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Abstract. We show how to achieve public-key encryption schemes that
can securely encrypt nonlinear functions of their own secret key. Specif-
ically, we show that for any constant d € N, there exists a public-key
encryption scheme that can securely encrypt any function f of its own
secret key, assuming f can be expressed as a polynomial of total degree d.
Such a scheme is said to be key-dependent message (KDM) secure w.r.t.
degree-d polynomials. We also show that for any constants c, e, there ex-
ists a public-key encryption scheme that is KDM secure w.r.t. all Turing
machines with description size clog A and running time \°, where A is
the security parameter. The security of such public-key schemes can be
based either on the standard decision Diffie-Hellman (DDH) assumption
or on the learning with errors (LWE) assumption (with certain parame-
ters settings).

In the case of functions that can be expressed as degree-d polynomials,
we show that the resulting schemes are also secure with respect to key
cycles of any length. Specifically, for any polynomial number n of key
pairs, our schemes can securely encrypt a degree-d polynomial whose
variables are the collection of coordinates of all n secret keys. Prior to
this work, it was not known how to achieve this for nonlinear functions.
Our key idea is a general transformation that amplifies KDM security.
The transformation takes an encryption scheme that is KDM secure
w.r.t. some functions even when the secret keys are weak (i.e. chosen from
an arbitrary distribution with entropy k), and outputs a scheme that is
KDM secure w.r.t. a richer class of functions. The resulting scheme may
no longer be secure with weak keys. Thus, in some sense, this transfor-
mation converts security with weak keys into amplified KDM security.

1 Introduction

Secure encryption is one of the most fundamental tasks in cryptography, and sig-
nificant work has gone into defining and attaining it. In many classical notions
of secure encryption, it is assumed that the plaintext messages to be encrypted
are independent of the secret decryption keys. However, over the years, it was
observed that in some situations the plaintext messages do depend on the se-
cret keys. This more demanding setting, termed key-dependent message security



(KDM security) by Black, Rogoway and Shrimpton [7], has received much at-
tention in recent years [12, 1, 21, 19, 5, 4, 20, 8, 17, 11, 3, 6, 9].
KDM security w.r.t. a class F of efficiently computable functions is modeled

as follows.* An adversary is given public keys pky,...,pk, and can access an
oracle O that upon receiving a query (i, f), where f is a function in the class F,
and i € [n] is an index, returns an encryption of f(sky, ..., sk,) under the public

key pk;. The scheme is KDM™ secure w.r.t. F, where n is the number of public
keys, if the adversary cannot distinguish between the oracle O and an oracle
that always returns an encryption of (say) the all-zero string. In particular, in
KDM™ security, the adversary is given a single public key pk and can ask for
encryptions (under pk) of functions of the corresponding secret key sk.

Starting with the breakthrough work of Boneh, Halevi, Hamburg and Ostro-
vsky [8] and continuing with the work of Applebaum, Cash, Peikert and Sahai [3],
it is known how to achieve KDM security under a variety of computational as-
sumptions. However, the above works achieve security only w.r.t. affine functions
of the secret key, leaving unanswered the question of achieving security w.r.t.
richer classes of functions.

The motivation to explore beyond affine functions is a straightforward exten-
sion of that provided in [8]: Assume a secret key is stored on a hard drive which
is being encrypted as a part of a backup process. The encrypted contents thus
depend on the secret key in a way that may not necessarily be affine (conditioned
on the file type and the file system used).

Heitner and Holenstein [17] gave impossibility results with regards to black-
box constructions of KDM®-secure encryption (even in the symmetric case).
They showed that KDMW security w.r.t. poly-wise independent functions is not
black-box reducible to one-way trapdoor permutations, and also that KDMW
security w.r.t. all functions is not black-box reducible to essentially any crypto-
graphic assumption.

In a work independent and concurrent to ours, Barak, Haitner, Hofheinz and
Ishai [6] show how to overcome the latter black-box separation of [17]. They give
a very strong positive result, showing that for any polynomial p there exists a
KDM M _secure schemes w.r.t. all functions computable by circuits of size at most
p, based on either the DDH or LWE assumptions. They also achieve KDM™
security at the cost of having the ciphertext length depend on the number of users
n. Altogether, our work and theirs are complementary and achieve incomparable
results. See a detailed comparison at the end of Section 1.1 below.

1.1 Owur Results

We provide a general transformation that amplifies KDM security. Throughout
this work, we restrict our attention to public-key encryption schemes in which the
key-generation algorithm works by first sampling a secret key and then applying

4 We define KDM security in the public-key setting since this is the focus of this work.
A similar definition can be provided for the symmetric setting.



some, possibly randomized, function to produce the public key. Many known en-
cryption schemes have this property, e.g. [26, 14, 24, 8, 3] and others. We say that
an encryption scheme is entropy-k KDM-secure if it is KDM-secure even when
the secret key is sampled from an arbitrary distribution with min-entropy k,
and the computation of the public key is performed with perfect randomness.’
Our transformation starts with an encryption scheme £ = (G, E, D) that is
entropy-k KDM-secure w.r.t. some class of functions F , and converts it into
another scheme £* = (G*, E*, D*), which is KDM™ secure w.r.t. a larger class
of functions F’.

