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Abstract. What does it mean for an encryption scheme to be leakage-
resilient? Prior formulations require that the scheme remains semanti-
cally secure even in the presence of leakage, but only considered leak-
age that occurs before the challenge ciphertext is generated. Although
seemingly necessary, this restriction severely limits the usefulness of the
resulting notion.
In this work we study after-the-fact leakage, namely leakage that the ad-
versary obtains after seeing the challenge ciphertext. We seek a “natural”
and realizable notion of security, which is usable in higher-level proto-
cols and applications. To this end, we formulate entropic leakage-resilient
PKE. This notion captures the intuition that as long as the entropy of
the encrypted message is higher than the amount of leakage, the message
still has some (pseudo) entropy left. We show that this notion is realized
by the Naor-Segev constructions (using hash proof systems).
We demonstrate that entropic leakage-resilience is useful by showing a
simple construction that uses it to get semantic security in the presence
of after-the-fact leakage, in a model of bounded memory leakage from a
split state.

1 Introduction

In the traditional view of cryptography, some parts of the system are designated
as secret, and these parts are kept beyond reach for the attackers and only
interact with the non-secret parts via well defined interfaces under the control
of the designers. In contrast, in reality many times attackers can “design their
own interfaces” for accessing the secret state. For example, they may get parts
of the secret state via a myriad of side-channels (e.g., timing, radiation, etc.),
read it off some backup tape or physical memory, or maybe bribe people who
have access to parts of the secret state (or install a virus on their machines).
Recent years saw many advances in our ability to reason formally about such
unintended leakage and to construct schemes that resist broad class of leakage
attacks (e.g., [13, 15, 9, 1, 16, 3, 14, 10] and others). This line of work is typically
referred to as leakage-resilient cryptography.

The general theme in formulating leakage resilience of some primitive is that
in addition to the usual interfaces that are available by design, the adversary
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can also choose arbitrary leakage functions (from some broad class) and get the
result of applying these functions to the secret state of the scheme. We then
require that the scheme still meets the original notion of security, even in the
presence of this more powerful adversary. This approach was successfully applied
to model leakage resilience of many cryptographic schemes, such as pseudoran-
dom generators, signature schemes, etc.

The same approach was also applied to leakage-resilience of encryption schemes,
e.g., in [1, 16, 3], but here there seems to be a problem: Basic notions of security
for encryption schemes require that they hide the content of the plaintext even
from an adversary that knows many things about that plaintext. In particular,
semantic security of encryption requires that an adversary that knows two mes-
sages m0,m1 and sees a ciphertext c encrypting one of them, will not be able
to tell which of the two messages is encrypted in c. But if we let the adversary
learn arbitrary functions of the secret key, then it could ask for a function that
decrypts the “challenge ciphertext” c and outputs 0 if it is decrypted to m0 and
1 otherwise. In other words, given the challenge ciphertext the adversary can
design a leakage function that will leak to it exactly the one bit that we try to
hide using encryption.

Prior work on leakage-resilient PKE [1, 16, 3] bypassed this definitional dif-
ficulty by only considering before-the-fact leakage. Namely, the adversary could
only ask for leakage on the secret key before it sees the challenge ciphertext,
and the scheme was deemed leakage resilient if it remained semantically secure
in face of such leakage. This approach indeed bypasses the technical problem,
but pays dearly in terms of the meaning and applicability of the resulting no-
tions. Indeed this solution means that as soon as even one bit of the secret key
is leaked, we cannot say anything about the secrecy of any message that was
encrypted before that bit was leaked.

Consider for example trying to address memory leakage (such as the “cold
boot attacks” [11]) by using leakage-resilient encryption. In a memory-leakage
attack, an attacker may get a laptop where the disk is encrypted. Lacking the
password to access the decryption functionality, the attacker may try to read the
decryption key directly off the physical memory. In this setting, the adversary
could first see the encrypted disk (hence getting access to the ciphertext), and
then try to design a method of measuring the memory specifically for the pur-
pose of decrypting this ciphertext. Existing notions of before-the-fact leakage-
resilient encryption say nothing about the secrecy of the plaintext under this
attack. This definitional problem was acknowledged in prior work, but no solu-
tions were offered. For example, Naor and Segev wrote in [16] that “It will be
very interesting to find an appropriate framework that allows a certain form of
challenge-dependent leakage.”

1.1 Our contributions

In this work we study after-the-fact leakage, where the adversary obtains leak-
age information after seeing the challenge ciphertext. Our main contribution is
formulating the notion of entropic leakage-resilient PKE and showing how to



meet it. Intuitively, this notion says that even if the adversary designs its leak-
age function according to the challenge ciphertext to leak the things it wants to
know, if it only leaks k bits then it cannot “amplify” them to learn more than k
bits about the plaintext. Technically, our notion can be viewed as an extension
of HILL entropy [12] to the interactive setting. Namely, our notion would say
that the message still looks like it has some min-entropy, even to the interactive
adversary that participated in the game of semantic-security with leakage.

We remark that this notion is not trivial: Indeed it is not hard to construct
“contrived” encryption schemes that are semantically secure (even with respect
to before-the-fact leakage), but such that leaking (say)

√
n bits after the fact

lets the adversary recover n bits of plaintext. On the other hand, we show that
the same construction that Naor and Segev used in [16] for obtaining leakage-
resilient encryption from hash proof systems, in fact realizes also the stronger
notion of entropic leakage-resilience relative to after-the-fact leakage.

To demonstrate the usefulness of entropic leakage-resilience we show that in
some cases it can be used to get full semantic security, even in the presence of
after-the-fact leakage. For this, we of course have to limit the type of leakage
functions that the adversary has access to. Specifically, we consider a model
where the key is broken into several parts, and the adversary can get access to
leakage from every part separately, but not to a global leakage from the entire
secret state. (This model is often used in conjunction with the only-computation-
leaks axiom of Micali and Reyzin [15].)

