6) = e(c1, u) and

e(g, c5) = e(c6vc7d, gb)e(wdlg(i)ezih, c4).

It is important that the Receiver can verify the well-formedness of the ciphertext-
signature pair, so that the simulator can properly extract the messages from a
cheating Sender during the proof of security. It is a nice additional feature that
our verification is public and non-interactive.

Attempt 2. However, the above construction still has a lot of problems. Recall
that we want the Receiver to ask for a blind decryption of a given ciphertext by
(somehow) sending in blinded portions of the ciphertext, proving that these por-
tions are linked to r and proving that he knows a signature on r. Unfortunately,
efficiently proving knowledge of the HW signature is problematic due to the
dlg(i)e exponent. We could do this using a range proof [13, 9, 6, 7], however, this
would require that we introduce stronger assumptions such as Strong RSA or
q-Strong Diffie-Hellman. We could instead do a bit-by-bit proof, but this would
severely hurt our efficiency. Instead, our solution is to drop this term entirely
from the HW signature to obtain the ciphertext:

gr, (gi1h)r, e(g1, g2)rM, gt, (urvsd)b(zih)t, ur, s



One major issue is that dropping this term breaks the unforgeability of the
signature scheme. Indeed, it is now possible for anyone to efficiently compute a
signature on any index over a certain polynomial threshold as set in the proof of
security. However, we specifically chose to encrypt with the Boneh-Boyen IBE
for this purpose. We will set our parameters so that an adversary is free to forge
signatures with states of N + 1 and higher, where N is the size of our database.
The key idea is that asking for decryptions on different identities will not help a
malicious Receiver obtain information about the database messages; indeed, we
could even hand him the secret key for those identities. This makes our proof
much more efficient, however, there is still a large problem.

Attempt 3. To argue, in the proof of security, that no malicious Receiver can
forge signatures on a state i ∈ [1, N ], we must extract this signature and its
forgery message from the proof of knowledge. However, we cannot extract the
“message” r from a cheating Receiver, because an honest Receiver will not know
the randomness used in the ciphertexts created by the Sender. The most we
can ask a Receiver to prove knowledge of is the signature on r comprised of
(c4, c5, c6, c7) and the value gr. Thus, we cannot extract from the Receiver a
valid forgery of the HW signatures.

Moreover, we need a stronger security guarantee than HW signatures gave
us (i.e., existential unforgeability under adaptive chosen message attack [20].)
We need that: it is not only the case that an adversary cannot produce a pair
(m,σ) for a new m; now the adversary cannot even produce the pair (gm, σ) for
a new m, where σ is a signature on m. Do such powerful signatures exist?

Indeed, this security notion was formalized as F -signatures by Belenkiy,
Chase, Kohlweiss and Lysyanskaya [1], where they also required q-based com-
plexity assumptions for their construction. Fortunately, we are able to show
that the HW signatures (and our mangled version of them without the wdlg(i)e

term) remain F -unforgeable for F (m) = gm under a simple static assumption.
(See [26] or the full version of this work [23] for the full details on HW; the
mangled version is proven as part of the OT system in Section 3.3.) We tie both
this version of the signature scheme and the Boneh-Boyen IBE together under
a single assumption: given (g, ga, gb, gc), it is hard to decide if Q = gabc.

Comparison to Prior Work. Let us briefly compare our approach to prior works;
see Figure 1 for more. As we mention above, Camenisch, Neven and shelat [10]
gave the first efficient, fully-simulatable construction for adaptive (and non-
adaptive) OT. It is secure in the standard model under the q-Strong Diffie-
Hellman and the q-Power Decisional Diffie-Hellman assumptions. They also pro-
vided a scheme in the random oracle model from unique blind signatures.

Green and Hohenberger [21] provided an adaptive OT construction in the
random oracle model based on the Decisional Bilinear Diffie-Hellman assump-
tion, namely, that given (g, ga, gb, gc, Q), it is hard to decide if Q = e(g, g)abc. In
their construction, the Sender encrypted each message i under identity i using
a IBE system. Then they provided a blind key extraction protocol, where the
Receiver could blindly obtain a secret key for any identity of her choice.



