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Abstract. We consider the task of amplifying the security of a weak
pseudorandom permutation (PRP), called an ε-PRP, for which the com-
putational distinguishing advantage is only guaranteed to be bounded by
some (possibly non-negligible) quantity ε < 1. We prove that the cascade
(i.e., sequential composition) of m ε-PRPs (with independent keys) is an
((m − (m − 1)ε)εm + ν)-PRP, where ν is a negligible function. In the
asymptotic setting, this implies security amplification for all ε < 1− 1

poly
,

and the result extends to two-sided PRPs, where the inverse of the given
permutation is also queried. Furthermore, we show that this result is
essentially tight. This settles a long-standing open problem due to Luby
and Rackoff (STOC ’86).
Our approach relies on the first hardcore lemma for computational in-
distinguishability of interactive systems: Given two systems whose states
do not depend on the interaction, and which no efficient adversary can
distinguish with advantage better than ε, we show that there exist events
on the choices of the respective states, occurring each with probability
at least 1 − ε, such that the two systems are computationally indistin-
guishable conditioned on these events.

1 Introduction

1.1 Motivation: Weak PRPs

The security of several cryptographic schemes relies on the assumption that an
underlying block cipher is a pseudorandom permutation (PRP), a keyed family
of permutations E = {Ek}k∈K with the following property: any computationally
bounded distinguisher can only decide with negligible advantage over random
guessing whether it is given access to EK (under a random secret key K) or to
a uniformly chosen permutation with the same domain.

However, pseudorandomness is a very strong requirement, and continuous
progress in cryptanalysis raises some doubts as to whether block-cipher designs
such as the Advanced Encryption Standard (AES) are indeed secure PRPs. It



is therefore a prudent approach, as well as a central question in theoretical
cryptography, to investigate weaker assumptions on a block cipher which are
sufficient to efficiently solve a certain cryptographic task at hand.

A natural weakening of a PRP, considered in this paper, is to only require
that the best advantage of a computationally restricted distinguisher is bounded
by some given quantity ε < 1; we refer to such a primitive as an ε-PRP. In
particular, in the asymptotic setting, ε is not required to be a negligible function.
Instead, it may be a constant or even moderately converge to one as a function of
the security parameter. For instance, common sense dictates that AES is much
more likely to be a 0.99-PRP, rather than a fully secure PRP.

1.2 Our Result: Security Amplification of PRPs by Cascading

We investigate the natural and central problem of finding an efficient construc-
tion of a fully secure PRP (i.e., a δ-PRP for a negligible δ) from any ε-PRP
E = {Ek}k∈K. Such constructions should work for arbitrary ε < 1 and call E

as few times as possible (ideally, log(1/δ) · (log (1/ε))
−1

times to implement a
δ-PRP). This is in the same spirit of the long line of research devoted to security
amplification initiated by Yao [16] in the context of one-way functions.

The most natural approach is the m-fold cascade, a construction which out-
puts the value

(Ek1 ◦ · · · ◦ Ekm)(x)

on input x and keys k1, . . . , km (which are chosen independently). Here, ◦ denotes
(sequential) composition of permutations.

Despite its simplicity, proving security amplification for the cascade has been
a long-standing open problem. On the one hand, Luby and Rackoff [6] and
Myers [12] showed that the c-fold cascade is a ((2 − ε)c−1εc + ν)-PRP for any
constant c, where ν is a negligible additive term, but their results fall short
of implying that a sufficiently long cascade yields a fully secure PRP for a non-
negligible ε. On the other hand, Maurer and Tessaro [10] showed that the cascade
of arbitrary (polynomial) length m is a (2m−1εm + ν)-PRP, but their bound,
which only implies security amplification when ε < 1

2 , is clearly not tight in view
of the superior result for the constant-length case [6, 12].

Our Result on Cascades. This paper closes this gap by providing an exact
characterization of the security amplification properties of the cascade: We prove
that the cascade of m ε-PRPs (with domain X ) is a ((m− (m− 1)ε)εm + ν)-
PRP, i.e., it is security amplifying for essentially any ε < 1 − 1

|X | .
1 The result

extends to two-sided ε-PRPs, where the inverse can also be queried, and is shown
to be nearly tight. Also, this result arises from the application of new generic
techniques of independent interest, illustrated in the next section.