To get semantic security in that model, we use two instances of an entropic
leakage resilient encryption scheme. To encrypt a message m, we choose two
random long strings x1, x2, encrypt each xi under a different copy of the entropic
scheme, and use a two-source extractor to compute Ext2(x1, x2)⊕m. To decrypt
we recover the two strings x1, x2 (which we can do by working separately with the
two secret keys) and then recoverm. The intuition is that as long as the adversary
can only get leakage functions from the two keys separately, the entropic leakage
resilience of the underlying scheme implies that x1, x2 still have a lot of entropy,
and hence Ext2(x1, x2) still hides the message. (We remark that we view this
construction more as an example to the usefulness of our new notion than as a
stand-alone application.)

Discussion: on defining useful leakage primitives. On some level, our notion
of entropic leakage-resilience departs from the usual theme described above for
defining leakage-resilience primitives. Namely, we no longer insist that the scheme
retains its original security properties even in the face of leakage. In the face of
the impossibility of achieving the strong notion of semantic security, we are
willing to settle on a weaker achievable notion so long as it is useful in higher-
level applications. It is interesting to formulate such useful weakened notions
also for other primitives, such as commitment, key-agreement, etc.

In this context we note that when thinking about encryption as part of a
communication system, our notion only captures leakage at the receiver side
(i.e., from the secret key) and not at the sender side (i.e., from the encryption
randomness). It is interesting to find ways of simultaneously addressing leakage
at both ends.



1.2 Recent Related Work

We mention that two recent works by Goldwasser and Rothblum [10], and Juma
and Vahlis [14] implicitly also considered after-the-fact leakage for encryption
schemes. They presented general methods for compiling any circuit with secret
components into one that resists continuous leakage (in the only-computation-
leaks model), using leakage-free hardware. Their transformations use as a tech-
nical tool encryptions schemes that remain semantically secure even at the pres-
ence of after-the-fact leakage of the secret key, provided that the adversary sees
only part of the challenge ciphertext. (Such notion of semantic-security with re-
spect to adversaries that cannot see the entire challenge ciphertext, if defined
as a stand-alone primitive, could be another example of a useful weaker leakage
primitive.)

2 Preliminaries

We denote random variables by uppercase English letters. For a random vari-
able A we (slightly) abuse notation and denote by A also the probability dis-
tribution on the support of this variable. We write A ∈ D to denote that A is
drawn from domain D. We use Ut to denote the uniform distribution on t-bit
binary strings. We write x← A to denote the random variable A assuming the
value x. We will rely on the following fact about independent random variables,
which is proved in the full version of [8].

Lemma 1 Let A, B be independent random variables and consider a sequence
V1, . . . , Vm of random variables, where for some function φ, Vi = φ(V1, . . . , Vi−1, Ci),
with each Ci being either A or B. Then A and B are independent conditioned
on V1, . . . , Vm.

2.1 Min-Entropy and Average Min-Entropy

The statistical distance between two random variables A and B over a finite
domain Ω is SD

(
A, B

)
= 1

2

∑
ω∈Ω |Pr[A = ω]− Pr[B = ω]|. Two variables are

ε-close if their statistical distance is at most ε. The min-entropy of a random
variable A is H∞(A) = − log(maxx Pr[A = x]). The notion of average min-
entropy, formalized in [6], captures the remaining unpredictability of the random
variable A conditioned on the value of another random variable B. Formally,

H̃∞(A|B) = − log
(
Ey←B

[
max
x

Pr [A = x | B = y]
])

= − log
(
Ey←B

[
2−H∞(A|B=y)

])
We will rely on the following useful properties of average min-entropy.

Lemma 2 ([6]) Let A, B, C be random variables. If B has at most 2λ possible

values, then H̃∞(A|(B,C)) ≥ H̃∞(A|C)− λ.



Lemma 3 Let A be a random variable with domain Ω, and U the random
variable describing a uniformly sampled element from Ω; and let B a ran-
dom variable. For any ε ∈ [0, 1], if SD

(
(A,B), (U,B)

)
≤ ε, then H̃∞(A|B) ≥

− log
(

1
|Ω| + ε

)
.

This lemma follows directly from the definition of average min-entropy; we omit
the proof here.

2.2 Seeded Extractors

Definition 1 ([18]) A function Ext : {0, 1}n × {0, 1}r → {0, 1}m is a (worst-
case) (k, ε)-strong extractor if for every random variable A ∈ {0, 1}n, such that,
H∞(A) ≥ k, it holds that, SD

(
(Ext(A,S), S), (Um, S)

)
≤ ε, where S is uniform

on {0, 1}r.

Dodis et al. [6] generalized the definition above to the setting of average min-
entropy, and showed the following generalized variant of the leftover hash lemma,
stating that any family of pairwise independent hash functions is an average-case
strong extractor.

Definition 2 A function Ext : {0, 1}n × {0, 1}r → {0, 1}m is an average-case
(k, ε)-strong extractor if for all pairs of random variables A and B, such that, A ∈
{0, 1}n and H̃∞(A|B) ≥ k, it holds that, SD

(
(Ext(A,S), S,B), (Um, S,B)

)
≤ ε,

where S is uniform on {0, 1}r.

Lemma 4 Assume
{
Hx : {0, 1}n → {0, 1}l

}
is a family of universal hash func-

tions. Then for any random variables A and B, such that A ∈ {0, 1}n and

H̃∞(A|B) ≥ m, SD
(
(Hx(A), X,B), (Ul, X,B)

)
≤ ε whenever l ≤ m− 2 log 1

ε .