In the assisted decryption setting, Green and Hohenberger [22] took an ap-
proach similar to [10] to achieve UC security. It was based on the Decision
Linear and q-Hidden LRSW assumptions, in the asymmetric setting. The latter
assumption implies that DDH must hold in both G1 and G2.

Jarecki and Liu [27] took an alternative view: for pk = gx, let Ci = Mi ·
g1/(x+i). Recall that g1/(x+i) is also the Dodis-Yampolskiy pseudorandom func-
tion on input i [18]. This essentially simplifies the Camenisch et al. construc-
tion and allows a fully-simulatable scheme based on the Composite Decisional
Residuosity and q-Decisional Diffie-Hellman Inversion assumptions. The blind
decryption protocol involves obliviously evaluating the PRF on input i, which
requires some costly zero knowledge proofs. However, this protocol is interesting
as the only efficient and fully-simulatable protocol that does not require bilinear
groups.

Rial, Kohlweiss and Preneel [36] presented a priced version of UC-secure
adaptive OT using the assisted decryption approach. In priced OT, the oblivi-
ousness property must hold, even though the items being sold may have unique
prices. The scheme is secure in the standard model under the Decision Linear,
q-Triple Diffie-Hellman, and q-Hidden Strong Diffie-Hellman assumptions.

Unfortunately, all of these constructions have a rigid structure and seem to
require a structured complexity assumption. We show that this structure can
be enforced, not on the message itself, but rather through the identity of the
encryption and the state of the signature. This provides us with enough glue to
keep the security of the scheme together without overdoing it.

Recently, Kurosawa and Nojima [29] and Chen, Chou and Hou [14] gave
adaptive OT constructions which purported to improve the underlying com-
plexity assumptions of the schemes above, but which actually resorted to O(Nλ)
transfer cost. It was already known how to achieve this level of (in)efficiency from
general assumptions, including those of [29, 14], by following the folklore method
for building adaptive OT from any non-adaptive OT system, as described in [17,
10] and the opening of our introduction. Moreover, [14] is set in the random
oracle model.

Very recently2, Kurosawa, Nojima and Phong [30] gave an adaptive OT con-
struction from DDH with O(λ) transfers. However, their work has several techni-
cal issues. First, their construction does not satisfy the standard full simulation
definition used in [10, 21, 22, 27, 36] and this work. In [30], if a receiver ever re-
quests the same file twice (say, she downloads a patent one day, deletes it, then
downloads it again a month later), then this can be detected by the sender. This
is at odds with the full simulation definition where the adversarial sender is only
told by the ideal functionality that a file has been requested and thus cannot
detect a repeated download. Second, it is not obvious how to modify their con-
struction to satisfy the full simulation notion. One approach might be to make
the receiver stateful and store every file she ever requests. This has the obvi-
ous drawback of requiring permanent storage of the decrypted messages, which
may not be practical and is not a requirement in other works. Moreover, sub-

2 The work of [30] appeared after the initial posting of this work [23].



tle technical issues arise as to what the receiver sends during a repeated query
round. Third, their construction requires a very expensive initialization proce-
dure where the sender must transmit, then receive back and store O(Nλ) bits
for each receiver. In contrast, all prior practical work [10, 21, 22, 27, 36] and our
results only require that the sender publish and store one O(Nλ) bit database
for all receivers.

Thus, we build on this body of prior work to present the first efficient scheme
satisfying the standard notion of full simulation from a simple assumption in the
standard model.

2 Technical Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p, g,G,GT , e), where g generates G,
the groups G,GT have prime order p ∈ Θ(2κ), and e : G × G → GT . Two
algebraic properties required are that: (1) if g generates G, then e(g, g) 6= 1 and
(2) for all a, b ∈ Zp, it holds that e(ga, gb) = e(g, g)ab.