Theorem 1.1 (informal). Let £ = (G, E, D) be a public-key encryption scheme
that is entropy-k KDM™ -secure w.r.t. a function class F. Let S denote the space
of the secret keys of £, and let K be any set of size at least 2°. Then for every
deterministic, efficiently computable and injective mapping o : K — S there
exists an encryption scheme £ = (G*, E*, D*), whose secret key, sk™, is cho-

sen at random from K, such that X is KDM™ secure w.r.t. the function class
F'=Foa={(foa)(sk],...,sk;) = fla(sk]),...,a(sky)) : f € F}.

For example, one can think of a(sk) as the vector of all monomials of degree d;
namely, o(z1,...,2x) = ([[;c; i) 1j<a, where sk = (z1,...,25) € {0,1}*. An-
other example is where a(sk) is the vector of all Turing machines with description
length O(log k) and running time at most ¢ (for some polynomial t), applied to
sk. Namely, a(sk) = (M(sk)) s, where M is a Turing machine with description
length O(log k) that runs for at most ¢ steps on sk.

In the first example, if F is the class of all linear functions, then ' = Foa is
the class of all degree < d polynomials. In the the second example, if F contains
the identity function, then 7' = F o « contains all the Turing machines with
description length O(log k) and running time at most ¢.

We emphasize that in Theorem 1.1, we start with a scheme £ that is entropy-
k KDM ™ _secure w.r.t. a function class F, and end up with a scheme £} that is
not necessarily entropy-k secure anymore. However, it is KDM™_secure w.r.t.
a (supposedly richer) function class F'. Therefore this theorem gives a way to
convert security with weak keys, into enhanced KDM security, thus showing a
formal connection between the two notions.® Another connection between these
notions in the symmetric encryption case, was shown by Canetti et. al. [13], in
the context of obfuscation of multi-bit point functions: Loosely speaking, they
show that an encryption scheme that is entropy-k KDM-secure implies a multi-
bit point obfuscators, and vice versa. However, showing a direct implication
between the notions (or showing that one does not exist) remains an interesting
open problem.

5 This notion is different from security with key-leakage, where the leakage may depend
on the public key.

5 We stress that our reduction does not yield that leakage resiliency by itself implies
KDM security; rather, we show that leakage resiliency on top of KDM security
enables amplifying the KDM security property.



We apply Theorem 1.1 to the schemes of [8] and [3] to obtain Theorems 1.2
and 1.3, respectively, presented below. In order to do that, we will argue that
these schemes (or rather, a slight modification thereof) are entropy-k KDM M-
secure. In what follows, A denotes the security parameter.

Theorem 1.2 (informal). Assume the DDH assumption in a group G of or-
der q, and let g be any generator of G. Then, for any class H = {hi,...,hy :
h; € {0,1}F — {0,1}} of poly(\)-time computable functions, with cardinality
£ = poly(\), there exists a KDMW _secure encryption scheme w.r.t. the class of
functions

Fn = {f(g") = gz hiCITe 5 € 10, 1}F, (b, w) € ZE x Zq} .

In this scheme, the secret key is a vector in G* whose i coordinate is g% €
{1,¢9}. Theorem 1.2 is obtained by applying Theorem 1.1 to the public-key en-
cryption scheme of [8], which is KDM secure w.r.t. affine functions in the expo-
nent, using the mapping a(g¥) = (g™, ..., gh®).

In particular, taking H to be the class of all degree-d monomials, we show
that for any constant d € N, there exists a public-key encryption scheme that is
KDM-secure w.r.t. all polynomials of total degree d (in the exponent). This is
because degree-d polynomials over k variables can be viewed as affine functions
applied to the vector of degree-d monomials. A different selection of H implies
that for any polynomial ¢, there exists a public-key scheme that is KDM W _secure
w.r.t. all Turing machines of description length bounded by logt¢ and running
time bounded by ¢.7

Theorem 1.3 (informal). Under the LWE assumption with modulus q = p?,
for a prime p, for any class H = {h,...,he: h; € {0,1}F — {0,1}} of poly()\)-
time computable functions, with cardinality ¢ = poly(X), there exists a KDMW -
secure encryption scheme w.r.t. the class of functions

Fn = {f(x) = %;]tihi(x) +w (mod p): (t,w) € Zf x Zp} )

The secret key space in this scheme is {0, 1}¥. The result is obtained by applying
Theorem 1.1 to (a variant of) the public-key encryption scheme of [3], which is
KDM secure w.r.t. affine functions, using the mapping a(x) = (h1(x), . .., he(x)).

In a similar manner to the DDH based result, appropriate selections of H
imply a KDM-secure scheme w.r.t. all polynomials of total degree d and a
KDM®-secure scheme w.r.t. all Turing machines of description length bounded
by logt and running time bounded by ¢, for ¢ = poly()\).

This ability, to tailor an encryption scheme to the required set of functions,
can be useful when, as a part of a cryptographic protocol, encryptions of certain
functions of the secret key need to be transmitted.

" Bear in mind that any uniform function can be represented by a Turing machine
of constant description. This means that for any uniform function f (computable in
time t), our scheme becomes secure asymptotically with the security parameter.



We are able to extend the above results, using additional techniques (The-
orem 1.1 will not suffice), and show that for the case of degree-d polynomials,
both schemes obtained above are in fact KDM(")—secure, based on their respec-
tive assumptions. These results are stated in the theorems below.

Theorem 1.4 (informal). Under the DDH assumption, for any constant d €
N, there exists a public-key encryption scheme that is KDM™ _secure w.r.t.
degree-d polynomials in the exponent, for any n = poly(\).