2.3 Two-Source Extractors

The extractors defined in the last section require the use of a short but truly
random seed, which sometimes might be hard to obtain. The notion of two-
source extractor [19, 20, 4] eliminates the use of a truly random seed, and instead
extracts random bits from two independent sources of randomness.

Definition 3 A function Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case) (s, ε)
two-source extractor, if for all independent random variables A,B ∈ {0, 1}t with
min-entropy s, it holds that SD

(
Ext2(A,B), Um

)
≤ ε.

Definition 4 A function Ext2 : ({0, 1}t)2 → {0, 1}m is an average-case (s, ε)-
two source extractor, if for all random variables A,B ∈ {0, 1}t and C, such that,
conditioned on C, A and B are independent and have average min-entropy s, it
holds that SD

(
(Ext2(A,B), C), (Um, C)

)
≤ ε.

It follows from the same proof of Lemma 2.3 in [6] that any worst-case two-source
extractor is also an average-case two-source extractor.

Lemma 5 For any δ > 0, if Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case)
(s− log 1

δ , ε)-two-source extractor, then Ext2 is also an average-case (s, ε+ 2δ)-
two-source extractor.



2.4 Hash Proof Systems

Hash proof systems were introduced by Cramer and Shoup [5]. We briefly recall
the presentation in [16], which views the hash proof systems as key encapsulation
mechanisms.

Smooth Projective Hashing. All the notations below should be thought of as
relying on an implicit security parameter (and maybe some other system pa-
rameters, such as the underlying algebraic groups). Let SK,PK be the domains
of secret and public keys, let K be the space of encapsulated symmetric keys, C
be the space of ciphertexts and V ⊂ C be the space of valid ciphertexts.

Let F = {Fsk : C → K}sk∈SK be a collection of hash functions with domain
C and range K, and let µ : SK → PK be a projection function. Let F be the
construction which is described by all these sets, F = (SK,PK, C,V,K, F, µ).

Definition 5 The construction F is a projective hash family if for all v ∈ V, and
for all sk1, sk2 ∈ SK such that µ(sk1) = µ(sk2), it holds that Fsk1(v) = Fsk2(v).

In other words, for all indexes sk ∈ SK, the actions of Fsk on elements in V
are uniquely determined by µ(sk). On the other hand, for elements not in V, we
require the hash function Fsk to behave almost “randomly”. Formally,

Definition 6 The construction F is ε-smooth, if it holds that

SD
(
(pk, c, Fsk(c)), (pk, c, k)

)
≤ ε,

where sk ∈ SK, c ∈ C/V, and k ∈ K are sampled uniformly at random and
pk = µ(sk).

Hash Proof System. A hash proof system is roughly a construction of smooth-
projective hash functions with several efficient associated algorithms. Specifi-
cally, we assume an efficient parameter-generating algorithm Param that given
the security parameter outputs the description of F = (SK,PK, C,V,K, F, µ),
such that V is an NP language and there is an efficient algorithm for sampling
c ← V together with a witness w. We also assume that there are efficient algo-
rithms for sampling sk ← SK and c← C \ V.

We also have two algorithms for computing the hash function Fsk. One is
a private evaluation algorithm Priv(sk, c) that on input a secret key sk ∈ SK
and a ciphertext c ∈ C, outputs the encapsulated key k = Fsk(c). The other is
a public evaluation algorithm Pub that computes the same given the public key,
but only on valid ciphertexts and only when it is also given a witness of validity.
Namely, for every sk ∈ SK and pk = µ(sk) and for every c ∈ V with witness w,
it holds that Pub(pk, c, w) = Fsk(c).

Cramer and Shoup noted that a hash proof system immediately implies a
KEM mechanism, where key-generation consists of running the parameter gen-
erating routine, then choosing a random secret key sk ← SK and computing
the corresponding public key pk = µ(sk). Encapsulating a key is done by choos-
ing at random c ← V together with a witness w. Then the ciphertext is c and



the corresponding encapsulated key is computed by the sender using the public
evaluation algorithm, setting k = Pub(pk, c, w). On the receiving side, the same
key is recovered using the private evaluation algorithm, setting k = Priv(sk, c).
Security of this scheme follows from the smoothness of the construction, in con-
junction with the hardness subset membership problem, as defined below.

Subset Membership Problem. A hash proof system as above is said to have
a hard subset membership problem if a randomly generated valid ciphertext is
computationally indistinguishable from a randomly generated invalid ciphertext.
Formally, the following two ensembles are indistinguishable

VALID = {F = (SK,PK, C,V,K, F, µ)← Param(1n), c← V : (F , c)}n∈N
INVALID = {F = (SK,PK, C,V,K, F, µ)← Param(1n), c← C \ V : (F , c)}n∈N

3 Entropic Security against After-the-Fact Leakage

Roughly speaking, we say that an encryption scheme is entropic leakage resilient
if a message M with high min-entropy still “looks random” to the adversary
even after it sees an encryption of it and some leakage information (even if
this leakage was obtained after seeing the ciphertext). This is formulated by
postulating the existence of a simulator that generates a view, which on one
hand is indistinguishable from the real adversary view and on the other hand
still leaves M with high min-entropy.

More formally, we define two games, one “real” and the other “simulated”.
Both games depend on several parameters: k is the a-priory min-entropy of the
message, and `pre, `post control the amount of leakage in various parts of the
games (namely the pre- and post- challenge-ciphertext leakage). All of these
parameters are of course functions of the security parameter n. (For simplicity,
in the definition below we assume that the message M is a uniform random
k-bit string. This is all we need for our application in Section 4 to the only-
computation-leak model, and extending the definition to arbitrary high-min-
entropy distributions is easy.)