1 This restriction is necessary, as an ε-PRP with a fixed point (independent of the
key value) can satisfy ε = 1− 1

|X| , and the cascade obviously preserves such a fixed
point.



Further Related Work. Less efficient constructions of fully secure PRPs
from ε-PRPs exist: Maurer and Tessaro [11] showed that XORing two indepen-
dent keys at both ends of the cascade yields an (εm + ν)-PRP. Alternatively,
techniques [13, 2, 10] for strengthening the security of pseudorandom functions
(PRF) can be used in conjunction with known PRF-to-PRP conversion tech-
niques such as [7]. However, this paper improves on these works in at least two
respects: First, we show that similar amplification is achieved with better effi-
ciency by the most natural construction. Second, our approach entails a new set
of generic techniques which promise to be applicable in a wider context.

Additionally, let us point out that cascades have been studied in other con-
texts and models; a comprehensive discussion is deferred to the full version due
to space constraints.

1.3 Our General Paradigm: The Interactive Hardcore Lemma and
High-Entropy Permutations

The following technique is well known in the study of random processes: One
can always define events A and B on any two finite random variables X and Y ,
by means of conditional probability distributions PA|X and PB|Y , such that:

(i) X and Y are equally distributed conditioned on the respective events, i.e.,
PX|A = PY |B,

(ii) P [A] = P [B] = 1 − d(X,Y ), where d(X,Y ) is the so called statistical
distance, which equals the best advantage of a computationally unbounded
distinguisher in distinguishing X and Y .

A computational version of this statement is due to Maurer and Tessaro [11],
and was used to prove security amplification results for PRGs. In this paper, we
take this approach one step further by presenting a computational version of the
above statement for discrete interactive systems.

CC-Stateless Systems. We consider the general class of convex-combination
stateless (or simply cc-stateless) interactive systems [10]. Like most crypto-
graphic systems of interest, these systems have the property that the answer
of each query can be seen as depending solely on the query input and on an ini-
tial state, but does not depend on previous queries and their answers. A simple
example is the cc-stateless system implementing a permutation EK for a keyed
family of permutations {Ek}k∈K and a uniform random key K ∈ K. A further
example is a uniform random permutation (URP) P on a set X , a system choos-
ing a permutation P : X → X uniformly at random, and answering each query
x as P (x). Moreover, a randomized encryption scheme where each encryption
depends on the random key and some fresh randomness is also cc-stateless.

We stress that being cc-stateless is a property of the input-output behavior of
a system, rather than of its actual implementation: Indeed, any implementation
using such an initial state may be inefficient (e.g., due to its large size), but at
the same time an efficient implementation of a cc-stateless system may be fully
stateful. For example, an efficient implementation of a URP keeps an interaction-
dependent state (in form of a table of all input-output pairs associated with all



previous queries) and employs lazy sampling, returning for each new query a
uniformly distributed value among those not returned yet.

The Hardcore Lemma.Our main technical tool is the Hardcore Lemma (HCL)
for computational indistinguishability (Theorem 2): Informally, it states that if
all computationally bounded distinguishers only achieve advantage at most ε in
distinguishing two cc-stateless systems S and T, then there exist events A and
B, defined on the respective initial states of (the cc-stateless representations of)
S and T, such that the following holds:

(i) The (cc-stateless representations of the) systems S and T are computa-
tionally indistinguishable conditioned on the respective events A and B.

(ii) Both events occur with probability at least 1− ε.

In addition, some applications of the HCL require the ability to efficiently sim-
ulate S and T under the assumption that the associated events occur (or do
not occur), possibly with the help of some short (but not necessarily efficiently-
samplable2) advice. In general, it is unclear whether this is possible given any two
events satisfying (i) and (ii), even if both systems are efficiently implementable.