Theorem 1.5 (informal). Under the LWE assumption, for any constant d €
N, there exists a public-key encryption scheme that is KDM™ _secure w.r.t.
degree-d polynomials, for any n = poly(\).

Additional Uses for Our Amplification Theorem. While Theorem 1.1 is stated in
terms of public-key encryption, it in fact also works, in a straightforward manner,
for other primitives such as symmetric encryption or pseudo-random functions
(under an appropriate adaptation of the definitions of KDM and entropy-k se-
curity). In this paper, though, we focus on public-key encryption.

One could also consider applying the theorem to the OAEP (i.e. random
oracle) based scheme of Backes, Diirmuth and Unruh [4]. However, in order to
do that, entropy-k secure one-way trapdoor functions are required. Such are
currently not known to exist, to the best of our knowledge, and thus we do not
elaborate on this scheme.

Comparison With [6]. As mentioned above, a recent independent work of [6]
achieves KDM security for a very rich class of functions: the class of functions
computable by circuits of polynomial size p (the polynomial p affects the pa-
rameters of the scheme as we explain below). Their main technique is a non
black-box use of the functions in the class, resulting in the ciphertext’s contain-
ing a garbled circuit corresponding to a size-p circuit. Our implementation, in
contrast, makes black-box use of the functions and does not require garbled cir-
cuits. The downside is that the size of the function class has to be limited (as
demonstrated by the negative result of [17]). Another difference is that in the
KDM™ scheme of [6], the ciphertext size depends on n, unlike our schemes.
We also note that while the [6] framework applies only for public-key encryp-
tion, ours can be applied to symmetric encryption as well as other primitives.

1.2 Our Techniques

Let us present the intuition behind the KDM amplification theorem (Theo-
rem 1.1). Given an encryption scheme £ that is entropy-k KDM™-secure w.r.t.
a function class F, we construct the encryption scheme £* as follows: The key
generation algorithm G*, rather than choosing the secret key from S, chooses
sk & K, and sets pk to be the public key corresponding to the secret key a(sk).
As an example, one can think of K = {0,1}*, S = {0, 1} where ¢ = Zg:o (lf),

and «(sk) is the vector of all monomials of degree d; namely, a(z1,...,z5) =



(ITics ®i)j11<a> where sk = (z1,...,25) € {0,1}*. Another example is where
K ={0,1}*, S = {0,1}*°Y(*) and a(sk) as being the vector of all Turing ma-
chines with description length O(logk) and running time at most ¢ (for some
polynomial t), applied to sk. Namely, a(sk) = (M(sk)) s, where M is a Turing
machine with description length O(log k) that runs for at most ¢ steps on sk.

The encryption algorithm E* is identical to E. The decryption algorithm D*
takes the secret key sk, computes «(sk), and decrypts the ciphertext by applying
the decryption algorithm D with the secret key a(sk).®

We next exemplify why the scheme £* has amplified KDM security. Assume,
for example, that £ was entropy-k KDMW secure w.r.t. all affine functions.
Consider, as in the example above, a(sk) that is the vector of all monomials of
degree d. Then £* is still secure, because it applies the scheme £ with a weak
secret key of min-entropy k. Moreover, the fact that £ is entropy-k KDMW-
secure w.r.t. all affine functions, implies that the scheme £* is secure w.r.t.
all affine functions of a(sk), i.e. all degree d polynomials of sk. Similarly, if
a(sk) is the vector of all Turing machines with description length O(log k) and
with running time at most ¢, applied to sk, then £* is KDM™ secure w.r.t. all
functions computed by these Turing machines.

Thus, Theorem 1.1 provides us with a generic tool to amplify KDM security
of schemes that are entropy-k KDM-secure to begin with. However, the question
that remains is: Do there exist entropy-k KDM-secure schemes?

KDM® Security. [8, 3] presented encryption schemes that are KDM M _secure
w.r.t. some classes of functions. We argue that these schemes are in fact entropy-
k KDM® _secure (for some setting of parameters). This enables us to apply
Theorem 1.1 and amplify KDM™ security “for free”. Specifically, this implies
KDM W _secure schemes w.r.t. degree-d polynomials or bounded description and
bounded running time Turing machines.

KDM™ security. Two problems arise when trying to utilize Theorem 1.1 to ob-
tain KDM(™) security. First, a direct application of Theorem 1.1 may not produce
the strongest result. Consider, for example, the case of bounded degree polyno-
mials. Even if we had a scheme that was entropy-k KDM ™ _secure w.r.t. affine
functions, Theorem 1.1 would only imply a scheme that is KDM™_secure w.r.t.
bounded-degree polynomials where each monomial only contains variables of the
same secret key. Second, we are not able to show entropy-k KDM ™ security for
any scheme and therefore cannot satisfy the conditions of the theorem.

To obtain Theorems 1.4 and 1.5, therefore, additional ideas are required.
Rather than applying Theorem 1.1 directly for KDM(”)7 we consider the schemes
obtained by Theorems 1.2 and 1.3 for the specific case where H is the class of

8 We must require that « is deterministic so that a(sk) evaluates to the same value at
each invocation (and thus is consistent with pk). It is interesting to explore whether
similar techniques can be used when « is a randomized mapping (and thus can even
increase the entropy of a(sk) compared to sk).



all degree-d monomials. We then show that these schemes are not only KDM M-
secure w.r.t. degree-d polynomials, but are also KDM ™ _gecure w.r.t. the same
class. We emphasize that monomials can contain variables from all secret keys
in the system. This part contains the bulk of technical difficulty of this work.