Assumption 1 (Decisional 3-Party Diffie-Hellman (3DDH) [31, 5, 25])
Let G be a group of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the fol-
lowing probability is 1/2 plus an amount negligible in λ:

Pr[g, z0 ← G; a, b, c← Zp; z1 ← gabc; d← {0, 1}; d′ ← A(g, ga, gb, gc, zd) : d = d′].

Proofs of Knowledge. We use known zero-knowledge and witness indistinguish-
able techniques for proving statements about discrete logarithms and their nat-
ural extensions to proving statements about bilinear groups, such as (1) proof
of knowledge of a discrete logarithm modulo a prime [37] and (2) proof of the
disjunction or conjunction of any two statements [16]. These are typically inter-
active, 4-round protocols. We discuss further implementation details in the full
version [23].

When referring to the proofs above, we will use the notation of Camenisch and
Stadler [11]. For instance, ZKPoK{(x, h) : y = gx ∧H = e(y, h) ∧ (1 ≤ x ≤ n)}
denotes a zero-knowledge proof of knowledge of an integer x and a group element
h ∈ G such that y = gx and H = e(y, h) holds and 1 ≤ x ≤ n. All values not
enclosed in ()’s are assumed to be known to the verifier.

3 Adaptive Oblivious Transfer from a Simple Assumption

Adaptive Oblivious Transfer (OTNk×1) is traditionally defined as a protocol con-
ducted by a Sender and a single Receiver. In the following section we will formally
define the protocol and its security requirements. As noted above, a primary ap-
plication of OTNk×1 is the construction of multi-user oblivious databases, and thus
we must also consider the implications of a protocol involving U ≥ 1 distinct



Receivers. In the full version [23], we present an alternative definition that cap-
tures this notion and describes the security and consistency properties involved
in such an interaction.3

3.1 Definition of Adaptive k-out-of-N Oblivious Transfer
(OTN

k×1) [33, 10]

An oblivious transfer scheme is a tuple of algorithms (SI,RI,ST,RT). During the
initialization phase, the Sender and the Receiver conduct an interactive protocol,
where the Sender runs SI(M1, . . . , MN ) to obtain state value S0, and the Receiver
runs RI() to obtain state value R0. Next, for 1 ≤ i ≤ k, the ith transfer proceeds
as follows: the Sender runs ST(Si−1) to obtain state value Si, and the Receiver
runs RT(Ri−1, σi) where 1 ≤ σi ≤ N is the index of the message to be received.
The receiver obtains state information Ri and the message M ′σi or ⊥ indicating
failure.

Definition 1 (Full Simulation Security.). Consider the following experi-
ments.4

Real experiment. In experiment RealŜ,R̂(N, k,M1, . . . ,MN , Σ), the possibly
cheating sender Ŝ is given messages (M1, . . . ,MN ) as input and interacts with
the possibly cheating receiver R̂(Σ), where Σ is a selection algorithm that on
input the full collection of messages thus far received, outputs the index σi of
the next message to be queried. At the beginning of the experiment, both Ŝ and
R̂ output initial states (S0, R0). In the transfer phase, for 1 ≤ i ≤ k the sender
computes Si ← Ŝ(Si−1), and the receiver computes (Ri,M ′i)← R̂(Ri−1), where
M ′i may or may not be equal to Mi. At the end of the kth transfer the output
of the experiment is (Sk, Rk).

We define the honest Sender S as one that runs SI(M1, . . . ,MN ) in the first
phase, during each transfer runs ST() and outputs Sk = ε as its final output.
The honest Receiver R runs RI in the first phase, and RT(Ri−1, σi) at the ith

transfer, and outputs Rk = (M ′σ1
, . . . ,M ′σk) as its final output.

Ideal experiment. In experiment IdealŜ′,R̂′(N, k,M1, . . . ,MN , Σ) the possibly
cheating sender algorithm Ŝ′ generates messages (M∗1 , . . . ,M

∗
N ) and transmits

them to a trusted party T . In the ith round Ŝ′ sends a bit bi to T ; the possibly
cheating receiver R̂′(Σ) transmits σ∗i to T . If bi = 1 and σ∗i ∈ {1, . . . , N} then
T hands M∗σi∗ to R̂′. If bi = 0 then T hands ⊥ to R̂′. After the kth transfer the
output of the experiment is (Sk, Rk).