The “real” game. Given the parameters (k, `pre, `post) and the encryption scheme
Ψ = (Gen,Enc,Dec), the real game is defined as follows:

Key Generation: The challenger chooses at random a message m← Uk. The
challenger also generates (sk, pk)← Gen(1n), and sends pk to the adversary.

Pre-Challenge Leakage: The adversary makes a pre-challenge leakage query,
specifying a function fpre(·). If the output length of fpre is at most `pre then
the challenger replies with fpre(sk). (Else the challenger ignores the query.)

Challenge: Upon a challenge query, the challenger encrypts the message m and
sends the ciphertext c = Enc(pk,m) to the adversary.

Post-Challenge Leakage: The adversary makes a post-challenge leakage query,
specifying another function fpost(·). If the output length of fpost is at most
`post then the challenger replies with fpost(sk). (Else the challenger ignores
the query.)



We let Viewrl
A(Ψ) = (randomness, pk, fpre(sk), c, fpost(sk)) be the random vari-

able describing the view of the adversary A in the game above, and by M rl we
denote the message that was chosen at the onset of this game. (We view them as

correlated random variables, namely when we write (M rl,Viewrl
A(Ψ)) we mean

the joint distribution of the message M rl and A’s view in a real game with M rl).

The “simulated” game. In the simulated game we replace the challenger from
above by a simulator Simu that interacts with A in any way that it sees fit. Simu
gets a uniformly chosen message M sm as input, and it needs to simulate the
interaction conditioned on this M sm. The view of A when interacting with S is
denoted Viewsm

A (Simu).

Below we say that Ψ is entropic leakage-resilient (with respect to all the

parameters) if on one hand the distributions Viewrl
A(Ψ), Viewsm

A (Simu) are indis-
tinguishable even given the message M , and on the other hand M sm has high
min-entropy given Viewsm

A (Simu).

Definition 7 Let k, `pre, `post be parameters as above, and let δ be another
“slackness parameter.” A public-key encryption scheme Ψ = (Gen,Enc,Dec) is
entropic leakage resilient with respect to these parameters if there exists a simu-
lator Simu, such that, for every PPT adversary A the following two conditions
hold:

– The two ensembles
(
M rl,Viewrl

A(Ψ)
)
,
(
M sm,Viewsm

A (Simu)
)

(indexed by the
security parameter) are computationally indistinguishable.

– The average min-entropy of M sm given Viewsm
A (Simu) is

H̃∞(M sm | Viewsm
A (Simu)) ≥ k − `post − δ.

Intuitively, in the simulated game the message M sm retains its initial entropy,
except for the `post post-challenge leakage bits and possibly also some “overhead”
of δ bits. And since the simulated game cannot be distinguished from the real
game, then M rl has the same number of pseudo-entropy bits also in the real
game.

What happened to `pre? Note that the min-entropy of M sm is only reduced by
the amount of the post-challenge leakage (and “overhead”) irrespective of the
pre-challenge leakage. This is reminiscent of the prior results that can tolerate
pre-challenge leakage while maintaining semantic security (hence “not losing
any entropy” of the message). Indeed, the security notions from [1, 16] can be
obtained as a special case of our definition with `post = δ = 0.

Adaptiveness. It was pointed out in [1] that the pre-challenge leakage can be
made adaptive without effecting the definition. The same holds also for the
post-challenge leakage.



3.1 Constructing Entropic Leakage-Resilient Scheme

We show that the generic construction of Naor and Segev for pre-challenge leak-
age resilient encryption from hash proof systems [16], is actually entropic secure
against bounded after-the-fact leakage. The encryption algorithm (overly sim-
plified) samples a valid ciphertext c of the hash proofs system, and uses the key
encapsulated in c to hide the message. To show entropic security, the entropic
simulator proceed the same as the encryption algorithm except that it uses in-
valid ciphertexts. It follows from the indistinguishability of the valid and invalid
ciphertexts that the real and the simulated games are indistinguishable. Fur-
thermore, due to smoothness the key encapsulated in an invalid ciphertext has
high min-entropy, and hence the message is well “hidden”, and has high average
min-entropy.

In more details, we need an ε-smooth hash proof system F = (SK,PK, C,V,
K, F, µ), where the symmetric encapsulated keys are assumed (w.l.o.g.) to be just
t1-bit strings, K = {0, 1}t1 . We also need a function Ext : {0, 1}t1 × {0, 1}t2 →
{0, 1}t3 which is an average-case (t4, δ) strong extractor. Namely, it has t1-bit
inputs, t2-bit seeds and t3-bit outputs, and for a random seed and input with
t4 bits of min entropy, the output is δ-away from a uniform t3-bit string. Then,
the encryption scheme Ψ = (Gen,Enc,Dec) proceeds as follows:

Key Generation: The key generation algorithm, on input a security parameter
1n, generates an instance of a projective hash family F = (SK,PK, C,V,K, F,
µ) ← Param(1n), samples a secret key sk ← SK, and computes the corre-
sponding public key pk = µ(sk).

Encryption: The encryption algorithm, on input a message m ∈ {0, 1}t3 , sam-
ples a valid ciphertext together with a corresponding witness (c, w)← V, and
computes the encapsulated key k using the public evaluation algorithm, i.e.,
k = Pub(pk, c, w). It then samples a random seed s ∈ {0, 1}t2 , and computes
ψ = Ext(k, s)⊕m. Finally, it outputs the ciphertext ĉ = (c, s, ψ).

Decryption: The decryption algorithm on input a ciphertext (c, s, ψ), com-
putes the encapsulated key k using the private evaluation algorithm, i.e.,
k = Priv(sk, c), and outputs the message m = Ext(k, s)⊕ ψ.

It follows using the same proof as in [16] that the encryption scheme Ψ is a
correct public-key encryption scheme. Namely the decryption algorithm always
recovers the original message m correctly. Next, we proceed to prove the entropic
leakage resilience of Ψ against after-the-fact leakage.