As an illustrative example, let S = EK and T = P, where K ∈ K is uniformly
distributed, E = {Ek}k∈K is an efficiently computable family of permutations,
and P is a URP (all permutations are on the n-bit strings). If E is an ε-PRP,
the HCL yields an event A defined on K and an event B defined on a uniformly
chosen permutation table P , both occurring with probability at least 1 − ε,
such that EK′ (for K ′ sampled from PK|A) and a system P′ (implementing a
permutation table P ′ sampled from PP |B) are computationally indistinguishable.
While EK′ is efficiently implementable given K ′, a representation of P ′ requires
2Θ(n) bits, and it is unclear how to define a short advice (i.e., with length poly(n))
that can be used to efficiently simulate P′. However, quite surprisingly, we will
show that one can always find events with short advice as long as S and T are
efficiently implementable. This will be the major challenge in proving the HCL
for the interactive setting.

The core of our proof is a tight generalization (Theorem 1) of Impagliazzo’s
HCL [5] to the setting of guessing a random bit given access to some interactive
system whose behavior is correlated with the bit value.

Cascade of Permutations with High Min-Entropy. We briefly illustrate
how the HCL is used to prove our bounds for the cascade of ε-PRPs. The main
observation is that P ′ as above has min-entropy at least

H∞(P ′) = log

(
min
π

1

P [P ′ = π]

)
= log

(
min
π

P [B]

P [P = π] · P
[
B
∣∣P = π

]) ≥ log (2n!)− log

(
1

1− ε

)
,

2 For now, we only consider the non-uniform setting, thus efficient samplability is not
a requirement.



i.e., at most log
(
(1− ε)−1

)
away from the maximum achievable min-entropy.

This gap potentially makes P′ easily distinguishable from a URP. However, we
prove (Theorem 3) that the cascade of (at least) two such permutations is indis-
tinguishable from a URP for computationally unbounded distinguishers making
at most an exponential number of queries and even when allowing queries to the
inverse. (The proof uses techniques from the random systems framework [8], and
is of independent interest.)

The main security amplification result (Theorem 4) follows from the obser-
vation that by the above at least two (independent) permutations EKi and EKj
(for i 6= j) in the cascade EK1 ◦ · · · ◦EKm (for independent keys K1, . . . ,Km) are
computationally indistinguishable from P′, except with probability εm +m(1−
ε)εm−1, and in this case the cascade is computationally indistinguishable from a
URP by Theorem 3. The final bound follows from a more fine-grained analysis.

Uniform vs. Non-Uniform Proofs.The results of this paper are formulated
in a concrete, non-uniform, computational model. This simplifies the presen-
tation considerably and helps conveying the main ideas. In the full version, we
highlight the changes required in order to obtain uniform statements and proofs.

2 Preliminaries

Calligraphic letters X ,Y, . . . denote sets and events, upper-case letters X,Y, . . .
random variables (with expected values E [X] ,E [Y ] , . . .), and lower-case letters
x, y, . . . the values they take. Moreover, P[A] is the probability of an event A (we
denote as A its complement) and we use the shorthands PX(x) := P[X = x],
PX|Y (x, y) := P[X = x|Y = y], PXA|Y B(x, y) := P[A ∧ X = x|B ∧ Y = y],
etc. Also, PX , PX|Y , PAX|BY denote the corresponding (conditional) probability

distributions,3 and x
$← PX is the action of sampling a value x with distribution

PX . (We use x
$← S to denote the special case where x is drawn uniformly

from a finite set S.) The statistical distance d(X,Y ) (or d(PX ,PY )) of X and
Y (both with range S) is defined as d(X,Y ) := 1

2

∑
x∈S |PX(x)− PY (x)| =∑

x:PX(x)≥PY (x) (PX(x)− PY (x)). Also, recall that a function is negligible if it
vanishes faster than the inverse of any polynomial.

Computational Model. We consider interactive randomized stateful algo-
rithms in some a-priori fixed RAM model of computation. Such an algorithm
keeps a state (consisting, say, of the contents of the memory space it employs),
and answers each query depending on the input of this query, some coin flips,
the current state (which may be updated), and (possibly) one or more queries to
an underlying system. It is also convenient to denote by A[σ] the algorithm ob-
tained by setting the state of A to σ (provided σ is a compatible state), and then
behaving according to A’s description. We say that A has time complexity tA
(where tA is a function N×N→ N) if the sum of the length of the description of
A, of s, and the total number of steps of A is at most tA(q, s) for all sequences of

3 In particular, PX|Y and PAX|BY take two arguments corresponding to all possible
values of X and Y , respectively.



q queries, all compatible initial states with size s, and all compatible interactions
with an underlying system. We use the shorthand tA(q) := tA(q, 0). Furthermore,
sA : N→ N is the space complexity of A, where sA(q) is the worst-case amount
of memory used by A when answering any q queries.