While the proof for each scheme requires special treatment, the crux of the
idea in both cases is similar. We use the “linear” behavior exhibited by both un-
derlying schemes (in the DDH-based scheme, linearity is in the exponent) which
enables the following form of homomorphism: starting from a single public key,
that corresponds to a secret key sk, it is possible to generate a public key that
corresponds to a linearly-related secret key. This is done without knowing the
original secret key sk, only the (linear) relation. We need to be careful in utiliz-
ing this property: as it turns out (and hinted by the intuition of Theorem 1.1
provided above), we need to apply this homomorphism on secret keys whose
coordinates are low-degree monomials. Therefore we cannot use arbitrary linear
transformations to “switch” between secret keys. We solve this problem by pre-
senting a class of linear transformations that do preserve the structure of the
input secret key.

1.3 Other Related Works and Notions

One can consider an “entropy-k” variant for any security measure for public-
key encryption, analogously to our definition of entropy-k KDM security; i.e.,
requiring that the scheme remains secure, in the relative measure, even when
the secret key is sampled from an arbitrary entropy-k distribution. This notion
is incomparable to that of key-leakage resilience, defined by Akavia, Goldwasser
and Vaikuntanathan [2]. On the one hand, the notion of entropy-k security is
weaker since imperfect randomness is only used to generate the secret key, while
the computation of the corresponding public key uses perfect randomness. On the
other hand, key-leakage resilience is weaker since it requires security to hold, with
high probability, over some family of distributions, whereas entropy-k security
requires security to hold for all high min-entropy distributions.

In this work, we restructure the secret key of a public-key encryption scheme
in order to achieve additional properties. Previous works also used a key distri-
bution other than the obvious one to obtain stronger results. In the KDM-secure
scheme of [8], binary vectors in the exponent of a group generator are used as
secret keys, instead of the more natural selection of vectors in Z4. This is done
in order to achieve KDM security w.r.t. the desired function class. In [22], the
secret key distribution of the [8] scheme is again modified, this time using vectors
of higher dimension than required, thus achieving security against key-leakage.
The KDM-secure public-key scheme of [3] is very similar to that of [24], with
one of the changes being that the secret key distribution is selected from a nar-
row Gaussian rather than being uniform. This is done, again, in order for KDM
security to apply w.r.t. the desired set of functions.

In a followup work, Brakerski and Goldwasser [9] present a KDM (and mem-
ory leakage resilient) secure scheme based on the quadratic residuosity assump-



tion. They then use our techniques to amplify the KDM security of their scheme
by showing that it is entropy-k KDM secure.

1.4 Paper Organization

We provide notation and standard definitions in Section 2, new definitions and
tools appear in Section 3. The KDM amplification theorem (Theorem 1.1) is
formally restated and proven in Section 4, with examples of applying it to specific
function classes. Due to space limitations, we omit the discussion of our DDH
based solution and refer the reader to the full version [10] for the full details.
Our LWE based construction appears in Section 5, where Theorems 1.3 and 1.5
are formally restated. Many proofs are omitted, see full version [10].

2 Notation and Definitions

We denote scalars in plain lowercase (z € {0,1}), vectors in bold lowercase
(x € {0,1}*) and matrices in bold uppercase (X € {0, 1}***). All vectors are
column vectors by default. The i*" coordinate of x is denoted z;. For a set I, we
use x = (z;);er to denote a vector that is indexed by elements in I.

Vectors in {0,1}* are treated both as elements in Z’; (for an appropriately
defined ¢ € N) and as elements in Z5. We use standard arithmetic notation for
arithmetics over Z’; and use XDy to denote the addition in Z§ (i.e. bitwise XOR
operation).

Let X be a probability distribution. We write <~ X to indicate that z is
sampled from X. X™ denotes the n-fold product distribution of X. The uniform
distribution over a set S is denoted U(S) but we also denote z <~ S to abbreviate
z & U(S). The min entropy of a random variable X is denoted Hy, (X). For any
function f, f(X) denotes the random variable (or corresponding distribution)
obtained by sampling z <~ X and outputting f(x).

We write negl(n) to denote an arbitrary negligible function, i.e. one that
vanishes faster than the inverse of any polynomial.

The statistical distance between two distributions X, Y is denoted SD(X,Y).
Two ensembles { X, }n, {Ya}n are statistically indistinguishable if SD(X,,,Y,) =
negl(n), and are computationally indistinguishable if for every poly(n)-time ad-
versary A it holds that |Pr[A(X,,) = 1] — Pr[A(Y,) = 1]| = negl(n).

Let M be a deterministic Turing Machine. We use | M| to denote the descrip-
tion length of M and use execute(M, 1%, x) to denote the content of M’s output
tape after running on z for ¢ computation steps. Clearly execute(M, 1%, z) is
computable in time poly(|M|,t).