3 Indeed, a multi-receiver definition is necessary to achieve consistency with the obliv-
ious access control schemes of Coull et al. [15] and Camenisch et al. [8].

4 As in [10], we do not explicitly specify auxiliary input to the parties; this information
can (and indeed must) be provided in order to achieve sequential composition.



Let `(·) be a polynomially-bounded function. We now define Sender and Receiver
security.

Sender Security. An OTNk×1 provides Sender security if for every real-world
p.p.t. receiver R̂ there exists a p.p.t. ideal-world receiver R̂′ such that ∀N = `(κ),
k ∈ [1, N ], (M1, . . . ,MN ), Σ, and every p.p.t. distinguisher:

RealS,R̂(N, k,M1, . . . ,MN , Σ)
c
≈ IdealS′,R̂′(N, k,M1, . . . ,MN , Σ).

Receiver Security. OTNk×1 provides Receiver security if for every real-world
p.p.t. sender Ŝ there exists a p.p.t. ideal-world sender Ŝ′ such that ∀N = `(κ),
k ∈ [1, N ], (M1, . . . ,MN ), Σ, and every p.p.t. distinguisher:

RealŜ,R(N, k,M1, . . . ,MN , Σ)
c
≈ IdealŜ′,R′(N, k,M1, . . . ,MN , Σ).

3.2 The Construction

Our OTNk×1 protocol appears in Figure 2. This protocol follows the assisted (or
blind) decryption paradigm pioneered by [10, 22, 27]. The Sender begins the OT
protocol by encrypting each message in the database and publishing these values
to the Receiver. The Receiver then checks that each ciphertext is well-formed. For
each of k transfers, the two parties co-operatively execute a protocol following
which (1) the Receiver obtains the decryption of at most one ciphertext, while
(2) the Sender learns nothing about which ciphertext was decrypted. We require
that the interactive decryption protocol run in time independent of the size of
the database.

The encryption scheme that we use is a novel combination of the Boneh-
Boyen IBE scheme [2] and a (insecure) version of the Hohenberger-Waters sig-
natures [26]. We present methods for proving knowledge of such signatures and
obtaining a blind decryption. Of course, in an adaptive OT scheme, the difficulty
is always in getting all elements of the fully-simulatable proof of security to work
out. There are many subtle details in basing the security for any database of size
N under the one simple assumption that given (g, ga, gb, gc), it is hard to decide
if Q = gabc.

Ciphertext Structure. In Figure 2, we reference a VerifyCiphertext algorithm
for verifying the well-formedness of a ciphertext. Let us explain that now. The
Sender’s public parameters pk include γ = (p, g,G,GT , e) and generators (g1, g2,
h, g3, g4, u, v, d) ∈ G8. For message M ∈ GT , identity j ∈ Zp, and random values
r, s, t ∈ Zp we can express a ciphertext as:

C =
(
gr, (gj1h)r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s

)
Given only pk , j, the VerifyCiphertext function validates that the ciphertext has
this structure. We define it as follows.



VerifyCiphertext(pk , C, j). Parse C as (c1, . . . , c7) and pk to obtain g, g1, h, g3, g4,
u, v, d. This routine outputs 1 if and only if the following equalities hold:

e(gj1h, c1) = e (g, c2) ∧
e (g, c6) = e (c1, u) ∧
e (g, c5) = e (g4, c6vc7d) e(c4, g

j
3h)

This function will always output 1 when input a properly-formed ciphertext.

SI(M1, . . . ,MN ) RI()

1. Select γ = (p, g,G,GT , e)← BMsetup(1κ) and a, b
$← Zp,

choose g2, g3, h, u, v, d
$← G and set g1 ← ga, g4 ← gb.