Systems and Distinguishers. This paper considers abstract discrete interac-
tive systems [8], denoted by bold-face letters S,T, . . ., taking as inputs queries
X1, X2, . . . and returning outputs Y1, Y2, . . .. Such systems may be implemented
by an interactive algorithm A (in which case we sometimes write A as a place-
holder for the system it implements to explicit this fact), but may also arise
from an arbitrary random process. The input-output behavior of the system
S is fully described by the (infinite) family of conditional probability distri-
butions pSYi|XiY i−1 (for i ≥ 1) of the i-th output Yi given the first i queries

Xi = [X1, . . . , Xi], and the first i− 1 outputs Y i−1 = [Y1, . . . , Yi−1]. In general,
every statement that involves a system S holds for any realization of the system
S, i.e., it only depends on its input-output behavior. In particular, we say that
two systems S and T are equivalent, denoted S ≡ T, if they have the same
input-output behavior, i.e., pSYi|XiY i−1 = pTYi|XiY i−1 for all i ≥ 1. Moreover, we
say that an algorithm A implements the system S if A ≡ S.

A distinguisher D is a special type of system which interacts with another
system S by means of q queries and outputs a decision bit D(S) depending on
their outputs: Its advantage in distinguishing systems S and T is

∆D(S,T) := |P [D(S) = 1]− P [D(T) = 1]| .

Moreover, ∆q(S,T) is the best distinguishing advantage ∆D(S,T) over all q-
query D, whereas ∆t,q(S,T) is used when the maximization is restricted to
distinguishers implemented by an algorithm with time complexity t.

Stateless Systems. A system S is called stateless if the i-th answer Yi only
depends on the i-th query Xi, that is, there exists a conditional distribution pSY |X
such that pSYi|XiY i−1(yi, x

i, yi−1) = pSY |X(yi, xi) for all i ≥ 1, xi = [x1, . . . , xi],

and yi = [y1, . . . , yi]. Furthermore, S is convex-combination-stateless (or simply
cc-stateless) [10] if there exists a system T(·) accessing a random variable S
(called the initial state) such that S ≡ T(S) and T(s) is stateless for all values
s taken by S. To save on notation, we usually write S(·) instead of T(·), but we
stress that S(·) and S are different objects, despite their notational similarity.
We refer to S(S) as the cc-stateless representation of S.

It is crucial to remark that being cc-stateless is a property of the input-
output behavior of a system: Its (efficient) implementation may well be stateful,
and its cc-stateless representation may be completely inefficient (e.g., because
the description of the initial state is even too large to be processed by an efficient
algorithm).

Random Functions and Permutations.A system F taking inputs from a set
X and returning outputs in Y is a random function X → Y if for any two equal
queries Xi = Xj we have Yi = Yj for the respective answers. Furthermore, if
X = Y, it is called a random permutation ifXi 6= Xj also implies Yi 6= Yj . Typical



(cc-stateless) examples are uniform random function (URF) R : X → Y, which
answers according to a uniformly chosen function X → Y, a uniform random
permutation (URP) P : X → X , implementing a uniformly chosen permutation
X → X , or EK for a permutation family {Ek}k∈K and a random K ∈ K.

The initial state of a cc-stateless random function F can always be seen
without loss of generality as a (randomly chosen) function table F according to
which F answers its queries, and usually write F(x) instead of F (x). In particular,
the inverse Q−1 of a cc-stateless permutation Q is well-defined, and 〈Q〉 is
the two-sided random permutation which allows both forward queries (x,+)
returning Q(x) as well as backward queries (y,−) returning Q−1(y). The cascade
Q′ B Q′′ of two random permutations is the system which on input x returns
Q′′(Q′(x)), i.e., it implements the composition of the associated permutation
tables. (This extends naturally to longer cascades.) Note in particular that for
any cascade we have Q1 B · · · B Qm ≡ P whenever there exists i such that
Qi ≡ P for a URP P. Moreover, we let 〈Q′〉B 〈Q′′〉 := 〈Q′ B Q′′〉.