Lemma 6 The public-key encryption scheme Ψ from above is entropic leakage-
resilient with respect to leakage `pre, `post and “overhead” δ′, as long as these
parameters satisfy the following constraints:

`pre ≤ log

(
1

1
|K| + ε

)
− t4 and δ′ ≤ t3 − log

1

2−t3 + δ

To interpret these parameters, it is useful to think of a “very smooth” hash
proof system (ε� 1/|K| = 2−t1), and a very good extractor that can work with



inputs that have min-entropy t4 � log |K| = t1 and produces outputs whose
distance from uniform t3-bit strings is δ < 2−t3 . For such building blocks we can
tolerate pre-challenge leakage of `pre ≈ t1 − t4 = t1(1− o(1)), and our overhead
is δ′ < 1 bits.

Proof. To prove Lemma 6 we need to describe a simulator, whose answers to the
adversary are indistinguishable from the real game but at the same time leave
many bits of min-entropy in the message m.

In our case, the simulator S proceeds almost identically to the challenger in
the real game, except that to generate the ciphertext ĉ = (c, s, ψ) it samples
an invalid ciphertext for the hash-prof system, c ← C/V, then it computes k =
Priv(sk, c) using the secret key sk that it knows, and outputs the ciphertext
ĉ = (c, s, ψ), where ψ = Ext(k, s)⊕m.

It follows directly from the indistinguishability of the valid and invalid cipher-
texts of the hash proof system that the simulated view is indistinguishable from
the real one even given the message m. It only remains to show the min-entropy
condition.

On a high-level, the proof consists of two steps. The first step shows that
conditioned on all the information that the adversary receives till the end of the
Challenge Phase, the message m still has high average min-entropy, namely at
least t3 − δ′.

To see this, note that by ε-smoothness the encapsulated key k has almost
t1 bits of min-entropy even given pk and c, and therefore almost t1 − `pre bits
of min-entropy even given pk, c and the pre-challenge leakage. Specifically k

has at least log

(
1

1
|K|+ε

)
− `pre ≥ t4 bits of min-entropy, and therefore the bits

extracted from k using the extractor Ext are statistically close to random (even
given pk, c the pre-challenge leakage and the seed s). Thus the message m is
δ-close to a uniform t3-bit string, even given pk, c, the pre-challenge leakage, the
seed s, and the value ψ. (So far this is exactly the same argument as in the proof
of the Naor-Segev construction.) Hence upto this phase, the message m has at
least t3 − δ′ bits of min entropy.

Next, by further relying on the fact that the post-challenge leakage is bounded
by `post bits, the min-entropy of m is reduced by at most this much, so it retains
at least t3 − `post − δ′ bits of average min-entropy.

.

4 Semantic Security in a Split-State Model

We next demonstrate how Definition 7 can be used in a “higher level protocol”.
Specifically, we consider a split-state model, where the secret state of the cryp-
tosystem at hand is partitioned to a few parts and the adversary can obtain
leakage of its choice on every part separately but not a global leakage function
from the entire secret state.

This model is often used in conjunction with the only-computation-leaks
axiom (OCL) of Micali and Reyzin [15]. In our case we talk only about CPA
security and there is no decryption oracle, hence after-the-fact there isn’t any



computation to leak from and talking about only-computation-leaks does not
make sense. (An extension of this construction to get CCA-security may be
applicable to the OCL model, but this is beyond the scope of the current work.)

Definition 8 A 2-split-state encryption scheme is a public-key encryption scheme
Π = (Gen,Enc,Dec) that has the following structure:

– The secret key consists of a pair of strings S = (S1, S2), and similarly the
public key consists of a pair P = (P1, P2).

– The key generation algorithm Gen consists of two subroutines Gen1 and
Gen2, where Geni for i ∈ {1, 2} outputs (Pi, Si).

– The decryption algorithm Dec also consists of two partial decryption subrou-
tines Dec1 and Dec2 and a combining subroutine Comb. Each Deci takes
as input the ciphertext and Si and outputs partial decryption ti, and the
combining subroutines Comb takes the ciphertext and the pair (t1, t2) and
recovers the plaintext.

In the split-state model, we assume that information is leaked independently
from the two parts. Semantic security for such a 2-split-state scheme in the
presence of After-the-Fact Leakage in this model is defined below. Let `pre, `post
be parameters as before, and we consider the following game:

Key Generation: The challenger chooses r1, r2 ∈ {0, 1}∗ at random, generates
(skb, pkb)← Gen(1n, rb) for b = 1, 2, and sends (pk1, pk2) to the adversary.

Pre-Challenge Leakage: The adversary makes an arbitrary number of leak-
age queries (fpre1,i , f

pre
2,i ) adaptively. Upon receiving the ith leakage query the

challenger sends back (fpre1,i (sk1), fpre2,i (sk2)), provided that the total output
length of all the pre-challenge queries so far does not exceed `pre in each
coordinate. (Otherwise the challenger ignores the query.)

Challenge: The adversary sends two messages m0,m1 ∈ {0, 1}n. The chal-
lenger chooses a random bit σ, encrypts the message mσ, and returns the
ciphertext c = Enc(pk,mσ).

Post-Challenge Leakage: The adversary can submit an arbitrary number of
leakage queries (fpost1,i , fpost2,i ) adaptively. Upon receiving the ith leakage query

the challenger sends back (fpost1,i (sk1), fpost2,i (sk2)), provided that the total
output length of all the post-challenge queries so far does not exceed `post
in each coordinate. (Otherwise the challenger ignores the query.)

Output: The adversary outputs a bit σ′.