Let pk = (γ, g1, g2, g3, g4, h, u, v, d) and sk = (a, b).

2. For j = 1 to N , select rj , sj , tj
$← Zp and set:

Cj ← [grj , (gj1h)rj , Mje(g1, g2)rj , gtj , (urjvsjd)b(gj3h)tj , urj , sj ].
3. Send (pk , C1, . . . , CN ) to Receiver.
4. Conduct ZKPoK{(a) : g1 = ga}.

5. Verify pk and the proof.a

Check for j = 1 to N :
VerifyCiphertext(pk , Cj , j) = 1.

If any check fails, output ⊥.

Output S0 = (pk , sk). Output R0 = (pk , C1, . . . , CN ).

ST(Si−1) RT(Ri−1, σi)

1. Parse Cσi as (c1, . . . , c7), select x, y
$← Zp

and compute v1 ← gxc1.
2. Send v1 to Sender, and conduct:

WIPoK{(σi, x, c2, c4, c5, c6, c7) :
e(v1/g

x, (gσi1 h)) = e(c2, g) ∧
e(c6, g) = e(v1/g

x, u) ∧
e(c5, g) = e(c6v

c7d, g4)e(c4, g
σi
3 h)}.

3. Set R← e(v1, g
a
2 ).

4. Send R to Receiver and conduct:
ZKPoK{(a) : R = e(v1, g

a
2 ) ∧ g1 = ga}.

5. If the proof does not verify, output ⊥.

Else output M ′σi ←
c3·e(g1,g2)x

R
.

Output Si = Si−1. Output Ri = (Ri−1,M
′
σi).

a By verify pk , we mean check that γ contains parameters for a bilinear map,
where p is prime and g generates G with order p. Also, verify that the remaining
pk elements are members of G.

Fig. 2. Our adaptive OTNk×1 protocol. VerifyCiphertext is described above.



3.3 Security Analysis

We now show that the OTNk×1 protocol above is sender-secure and receiver-
secure in the full-simulation model under the Decisional 3-Party Diffie-Hellman
assumption (3DDH). We will address Sender and Receiver security separately.

A note on the PoK protocols. For generality, our security proofs use the terms
εZK , εWI to indicate the maximal advantage that every p.p.t. distinguisher has
in distinguishing simulated ZKPoKs from real ones (resp. WI proofs on different
witnesses). We additionally use εExt to indicate the maximum probability that
the extractor for a PoK fails (soundness). We propose to use four-round Schnorr
proofs which are zero-knowledge/WI (εWI = εZK = 0) and computationally
sound under the Discrete Logarithm assumption (which is naturally implied by
3DDH). Our security proofs employ the knowledge extractors for these proofs-
of-knowledge, which we will define as E1,E2,E3.5

Sender security. Given a (possibly cheating) real-world receiver R̂, we show
how to construct an ideal-world receiver R̂′ such that all p.p.t. distinguishers
have at most negligible advantage in distinguishing the distribution of an honest
real-world sender S interacting with R̂ (RealS,R̂) from that of R̂′ interacting with
the honest ideal-world sender S′ (IdealS′,R̂′). Let us now describe the operation
of R̂′, which runs R̂ internally, interacting with it in the role of the Sender:

1. To begin, R̂′ selects a random collection of messages M̄1, . . . , M̄N
$← GT and

follows the SI algorithm (from Figure 2) with these as input up to the point
where it obtains (pk , C1, . . . , CN ).

2. It sends (pk , C1, . . . , CN ) to R̂ and then simulates the interactive proof
ZKPoK{(a) : g1 = ga}. (Even though R̂′ knows sk = a, it ignores this
value and simulate this proof step.)

3. For each of k transfers initiated by R̂,
(a) R̂′ verifies the received WIPoK and uses the knowledge extractor E2 to

obtain the values σi, x, y, c1, c2, c3, c4 from it. R̂′ aborts and outputs error
when E2 fails.