2.1 Learning with Errors (LWE)

We use the decisional version of the LWE ([24]) assumption. For any m,n,q € N
such that ¢ > 2, all functions of the security parameter A\, and any probabil-
ity distribution x on Z,, the LWE, ,, »,, assumption is that the distributions



(A, As+x) and (A, u) are computationally indistinguishable, where A & Zg ",
sizg,xix"l, uiZ;’L,

We remark that the search version of the assumption, where the challenge is
to find s, is equivalent to the decisional version, for prime ¢, under poly(q)-time
reductions. It is shown in [3] that this equivalence also holds for ¢ = p°, for
integer constant e and prime p, provided that x is a distribution over Z, that
produces an element in {—%, e prl} with all but negligible probability.

Worst-case to average-case reductions ([24, 23]) can be used to obtain a
connection between LWE instances and worst case lattice problems, for some
(Gaussian like) distribution .

Noise Distributions. In our construction, we use distributions that are derived
from Gaussians. For any o > 0, we denote D, (z) = e*”(m/")z/a, the (scaled)
density function of the one dimensional Gaussian distribution. For any ¢ € N
and o > 0 we define ¥, to be the distribution over Z, obtained by sampling

y < D, and outputting lg-y] (mod gq). We define Dzm , to be the distribution
over all x € Z™ such that Pr[x] is proportional to [[;c(,, Do(2:). We note that
this distribution is efficiently sampleable for any o > 0.

2.2 KDM Security

A public-key encryption scheme & = (G, E, D) is defined by its key generation,
encryption and decryption algorithms. The key generation algorithm G takes as
input the unary vector 1*, where X is called the security parameter of the scheme.
All other parameters of the scheme are parameterized by A. We let S = {S,}
denote the space of secret keys and M = { M} denote the message space of
the encryption scheme. We refer the reader to [15] for a formal definition of
encryption schemes and their security.

In the scenario of key-dependent messages, we wish to model the case where
functions of the secret key can be encrypted, and require that the resulting
ciphertexts are indistinguishable from encryptions of 0. We want our definition
to apply also for the case of “key cycles” where a function of one user’s secret key
is encrypted by another’s public key and vice versa. The most inclusive definition,
therefore, is parameterized by the number of users n and allows encrypting a
function of the entire vector of n secret keys under any of the corresponding
public keys (this is sometimes referred to as “clique security”). An additional
parameter to be considered is the set of functions of the secret key that we allow
to encrypt. We use the definition presented in [8].

Formally, let £ = (G, E, D) be a public key encryption scheme, n > 0 be an
integer, S = {Sia} be the space of secret keys, and let F = {F\} be a class of
functions such that Fy C S} — M.

We define the KDM(™ game, w.r.t. the function class F, played between a
challenger and an adversary A, as follows.

— Initialize. The challenger selects b < {0,1} and generates, for all i € [n],
key pairs (sk;, pk;) & G(1*). The challenger then sends {pk; }iem) to A.



— Query. The adversary makes queries of the form (i, f) € [n] x F. For each
query, the challenger computes y < f(sky,...,sk,) and sends the following

ciphertext to A.
o {Epki(g) ifbi 0

— Finish. A outputs a guess b’ € {0,1}.

Adversary A wins the game if b’ = b. The scheme is secure if the advantage
KDM ™ Adv[A, £](A) = |Pr]t/ = b] — 1/2| of any polynomial time A is negligible.
We use KDMgf) to denote KDM security w.r.t. the function class F.

3 New Definitions and Tools

3.1 Projective Encryption Schemes and Weak Keys

Projection. Throughout this paper, we only consider encryption schemes that
have a projection between the secret and public key. Namely, the key generation
can be described as first sampling the secret key from some set and then apply-
ing an efficiently computable projection function (which can be randomized) to
generate the public key.

Definition 3.1 (projection). Let £ = (G, E, D) be a public-key encryption
scheme. & is projective if G(1*) = (sk, pk = Proj(sk)) where sk < S and Proj(-)
is an efficiently computable (possibly randomized) function.

We remark that many known encryption schemes are indeed projective, e.g.
[26, 14, 24, 8, 3] and others. We further remark that any secure scheme can be
modified to be projective by using the randomness of the key generation as the
secret key. However such transformation does not preserve KDM security and
thus we will need to require projection explicitly.

Weak Keys and Entropy-k Security. We are also interested in a more specific
case where a (projective) scheme remains secure even when the key generation is
“improper”: the secret key is sampled from an arbitrary distribution on S that
has min-entropy k. The projection is then applied to the sampled value.

We can think of an “entropy-k variant” of any security notion o, we thus
provide a general definition. In this work, however, we instantiate this definition
with ¢ being KDM security.

Definition 3.2 (entropy-k security). Let £ = (G, E, D) be a projective public-
key encryption scheme and let o be some security notion. Consider a distribution
ensemble D = {Dy} over S = {Sx}. Let Gp denote the following key-generator:
Gp(1*) = (sk, Proj(sk)) where sk « D.

Let k : N — RT be some function. £ is entropy-k o-secure if for any ensemble
D with Hyo (D) > k() it holds that Ep(Gp, E, D) is o-secure.



We stress that entropy-k security, as defined above, is a notion incomparable
to that of key-leakage resilience (as defined in [2, 22]). On the one hand, the
notion of entropy-k security is weaker since imperfect randomness is only used
to generate the secret key, while the projection Proj(-) uses perfect randomness to
compute the corresponding public key. On the other hand, key-leakage resilience
is weaker since it requires security to hold with high probability over some family
of distributions, whereas entropy-k security requires security to hold for all high
min-entropy distributions.