An efficiently implementable family of permutations E = {Ek}k∈K with do-
main X and indexed by keys k ∈ K is an ε-pseudorandom permutation (ε-PRP)
if ∆t,q(EK ,P) ≤ ε for all polynomially bounded t and q, a uniform K ∈ K,
and a URP P. It is a two-sided ε-PRP if 〈EK〉 is efficiently implementable and
∆t,q(〈EK〉 , 〈P〉) ≤ ε for all polynomially bounded t and q.

3 Hardcore Lemmas for Interactive Systems

3.1 System-Bit Pairs, Measures, and State Samplers

We consider the general setting of system-bit pairs [10] (S, B) consisting of a
bit B (with an associated probability distribution PB), and a system S = S(B)
whose behavior depends on the outcome of the bit B. A system-bit pair (S, B)
is to be interpreted as a system which parallely composes S and a correlated
bit B (which is initially chosen, before any interaction with S has taken place).
The notion of a cc-stateless system-bit pair (S(S), B(S)) is obtained naturally.
Also, an implementation A(S,B) of a system-bit pair (S, B) is without loss of
generality an algorithm which outputs the bit B and then simulates the system
S(B).

We associate with every system-bit pair (S, B) a game where an adversary
A interacts with S(B) and outputs a binary guess A(S(B)) ∈ {0, 1} for B: Its
guessing advantage is defined as the quantity

GuessA(B |S) := 2 · P[A(S(B)) = B]− 1 ∈ [−1, 1].

If GuessA(B |S) = 1, then A always guessesB correctly, whereas GuessA(B |S) =
−1 means that A is always wrong (though flipping A’s output bit yields an ad-
versary which is always correct.) The shorthand Guesst,q(B |S) denotes the best
guessing advantage taken over all adversaries with time complexity t and issuing
at most q queries to S.



Example 1. An example is the (cc-stateless) system-bit pair (R, B) for a URF
R : X → {0, 1} and B := ⊕x∈XR(x) is the parity of its function table. It is easy
to see that Guessq(B |R) = 0 for all q < |X |.

Example 2. If (F, B) is such that B is uniform, and F behaves as a system S if
B = 0, and as another system T if B = 1, then GuessD(B |F) = ∆D(S,T) for
all D by a standard argument. Note that if both S and T are cc-stateless, then
(F, B) is also cc-stateless.

Measures. A measure M for a cc-stateless system S ≡ S(S), where S ∈ S is
the initial state, is a mapping M : S → [0, 1]. Its density is defined as µ(M) :=
E [M(S)] =

∑
s∈S PS(s) · M(s). The measure M is naturally associated with a

probability distribution PM on S such that PM(s) := PS(s) · M(s) · µ(M)−1

for all s ∈ S. Also, we define the complement of a measure M as the measure
M such that M(s) := 1 −M(s) for all s ∈ S. We repeatedly abuse notation

writing S
$←M instead of S

$← PM.
Traditionally, measures are seen as “fuzzy” subsets of S. Alternatively, it

is convenient to think of M in terms of a conditional probability distribution
PA|S with PA|S(s) := M(s) which adjoins the event A on the choice of S: In
particular, µ(M) = P[A], PM = PS|A, and PM = PS|A. In the following, we
stick to measures for stating and proving our hardcore lemmas, while an event-
based view will be useful when exercising these results.

State Samplers. Ideally, the hardcore lemma for a cc-stateless system-bit pair
(S, B) ≡ (S(S), B(S)) (for initial state S ∈ S) states that if Guesst,q(B |S) ≤ ε,
then there exists a measure M on S such that (i) µ(M) ≥ 1 − ε and (ii)

Guesst′,q′(B(S′) |S(S′)) ≈ 0 for S′
$← M and t′, q′ as close as possible to t, q.