(b) When σi ∈ [1, N ], R̂′ queries the trusted party T to obtain Mσi , parses
Cσi as (c1, . . . , c7) and responds with R = c3e(g1,g2)

x

Mσi
(if T returns ⊥, R̂′

aborts the transfer). When σi /∈ [1, N ], R̂′ follows the normal protocol.
In both cases, R̂′ simulates ZKPoK{(a) : R = e(v1, ga2 ) ∧ g1 = ga}.

4. R̂′ uses R̂’s output as its own.

Theorem 2. Let εZK be the maximum advantage with which any p.p.t. algo-
rithm distinguishes a simulated ZKPoK, and εExt be the maximum probability
that the extractor E2 fails (with εZK and εExt both negligible in κ). If all p.p.t.

5 These correspond respectively to the proofs ZKPoK{(a) : g1 = ga},
WIPoK{(σi, x, y, z, c4, c5, c6, c7) : . . . }, and ZKPoK{(a) : R = e(v1, g

a
2 )∧g1 = ga}.



algorithms have negligible advantage ≤ ε at solving the 3DDH problem, then:

Pr
[
D(RealS,R̂(N, k,M1, . . . ,MN , Σ)) = 1

]
−

Pr
[
D(IdealS′,R̂′(N, k,M1, . . . ,MN , Σ)) = 1

]
≤

(k + 1)εZK + kεExt +Nε

(
1 +

p

p− 1

)
.

A proof of Theorem 2 is sketched in Appendix A.1 and detailed in [23].

Receiver Security. For any real-world cheating sender Ŝ we can construct an
ideal-world sender Ŝ′ such that all p.p.t. distinguishers have negligible advantage
at distinguishing the distribution of the real and ideal experiments. Let us now
describe the operation of Ŝ′, which runs Ŝ internally, interacting with it in the
role of the Receiver.

1. To begin, Ŝ′ runs the RI algorithm, with the following modification: when
Ŝ proves knowledge of a, Ŝ′ uses the knowledge extractor E1 to extract a,
outputting error if the extractor fails. Otherwise, it has obtained the values
(pk , C1, . . . , CN ).

2. For i = 1 to N , Ŝ′ decrypts each of Ŝ’s ciphertexts C1, . . . , CN using the
value a as a decryption key,6 and sends the resulting M∗1 , . . . ,M

∗
N to the

trusted party T .
3. Whenever T indicates to Ŝ′ that a transfer has been initiated, Ŝ′ runs the

transfer protocol with Ŝ on the fixed index 1. If the transfer succeeds, Ŝ′

returns the bit 1 (indicating success) to T , or 0 otherwise.
4. Ŝ′ uses Ŝ’s output as its own.

Theorem 3. Let εWI be the maximum advantage that any p.p.t. algorithm has
at distinguishing a WIPoK, and let εExt be the maximum probability that the
extractor E1 fails. Then ∀ p.p.t. D:

Pr
[
D(RealŜ,R(N, k,M1, . . . ,MN , Σ)) = 1

]
−

Pr
[
D(IdealŜ′,R′(N, k,M1, . . . ,MN , Σ)) = 1

]
≤ (k + 1)εExt + kεWI .

A proof of Theorem 3 is sketched in Appendix A.2 and detailed in [23].

4 Efficiently Supporting Multiple Receivers

Adaptive Oblivious Transfer (OTNk×1) is traditionally defined as a protocol be-
tween a Sender and a single Receiver. However, the way it is typically used in

6 Parse Ci as (c1, . . . , c7) and decrypt as M∗i = c3/e(c1, g
a
2 ). As noted in Section 4,

one can modify the protocol so that the Sender conducts a PoK of the value ga2 .



practical works such as Coull et al. [15] and Camenisch et al. [8] is that U ≥ 1
distinct Receivers all interact with a single Sender.