3.2 Transformations on Expanded secret keys

Let ¢ be some modulus. The set of affine functions modulo ¢ on Z’; is
Fure = {frw(x) =tTx+w: (t,w) € Z’; x Zg} .

Degree-d polynomials over k variables can be viewed as affine functions ap-
plied to the vector of degree-d monomials. While we consider polynomials over
Z4, we only apply them to binary variables, x € {0,1}*. We define a mapping
Yk.q that maps x € {0, 1}* into the vector containing all monomials of degree d
of the variables of x.

Definition 3.3 (the vector of monomials «; ;). For all k,d € N and x €
{0,1}*, we define the vector of all degree-d monomials in x by

’Yk,d(x) = < ij>J£[k]7 ’

jeJ [7]<d
k
J
monomials, vy 4 : {0,1}% — {0,1}"*¢ is a mapping between vectors. We denote
its image by Io.q = {v;.a(x) : x € {0,1}*}.

In other words, letting viq = Z?:o( ) denote the number of such degree-d

It follows immediately from the definition that v, , is injective, since (v, 4(x)) (i} =
x;, and thus that |} 4] = 2k,

Intuitively, in the context of KDM security amplification, x is our “real”
secret key, whereas 7 4(x), the expanded version of x, is used as a “secret
key” for a scheme that is KDM-secure w.r.t. affine functions. This results in a
KDM-secure scheme w.r.t. degree-d polynomials.

We denote the set of all degree-d polynomials over Z, with binary variables
x € {0,1}* by

Fa={fe(x)=t" ApalX) it € Zf]} .
Note that v, ,(x)p = 1, i.e. the vector of monomials contains the empty mono-

mial that always evaluates to 1. Therefore there is no need for an additional free
term w as in the definition of affine functions.’

9 We remark, for the interested reader, that for our DDH based scheme, described in
the full version [10], we need to define the analogous sets of affine functions in the



The following lemma states that that given y € {0,1}*, we can efficiently
compute a matrix T € Z.** such that for all x € {0,1}* it holds that T -
Vi.a(X) = Vi a(xDy). We think of y as the known relation between secret keys
x and x @ y.r The transformation T allows us to convert the expanded version
of x to the expanded version of x @y, i.e. to convert v 4(x) into v, 4(x D y).
For proof of the lemma, see the full version [10].

Lemma 3.4. For all k,d,q € N such that ¢ > 2, there exists an efficiently
computable function Tiaq : {0,117 — Zf;xe, where { = vy, q, such that setting
T = Traq(y), for allx € {0,1}" it holds that T-v;, 4(x) = v, 4(xBy). Moreover
T is an involution, i.e. T? is the identity matriz.

4 Amplification of KDM Security

In this section we give a general result: We show that an entropy-k KDM-secure
scheme, w.r.t. a certain class of functions, can be converted into various schemes
that are KDM-secure w.r.t. richer classes. We start by stating the general result
in Section 4.1 and then, in Section 4.2, we present corollaries for specific classes
of functions.

4.1 Main Theorem

Before stating our theorem, let us give some intuition for how KDM security can
be amplified for projective entropy-k schemes (as defined in Section 3.1).
Consider, for example, a projective encryption scheme £ that is entropy-k
KDM-secure w.r.t. the class of indexing functions Z = {h;(s) = s;} or, in other
words, a bit by bit encryption of the secret key is secure. Entropy-k security in
particular means that we can sample the secret key sk = s € {0,1}¢ as follows:
first, sample the first k& bits uniformly, call this part x; then, set the remaining
bits of s to s; = fi(x), where {f;}i=x+1,..¢ is an arbitrary class of efficiently
computable deterministic functions. The resulting secret key distribution has
min-entropy k£ and thus & is still KDM-secure w.r.t. Z with the resulting secret
key distribution. Namely, £ is secure w.r.t. the functions h;(s) = s; = fi(x).
Therefore, we can convert £ into a scheme £* by setting the secret key in £* to
be x. This £* is KDM-secure w.r.t. indexing functions as well as the functions

{fitizks1,...0-

Theorem 1.1 (restated). Let £ = (G, E, D) be a projective public-key en-
cryption scheme that is entropy-k KDM ™ _secure w.r.t. a function class F. Let
S = {8)} be the space of secret keys.

exponent and degree-d polynomials in exponent over G*:
~ T
Fase = {hew(g7) = g* 71 (t,w) € Zy x Zg}
7 X t7 oy, x 0
Fa=A{he(g*) = g" "™t ez},

where G is a group of order ¢ and g is a generator of G.



Let K = {Kx} be a family of sets such that |[K| > 2% and let o : K — S be
a deterministic, efficiently computable and injective function. Then there exists
a projective encryption scheme £ = (G*, E*, D*) with secret key space K that
is KDM™ secure w.r.t. Foa = {(foa)(sky,...,sky) = fla(sky), ..., a(sky)) :
feF}.

Proof. Consider the ensemble D where D) = «(U(K,)) and consider the scheme
Ep = (Gp, E, D) as in Definition 3.2. £ is similar to £p with the following mod-
ifications. G*(1*) first samples sk* <~ K and then computes pk = Proj*(sk*) =
Proj(a(sk™)). Note that the distribution of the public keys is identical to that
of &p while the distributions of secret keys differ. The encryption E* is per-
formed identically to E. The decryption D},.(c) is performed by first computing
sk = a(sk™) and then outputting Dg(c).