Definition 9 A 2-split-state encryption scheme Ψ = (Gen,Enc,Dec) is resilient
to (`pre, `post) leakage in the split-state model, if for every PPT adversary A that
participates in an experiment as above, there is a negligible function negl such
that Pr[σ′ = σ] < 1/2 + negl(n).

4.1 Our Construction

As defined above, our 2-split-state scheme maintains a split secret key (S1, S2)
(and a corresponding split public key (P1, P2)), where Si is generated by Geni



and used by Deci. Due to the the restriction on the leakage in the split-state
model, the adversary can never obtain leakage on S1 and S2 jointly, so even after
leakage we can hope that each of the two parts still has sufficient entropy and
moreover they are independent. Hence we can use two-source extractors to get a
close-to-uniform string from these two parts, and use it to mask the message.

In the scheme below, we do not try to extract from the secret keys themselves,
but rather in each encryption we encrypt two random strings, one under each of
the keys, and extract randomness from these two ephemeral random strings. We
argue that if the two copies are implemented using an entropic leakage-resilient
scheme, then we get semantic security in the split-state model. Intuitively, the
reason is that the entropic security ensures that the two ephemeral strings still
have high (pseudo)entropy even given the leakage, and the split-state model
ensures that they are independent, so the two-source extraction should give us
what we want.

The formal proof roughly follows this intuitive reasoning, with just one ad-
ditional complication, related to adaptivity: In the post-challenge leakage, the
adversary can choose the leakage functions from the two key parts after it al-
ready saw the value that was extracted from the two random strings, causing a
circularity in the argument. We solve this issue essentially by “brute force”: We
argue below that if the extracted value has only u bits, then the adaptivity issue
can increase the advantage of the adversary by at most a 2u factor, and set our
parameters to get around this factor.3

The construction. Let n be the security parameter, and let u be the bit-length
of the messages that we want to encrypt. Also let t, v, `pre, `post be some other
parameters (to be defined later). Let Ψ = (GenEnt, EncEnt, DecEnt) be a entropic
secure encryption for t-bit messages, resilient to leakage (`pre, `post), with over-
head of one bit.

Also, let Ext2 : {0, 1}t × {0, 1}t → {0, 1}u be an average-case (v, ε)-two-
source extractor, with ε = 2−u−ω(logn). Namely both inputs to Ext2 are of
length t, and as long as they are independent and both have more than v min
entropy, the output of Ext2 is at most ε away from a uniform u-bit string.4 Given
these ingredients, our 2-split-state encryption scheme Π = (Gen,Enc,Dec) pro-
ceeds as follows:

Key Generation: The key generation algorithm runs two subroutines Gen1
and Gen2, where Geni for i ∈ {1, 2} on input 1n generates a public and
secret key pair (Si, Pi) ← GenEnt(1n) of the entropic encryption scheme Ψ .
The public key is P = (P1, P2) and the secret key is S = (S1, S2).

Encryption: The encryption algorithm, on input a messagem ∈ {0, 1}u, chooses
two random strings x1, x2 ∈ {0, 1}t and encrypts the two strings using the
two public keys P1 and P2 respectively; set ci = EncEnt(Pi, xi). Then, it
computes ψ = Ext2(x1, x2)⊕m, and outputs the ciphertext ĉ = (c1, c2, ψ).

3 We remark that we do not make exponential hardness assumptions to achieve this.
See proof of Claim 8 for more details.

4 Note that we set ε so that it remain negligible even if we multiply it by 2u, this is
needed for the adaptivity issue in the proof.



Decryption: The decryption algorithm, on input a ciphertext (c1, c2, ψ), exe-
cutes the following three subroutines sequentially.
– The subroutine Dec1 decrypts c1 using S1 and outputs the plaintext
x1 = DecEnt(S1, c1).

– The subroutine Dec2 decrypts c2 using S2 and outputs the plaintext
x2 = DecEnt(S2, c2).

– The subroutine Comb on input x1, x2 and ψ, outputs the message M =
Ext2(x1, x2)⊕ ψ.

Lemma 7 The 2-split-state scheme Π from above is semantically secure with
respect to leakage (`′pre, `

′
post) in the split-state model, as long as the parameters

satisfy the following constraints:

`′pre ≤ `pre and `′post ≤ min(`post − u, t− v − 1).

Proof. We need to show that PPT adversaries only have negligible advantage
in guessing the choice bit σ in the semantic security game. To that end, fix a
semantic-security adversary Ass, and let Simu be the entropic simulator that
exists for the underlying entropic scheme Ψ5. We now consider the hybrid ex-
periments hyb1 and hyb2, which are defined as follows:

Hybrid hyb1: In this hybrid, the challenger generates the ciphertext c2 and
answers leakage queries against S2 just as in the real game. However, it uses
the entropic simulator Simu to generate the ciphertext c1 and to answer
leakage queries against S1.
In more details, the challenger chooses x1, x2 at random, then generates
(S2, P2) using the key-generation of Ψ , but it gets P1 by running Simu(x1).
(Recall that the entropic simulator expects a random plaintext string in
its input.) Then to answer a pre-challenge query (fpre1,i , f

pre
2,i ), the challenger

forward fpre1,i to Simu and gets the answer from it, computes the answer

fpre2,i (S2) by itself, and send both answer to Ass.

When Ass makes a challenge query (m0,m1), the challenger asks Simu for
the first ciphertext c1, and computes c2 by itself c2 = Enc(P2, x2). (Recall
again that Simu was run with input x1, so the ciphertext that it returns is
supposed to simulate an encryption of x1.)
Next, the challenger makes a direct post-challenge leakage query
to Simu, querying with the function h1(S1) = Ext2(Dec(S1, c1), x2) (that
has u bits of output). Getting some answer r′, the challenger just discards
that answer, instead computing r = Ext2(x1, x2), choosing a random bit σ,
setting ψ = r ⊕mσ and sending (c1, c2, ψ) to Ass.
After that, post-challenge queries ofAss are handled just like the pre-challenge
queries, with the challenger asking Simu for the first part of the answer (for
the query against S1) and computing the answer to the query against S2 by
itself.