Extending the full simulation definition to cover this explicitly is rather
straightforward. We do so in the full version [23]. The main technical concern is
that every Receiver should have the same view of the database. That is, if two
Receivers make a request on index i and neither transfer resulted in an error,
then those Receivers must have obtained the same message. In [23] we explain
why our construction would satisfy such a notion – namely, that all Receivers
share the same database and a Receiver does not accept a message unless the
Sender can prove that it correctly corresponds to this database. For simplicity,
we assume secure channels for the transfer phase.

Eliminating the O(λU) term. Interestingly, we can also improve the effi-
ciency of our initialization protocol when multiple Receivers are present. In the
current protocol of Figure 2, the Sender must conduct the proof of knowledge
ZKPoK{(a) : g1 = ga} with each Receiver. This can be accomplished using a
very inexpensive interactive four-round proof in the standard model.

Fortunately even this minimal per-user initialization can be eliminated by
assuming a Common Reference String shared by the Sender and all Receivers
and using an NIZKPoK to broadcast this proof to all Receivers. To instanti-
ate this proof, we suggest the efficient proof system of Groth and Sahai [24],
which permits proofs of pairing-based statements under the Decision Linear as-
sumption [4]. One wrinkle in this approach is that our proof of Receiver security
assumes that the simulator can extract the trapdoor a ∈ Zp from the ZKPoK,
in order to decrypt the ciphertext vector C1, . . . , CN . However, the knowledge
extractor for the Groth-Sahai proof system is limited in that it can only ex-
tract elements of the bilinear image group G. Fortunately for our purposes, the
value ga2 ∈ G can be used as an alternative trapdoor (see Section 3.3 for de-
tails). Thus when using the Groth-Sahai system we must re-write the proof as
NIZKPoK{(ga2 ) : e(g1, g2) = e(ga2 , g)}.7

5 Conclusions and Open Problems

We presented the first efficient, adaptive oblivious transfer protocol which is
fully-simulatable under simple, static assumptions. Our protocol is practical and
can be used as a building block in larger database applications, such as [15, 36,
8], as a step to reducing the overall assumptions on the system.

We leave open several interesting problems. First, we use standard zero-
knowledge proof and extraction techniques which require rewinding, and thus,
our scheme is not UC-secure. A natural question is whether one can obtain UC-
security by replacing our interactive proofs with the non-interactive Groth-Sahai
proofs [24]. Unfortunately, this is not an easy substitution. Our security proofs

7 As mentioned by Groth and Sahai, statements of this form must be slightly re-
written to enable full zero knowledge. The equivalent statement is ZKPoK{(ga2 , g′1) :
e(ga2 , g)e(g′1, g

−1
2 ) = 1 ∧ e(g′1, g) = e(g1, g)}.



use techniques from the Boneh-Boyen cryptosystem that depend fundamentally
on the ability to extract integers from the Receiver’s proof of knowledge during
the Transfer phase. The Groth-Sahai proof system is only F -extractable, mean-
ing that one can obtain only group elements from the extractor (even when the
proof is over integer witnesses). One can easily substitute a bit-by-bit proof of
each integer, but we would hope to identify a more practical approach.

It would be interesting to know if the observations about and manipulations
of the Hohenberger-Waters signatures [26] identified in this work could be ex-
tended to applications such as anonymous credentials and electronic cash, where
most efficient constructions still require random oracles or strong complexity as-
sumptions. One of the main difficulties is that many interesting protocols require
an F -signature together with an efficient range proof (i.e., method for proving in
zero-knowledge that a committed value lies within a public range.) Currently, the
only efficient techniques for doing the latter require either the Strong RSA as-
sumption [13, 9, 6] or (more recently) the q-Strong Diffie-Hellman assumption [7,
12]. (Here q need only be linked to a security parameter, e.g., q = 256.) It would
be interesting if range proofs under weaker assumptions could be devised.
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A Proof Sketches of Sender and Receiver Security

Complete proofs of sender and receiver security appear in the full version [23].