Since « is injective, it holds that Hy, (D) > k, and thus by definition, £p is
KDM™-secure w.r.t. F.

We next show that for any adversary A* for the KDM™ game with £, there
exists an adversary A for the KDM ™ game with &p such that

KDM Y Adv[A, Ep](A) = KDMY Adv[A*, (N ,
completing the proof of the theorem. Our adversary A will simulate A* as follows.

— Initialize. Since the public key distributions of &p and £} are identical, A
forwards its input pky, ..., pk, to A*.

— Queries. When A* sends the query (i, f o @) € [n] x (F o «), A sends the
query (i, f).1° Let sk; denote the secret key corresponding to pk; in &,
then by definition sk; = «(sk}) is the secret key corresponding to pk; in
Ep. Therefore f(sky,...,sk,) = (foa)(sk],...,sk},), and A can forward the
answer to A*. Thus, A can simulate any query made by A* during the game.

— Finish. When A* returns ', A also terminates and returns the same b'.

Since A simulates A* exactly, it follows that A achieves the same advantage
in the KDM(™ game with £p as A* does with £, O

4.2 Exemplifying for Specific Function Classes

We demonstrate specific cases where Theorem 1.1 amplifies KDM security. We
restrict our attention to KDM™ security (see discussion below).

— Bounded description functions. We first show how to amplify the class of in-
dexing functions Z = {h;(s) = s;} into the class of all functions computable
by a Turing machine with bounded description length and bounded running
time. Let £ be an entropy-k KDMW-secure encryption scheme w.r.t. the
class of indexing functions, with message space M = {0,1} and secret key
space S = {0, 1}%. Let K = {0,1}* and a(x) = (execute(M, 1t(>‘),x)>‘M|Slog4

10 We represent f o o in such a way that enables to derive f.



where ¢(-) is some (fixed) polynomial. Then &%, defined in the proof of The-
orem 1.1, is KDMW-secure w.r.t. all functions computable by a Turing ma-
chine with description length log ¢ and running time #(\).!

— Bounded degree polynomials. We now show how to amplify the class of affine
functions into the class of bounded degree polynomials. Let £ be an entropy-k
KDM M -secure encryption scheme w.r.t. the class of affine functions F¢ — I,
with M =F and & C F’, for a finite field F. Let K = {0,1}* C F* and let

d be such that £ = v, q (see Definition 3.3), this implies that d is at least
log ¢
log(()l%+1) :

Then £, defined in the proof of Theorem 1.1, is KDM_secure w.r.t. all
degree-d polynomials F¥ — F.

Consider a(x) = 7y 4(x), i.e. a contains all degree d monomials.

We provided examples only for the case of KDMW security for two reasons.
First, while in Section 5.2 we present entropy-k KDM™W-secure schemes based
on the LWE assumption,'? we are unable to obtain entropy-k& KDM ™ -secure
schemes for n > 1. Second, even if such exist, the result of applying Theorem 1.1
for the classes above would be weaker than expected. This is because while the
functions in the class F are applied to the vector of n secret keys, the mapping
« is only applied to one secret key at a time. Therefore, the first example above
would imply KDM ™ security w.r.t. Turing machines that only take one of the
secret keys as input; the second would imply KDM™ security w.r.t. degree-d
polynomials where each monomial only contains variables from one secret key.

5 LWE Based KDM Security

For any constant d, we present a scheme that is KDM™ secure w.r.t. all degree-
d polynomials, F4;. We also present a scheme that is KDM ) _secure w.r.t. the
class of all functions computed by Turing machines with description length at
most log ¢ and running time ¢, for some polynomial ¢ (more generally, w.r.t. any
class of efficiently computable functions of polynomial cardinality). Our starting
point is the LWE based scheme presented in [3], which we denote E,cps, which
is extended using ideas from Section 4.

First, in Section 5.1, we present the relevant previous work, in this case -
the scheme of [3], denoted £ cps. Then, in Section 5.2, we prove the entropy-k
KDM® security of E,cps w.r.t. affine functions F,., and present the conse-
quences of applying Theorem 1.1 to E,cps. Finally, in Section 5.3, we show that
in the special case of degree-d polynomials, we can in fact prove KDM ™ security
of the scheme obtained from Theorem 1.1.

11 One has to be careful when showing that « is injective. We can either assume that the
first k coordinates of the output contain the input, or, if ¢ is sufficiently larger than
k, we can rely on the short description and running time of the indexing functions.
12 An additional DDH based example is provided in the full version [10].



5.1 Scheme &,cps

We present the E,cps[S] scheme which is similar to the scheme presented in [3].
The only difference is that we take the distribution of secret keys as a parameter.
We also use slightly different notation for consistency with the rest of this paper.

— Parameters. Let p be a prime and ¢ = p?. We set £, m € N to be polynomial
functions of A such that m > 2(¢+1)loggq. Let x = ¥, for o = o(\) € (0,1)
such that o < m. We also fix some 7 = w(y/logA). Finally, let
SC Zf). The secret key space is S and the message space is Zy,.

— Key Generation. On input 1*, sample s & S and set sk = s.13 Then,
sample A < Z"*¢ and 1 <~ x™ and set pk = (A, A -s+n) € Z"*! x Z™,

— Encryption. Define the distribution Fa p in Zf; X Zq as follows. Eap
samples T < Dym -, e & ¥, where 7 = Tvm(o + 2—1(]) and outputs
(AT v, b -r+e) € Z x Zy.