5 Our Definition 7 has only one pre- and one post-challenge query. Below we assume
for convenience that the entropic-security adversary can make adaptive queries, it
was noted in [1] that these definition are equivalent.



Hybrid hyb2: In this hybrid the challenger still chooses x1, x2 at random, but
now both parts of the game are handled by the simulator, running as Simu(x1)
to answer the first part of all the queries (and to get c1) and as Simu(x2) to
answer the second part of all the queries (and to get c2).
The challenger makes direct post-challenge queries to both copies of the
simulator, asking the first for r′ = h1(S1) = Ext2(Dec(S1, c1), x2) and the
second for r′′ = h2(S2) = Ext2(x1, Dec(S2, c2)). The challenger still ignores
both answers, computing instead r = Ext2(x1, x2) and setting the ψ com-
ponent of the Π-ciphertext as r ⊕mσ.

Before proceeding with the proof, we point out that the direct post-challenge
leakage queries that the challenger makes are expected to return the same value
that the challenger computes itself, r′ = r′′ = r. (Indeed we prove below that
they almost always do). The reason that the challenger still makes them is to
ensure that the entropic simulators see the same queries in these hybrids as in
the reductions that we use below. One consequence of these direct queries is that
the entropic simulators need to answer more post-challenge queries than what
the semantic-security adversary asks. Specifically, it needs to answer u more bits,
hence the constraint `′post ≤ `post − u.

We now prove that the event σ′ = σ holds in the hybrids with essentially
the same probability as in the real game, by reducing to the indistinguishability
property of the entropic simulator.

The hybrid hyb1. Assume toward contradiction that the event σ′ = σ happens
in the real game with probability which is larger than in the first hybrid hyb1 by
a noticeable amount ρ. We describe an entropic adversary Aent and distinguisher
Dent that break this indistinguishability property. (In fact, for the same entropic
adversary Aent we describe two distinguishes Dent

1 , Dent
2 , and prove that at least

one of them has advantage ρ/2 or more.)

– The entropic adversary Aent, on input public key P1, chooses (P2, S2) and x2
in the same way as the hyb1 challenger, and sends (P1, P2) to the semantic-
security adversary Ass. It then proceeds similarly to the hyb1 challenger,
answering the first part of every query using its oracle and computing the
answer to the second part by itself.
The only difference between Aent and the hyb1 challenger is in the way that
the ψ component of the ciphertext is computed. Once Aent gets c1 from its
oracle and computes c2 = Enc(P2, x2), it makes a post-challenge leakage
query to its oracle asking for r′ = h1(S1) = Ext2(Dec(S1, c1), x2). Since
Aent does not have x1, it does not discard the answer but rather uses it for
setting ψ = r′ ⊕mσ.

– The first distinguisher Dent
1 gets the view of Aent, which includes x2 and r′,

and also the string x1 (which was supposed to be encrypted in c1). Dent
1

simply verifies that r′ = Ext2(x1, x2), outputting 1 if they are equal and 0
otherwise.

– The second distinguisher Dent
2 gets the view of Aent, which includes σ and σ′,

and outputs 1 if they are equal and 0 otherwise.



Clearly, if the oracle of Aent is the real encryption scheme Ψ then the tran-
script that Ass sees is identical to the real semantic-security game. In partic-
ular, the ciphertext c1 is indeed an encryption of x1, and therefore we have
r′ = Ext2(x1, x2) with probability 1.

If the oracle of Aent is the simulator Simu(x1), then we have two possible
cases: either the event r′ 6= Ext2(x1, x2) happens with probability at least ρ/2,
or it happens with smaller probability. In the first case, the distinguisher Dent

1

clearly has an advantage at least ρ/2 in distinguishing between the real scheme Ψ
and the simulator Simu.

In the second case, the transcript that Ass sees is the same as in the hybrid
hyb1, except for an event of probability less than ρ/2. Since the probability of
σ = σ′ in the real game is larger by ρ than this probability in hyb1, then it is
larger by more than ρ/2 than this probability in the interaction with Aent. Hence
the distinguisher Dent

2 has advantage more than ρ/2.

The hybrid hyb2. The proof of indistinguishability between hyb1 and hyb2 is
essentially the same as the proof of indistinguishability between the real game
and hyb1, and is omitted here.

The advantage in hyb2. Having shown that the probability of σ = σ′ in the
second hybrid hyb2 is negligibly close to the probability in the real game, we now
proceed to bound it. For that purpose, we consider another mental experiment
˜hyb as follows:

Hybrid ˜hyb: hybrid ˜hyb proceeds the same as hyb2, except that, in the Chal-
lenge Phase, instead of sending the adversary Ass the complete ciphertext
ĉ = (c1, c2, ψ), the challenger sends only c1 and c2, and defers sending ψ
until after the Post-Challenge Leakage Phase.

Of course, the mental experiment ˜hyb is very much distinguishable from hyb2.

Moreover, compared with the adversary in ˜hyb, the adversary in hyb2 has the
advantage of choosing the leakage functions in the Post-Challenge Leakage Phase
based on ψ. Still, we argue that this advantage is limited, up to an exponential
factor in u. Namely, we show in Claim 8 that if Ass has advantage α in guessing
the bit σ in hyb2, then there is another adversary Ã that has advantage at least
α/2u in guessing the bit σ in the mental experiment ˜hyb.

Claim 8 If for some α > 0 there exists an adversary Ass for which Prhyb2 [σ =

σ′] ≥ 1
2 + α, then there exists another adversary Ã for which Pr ˜hyb[σ = σ′] ≥

1
2 + α

2u .