A.1 Proof Sketch of Sender Security (Theorem 2)

Proof. We will begin with RealS,R̂, then modify the distribution via a series
of hybrid games until we arrive at a distribution identical to that of IdealS′,R̂′ .
Let us define these hybrids as follows:

Game 0. The real-world experiment conducted between S and R̂ (RealS,R̂).
Game 1. This game modifies Game 0 as follows: (1) each of S’s ZKPoK exe-
cutions is replaced with a simulated proof of the same statement,8 and (2) the
knowledge extractor E2 is used to obtain the values (σi, x, y, z, c̄4, c̄5, c̄6, c̄7)
from each of R̂’s transfer queries. Whenever the extractor fails, S terminates
the experiment and outputs the distinguished symbol error.
Game 2. This game modifies Game 1 such that, whenever the extracted
value σi ∈ [1, N ], S’s response R is computed using the following approach:
parse Cσi = (c1, . . . , c7) and set R = c3e(g1,g2)

x

Mσi
. When σi /∈ [1, N ], the

response is computed using the normal protocol.

8 This includes at most k+1 PoK executions, including the initial ZKPoK{(a) : g1 =
ga} and each subsequent proof ZKPoK{(a) : R = e(v1, g

a
2 ) ∧ g1 = ga}.



Game 3. This game modifies Game 2 by replacing the input to SI with
a dummy vector of random messages M̄1, . . . , M̄N ∈ GT . However when S
computes a response value using the technique of Game 2, the response
is based on the original message vector M1, . . . ,MN . We claim that the
distribution of this game is equivalent to that of IdealS′,R̂′ .

Let us now consider the following Lemmas. For notational convenience, define:

Adv [ Game i ] = Pr [D(Game i) = 1 ]−Pr [D(Game 0) = 1 ].

Lemma 1. If all p.p.t. algorithms D distinguish a simulated ZKPoK with ad-
vantage at most εZK and the extractor E2 fails with probability at most εExt,
then Adv [ Game 1 ] ≤ (k + 1) · εZK + k · εExt.
Lemma 2. If no p.p.t. algorithm has advantage > ε in solving the 3DDH prob-
lem, then

Adv [ Game 2 ]−Adv [ Game 1 ] ≤ Np

p− 1
· ε.

Lemma 3. If no p.p.t adversary has advantage > ε at solving the 3DDH prob-
lem, then

Adv [ Game 3 ]−Adv [ Game 2 ] ≤ N · ε.

Proof of the above lemmas is in [23]. By summing over hybrids Game 0 to
Game 3, we obtain Adv [ Game 3 ] ≤ (k + 1)εZK + kεExt +Nε(1 + p

p−1 ). For
the Schnorr proofs we use, εZK = 0. This concludes the proof of Sender security.

A.2 Proof Sketch of Receiver Security (Theorem 3)

Proof. We again arrive at the ideal-world sender via a series of hybrid games:

Game 0. The real-world experiment conducted between Ŝ and R (RealŜ,R).
Game 1. A modification of Game 0 in which R applies the knowledge ex-
tractor E1 to Ŝ’s proof ZKPoK{a : g1 = ga}. If this extraction fails, R aborts
and outputs ⊥. Further, for transfers i = 1 through k, R uses the knowledge
extractor E3 on Ŝ’s proof ZKPoK{(a) : R = e(v1, ga2 ) ∧ g1 = ga} to extract
the values a, aborting if the extractor fails (or returns inconsistent values).
Game 2. For transfer i = 1 to k, modify R’s request such that σi = 1. The
distribution of this game is identical to that of IdealŜ′,R′ .

Lemma 4. If the extractor E1 and E3 fail with probability at most εExt, then
Adv [ Game 1 ] ≤ (k + 1)εExt.

Lemma 5. If the Receiver’s WIPoK is distinguishable with maximum advantage
εWI , then

Adv [ Game 2 ]−Adv [ Game 1 ] =≤ k · εWI .

Proof of the above lemmas is in [23]. Summing the differences, we have

Adv [ Game 2 ]−Adv [ Game 0 ] = (k + 1)εExt + kεWI .

For the Schnorr proofs we use, εWI = 0. This concludes the proof of Receiver
security.