On input a public key pk = (A,b) and a message w € Z,, the encryption
algorithm samples (u,v) & E Ab and outputs

(u,v+w~p) .

— Decryption. On input a secret key s and a ciphertext (u, ¢), the decryption
algorithm outputs

|[(c—u" s (modq))/p|] (modp).

When o < W(l%/\)’ correctness (for any s € Zf,) follows directly from [3].

5.2 Amplification of KDM® Security

We use Theorem 1.1 to amplify the KDM® security of E,cps. We say that a
finite set of functions, H = {hi,...,hs}, with a common domain, is entropy
preserving if ay(x) = (hi(z), - he(z)) is an injective function.

Theorem 1.3 (restated). Let p be a prime number that is super-polynomial

in A and denote ¢ = p?. Let m,{, 0, be as in the parameters of € ,ops. Let k < £
and set k' = %;Oqg)‘). Let B = B(N\) € (0,1) be such that g = negl()\) and
denote X' = Ws. Let H = {h1,...,he : h; € {0,1}¥ — {0,1}} be an entropy
preserving class of efficiently computable functions with cardinality ¢ = poly(\).
Then under the LWEq y, 1/ A+ assumption, there exists a public-key encryption

scheme that is KDMY) secure w.r.t. function class

Fr = {f(x) = ;mtihi(x) +w (mod p): (t,w) € Zf) X Zp} .

13 In [3], s is sampled from the distribution x*.



Before we outline the proof, let us discuss the parameters of our hardness as-
sumption. The decisional LWE, ,, 1/, assumption (see Section 2.1) is equivalent
to the search version under a poly(g)-time reduction. The search version, in turn,
is shown in [24] to correspond to worst-case lattice problems, under quantum
reductions. In [23], a classical reduction from other worst-case lattice problems
to search LWE is shown. Thus, we can set p and ¢ to be quasi-polynomial in A,
set 0 > n/q and set % to be quasi-polynomial in \ as well (recall that for correct-

ness we must take o < so we cannot set o to be too large, but one

can verify that a proper selection of parameters exists). Using such parameters
we can relate the security of our scheme to either the worst case hardness of
obtaining a quasi-polynomial approximation factor for a lattice problem such as
GapSVP, using quasi-polynomial time quantum algorithms, or to the worst case
hardness of obtaining a classical quasi-polynomial time algorithm for a lattice
problem such as GapSVP,  with quasi-polynomial ¢.

To prove Theorem 1.3, we employ Theorem 1.1. As a precondition, we will
need to establish entropy-k KDM® security for €,cpg, which is not straight-
forward. We do this in two steps. First, we prove KDMW security based on a
nonstandard assumption. Then, we use a result of Goldwasser, Kalai, Peikert and
Vaikuntanathan [16] that implies that for the parameters of Theorem 1.3, LWE
reduces to our new assumption, thus ultimately basing our scheme on standard
decisional LWE. We remark that it may be possible to achieve better parameters
than stated in Theorem 1.3 using a more efficient reduction, if such exists. See
full version [10] for details and proof.

In the specific case of using the set of all degree-d monomials as the function
class H, we obtain a KDM™M)-secure scheme w.r.t. Fy, all degree-d polynomials
modulo p. We describe this scheme, &, explicitly. In Section 5.3 we show that
&y is KDM™_secure w.r.t. Fy. (Yk.a> Vk,ds Tk,a were defined in Definition 3.3.)

Encryption Scheme £. Let k,d € N and consider p, g, m, 0, x, 7, as in the defini-
tion of Excps[Ik.d), specifically let £ = v 4. The secret key space of & is {0,1}F
and the message space is Zy,.

— Key Generation. On input 1%, select x < {0,1}* and set sk = x. We
denote s = v, 4(x) and note that s is uniform in I, 4. The public key pk is
generated as in Excps[Ik,qa]. Namely, pk = (A, A -s+mn) € Z"** x Z™. Note
that the distributions of the public keys in & and E.ces[Ik,q] are identical.

— Encryption. On inputs a public key pk and message w, the encryption
algorithm runs the encryption algorithm of €,cps[[k 4] With the same inputs.

— Decryption. On inputs a secret key sk = x € {0,1}* and a ciphertext
(u,¢), the decryption algorithm uses x to obtain s = =, ,(x). Decryption
proceeds as in Egps[k,q], with inputs a secret key s and a ciphertext (u, ¢).

1 This scheme is denoted & for consistency with the full version [10] where & denotes
our DDH based scheme.



5.3 KDM™ Security w.r.t. Degree-d Polynomials

We show that & is KDM(™-secure w.r.t. F4. For proof, see full version [10].

Theorem 1.5 (restated). Consider the scheme Ey with p being super-polynomial
in \. Let k' = ¥=208 N g, jet B = B(A) € (0,1) be such that g = negl(\). De-

log ¢
fine X' = Wg. Under the LWE g+ assumption, E is KDM™ -secure w.r.t.
the class of degree-d polynomials modulo p.

Note that if LWEq ..k is hard for all n. = poly()), then & is KDM™-secure
for any polynomial number of “users”. We also note that as in Theorem 1.3,
the LWE assumption we rely on is related to worst-case lattice problems. See
discussion in Section 5.2 for more details.
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