Proof. We present a generic construction of Ã given Ass. The adversary Ã in ˜hyb
runs Ass internally, and forward messages externally to the Challenger in ˜hyb.
Except that in the Challenge Phase, Ã randomly chooses some string ψ′ ∈ {0, 1}u
and sends it to Ass in lieu of ψ. Later, when Ã gets the “real ψ” from the
challenger, it aborts if it guessed wrong, ψ′ 6= ψ, and proceeds just like Ass if
the guess was correct. Since the guess is correct with probability 2−u, it follows
that the advantage of Ã is exactly α/2u.



The advantage in ˜hyb. We are now ready to use the min-entropy property of the
simulator S to prove that the advantage pf Ã in ˜hyb is at most 2ε. Since we set
ε = 2−u−ω(logn), then by Claim 8 it follows that the advantage of Ass in hyb2 is
at most 2ε · 2u = 21−ω(logn) = negl(n), as needed.

In the mental experiment ˜hyb, let Γ be the (partial) transcript of messages

that Ã receives till the end of the Post-Challenge Leakage Phase (i.e., before it
gets ψ). We show that the average min-entropy of each of the two seeds x1, x2,
conditioned on Γ is at least v. Let Γ = (Γ1, Γ2), where Γ1 denote the partial
transcript including the public key P1, the simulated encryption c1 of x1, and
all the leakage on S1, and Γ2 the partial transcript including P2, c2 and all the
leakage on S2. By the entropic security of Ψ in the simulated game, and the fact
that `′post ≤ t− v− 1, we have that H̃∞(x1|Γ1) ≥ t− `′post− 1 ≥ v. Furthermore,

since conditioned on Γ1, x1 and Γ2 are independent, we get H̃∞(x1|Γ ) ≥ v.

Similarly, it also holds that H̃∞(x2|Γ ) ≥ v.
Since both x1, x2 have min-entropy more than v, and furthermore, by Lemma 1,

are independent conditioned on Γ (as in Γ no function computes on both x1 and
x2), the output of the average-case (v, ε) two-source extractor Ext2(x1, x2) is
at most ε away from uniform. Therefore the two distribution Ext2(x1, x2)⊕m0

and Ext2(x1, x2)⊕m1 are at most 2ε apart (since each is at most ε away from

uniform). Therefore the advantage of Ã is at most 2ε.

4.2 Instantiations and Parameters

Naor and Segev presented some instances of their construction [16] based on
the DDH assumption (or DDH and the d-linear assumption), and the same
constructions work for our case too. This gives entropic leakage resilient scheme
Ψ with respect to any leakage `pre, `post and overhead 1, as long as `pre is bounded
by (1−o(1))L′−3t, where L′ and t are respectively the lengths of the secret key
and plaintext of the scheme Ψ . Therefore, we only need to focus on instantiating
the two-source extractor Ext2 with exponentially small error ε = 2−u−ω(logn)

in the length u of the output. In the work of Bouragin [2] it was shown how to
extract randomness from two independent sources with min-entropy rate slightly
less than half.

Theorem 9 ([2]) There exists a universal constant γ < 1/2 and a polynomial

time computable function Bou : {0, 1}t × {0, 1}t → {0, 1}u′
that is a (v, ε)-two-

source extractor, with v = γt, ε = 2−Ω(u′), and u′ = Ω(t).

It follow from Lemma 5 that Bou is also an average-case extractor as needed.
Furthermore, this construction lets us get two-source extractors with statistical
distance as small as we want. Namely, to get ε = 2−u−ω(logn) we simply use it
with u′ sufficiently larger than u. Then we can truncate the output to length u
without increasing the statistical distance, thus getting the parameters that we
need.

Remark 1. The scheme Π uses a two-source extractor. We show that the con-
struction can be easily modified to use a c-source extractor, for any c > 2:



instead of having two secret keys, maintain c secret keys S1, . . . , Sc; each key Si
is used to encrypt and decrypt a random seed Xi sampled independently, and
the message is hidden using the random bits extracted from Xi’s—we call it a
c-split-state encryption scheme. It follows from the same proof as above that,
this scheme is secure in the split-state model. This can be used to improve the
parameters of our construction.

5 Conclusion and Future Work

In this paper, we study after-the-fact leakage for public-key encryption schemes.
We show that a meaningful notion of security, namely, entropic security, can
be achieved even at the presence of arbitrary (but bounded) leakage after the
ciphertext is generated, and furthermore, the full fledged semantic security can
be retained if considering some restricted form of leakage, namely a split-state
model.

It is, of course, very interesting to explore other notions of security and other
models in the context of after-the-fact leakage. For instance, Naor and Segev [16]
showed that PKE that is semantically secure resilient to before-the-fact leakage
can be transformed into a scheme that is CCA2-secure resilient to before-the-
fact leakage, following the Naor-Yung “double encryption” paradigm [7, 17]. It is
interesting to see if a similar transformation can be done even with after-the-fact
leakage.

Furthermore, recently, there has been some developments in leakage resilient
cryptography in the continuous leakage model. One question studied in [14, 10]
is how to transform any circuit with a secret hard-coded, into another one that
hides the secret even at the presence of arbitrary leakage during the computation
of the circuit, in the OCL model. It would be interesting to investigate if their
techniques can be applied to our scheme to make it secure even in the continuous
leakage model.

Another interesting question is to handle leakage from the encryption ran-
domness, not just the secret key. Perhaps the dense-model theorem from [9] can
be used to prove ressitance at least to logarithmically many leakage bits.

Beyond just encryption, it is interesting to see if there are “natural” and
useful relaxations of other primitives that can be achieved in the presence of
After-the-Fact Leakage, for example commitment, key-agreement, etc.
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