Whenever S(S) is a random variable, this is equivalent to (a tight) version of
Impagliazzo’s Hardcore Lemma [4]. However, applications of the hardcore lemma
(as the one we give later in this paper) require the ability, possibly given some

short advice, to efficiently simulate (S(S′), B(S′)) for S′
$←M or (S(S′′), B(S′′))

for S′′
$←M.4 While in the context of random variables the advice is generally

a sample of S′ itself, this approach fails in the setting of interactive systems: Re-
call that the representation (S(S), B(S)) is possibly only a thought experiment,
and the description of S′ may be of exponential size, or no efficient algorithm
implementing (S, B) from S′ exists, even if the system-bit pair itself is efficiently
implementable.

To formalize the concept of an advice distribution, we introduce the notion
of a state sampler for a cc-stateless system (such as e.g. a system-bit pair).

Definition 1 (State Samplers). Let S ≡ S(S) be a cc-stateless system with
implementation AS and S ∈ S, let ζ1, ζ2 ∈ [0, 1], and let M : S → [0, 1] be a

4 Formally, one actually needs to prove that Guesst′,q′(B(S′) |S(S′)) ≈ 0 holds even
given access to the advice: While this is implicit in the non-uniform setting (every
adversary with advice can be turned in an equally good one without advice), the
proof is more challenging in the uniform setting, cf. the full version.



measure for S. A (ζ1, ζ2)-(state) sampler O for M and AS with length ` is a
random process O such that:

(i) O always returns a pair (σ, z) with σ being a valid state for AS with |σ| ≤ `
and z ∈ [0, 1];

(ii) For (Σ,Z)
$← O, we have5

(AS[Σ], Z) ≡ (S(S), Z ′(S)),

where Z ′(S) ∈ [0, 1] is a random variable (which only depends on S) that
differs from M(S) by at most ζ1, except with probability ζ2, for any value
taken by S.

Example 3. For all implementationsAS of S, the all-one measure (i.e., PM = PS)
admits an error-less sampler O which returns the initial (void) state for AS and
z = 1.

Note that O is not required to be efficiently implementable, but black-box access

to state samplers allow for efficient simulation of S(S′) for S′
$←M using reject-

sampling (provided S admits an efficient implementation): Given the output
(Σ,Z) sampled from a (ζ1, ζ2)-sampler O, we flip a coin B with PB(1) = Z:
Consider the distribution PΣ|B=1 of Σ conditioned on the outcome B = 1. If

ζ1 = ζ2 = 0, it is not hard to verify that AS[Σ′] ≡ S(S′) for Σ′
$← PΣ|B=1. This

is because, by definition, we have (AS[Σ], Z,B) ≡ (S(S),M(S), B′), where B′ is
a bit which is 1 with probability M(S), and thus in particular AS[Σ′] ≡ S(S′)

where S′
$← PS|B′=1. In addition, since PB′|S(1, s) := M(s) and PB′(1) :=∑

s∈S PS(s) · M(s) = µ(M),

PS|B′(s, 1) =M(s) · PS(s) · µ(M)−1 = PM(s).

Of course, one can similarly simulate S(S′′) for S′′
$← PM, as we obtain a

corresponding sampler by just replacing z by 1 − z in the output (σ, z). This
approach can be extended to non-zero errors ζ1 and ζ2 with some care.

3.2 The Hardcore Lemma for System-Bit Pairs

In the following, for understood parameters γ, ε, ζ1, and ζ2, we define

ϕhc :=
6400

γ2(1− ε)4
· ln
(

160

γ(1− ε)3

)
and ψhc :=

200

γ2(1− ε)4ζ21
· ln
(

2

ζ2

)
.

We now state the HCL for cc-stateless system-bit pairs. Even though we apply
the result only in a more restricted setting, we prove a more general statement
for arbitrary cc-stateless system-bit pairs.

5 That is, we consider the parallel composition of a system (either AS[Σ] or S(S)) and
a correlated [0, 1]-valued random variable.



Theorem 1 (HCL for System-Bit Pairs). Let (S, B) ≡ (S(S), B(S)) be
a cc-stateless system-bit pair admitting an implementation A(S,B) with space
complexity sA(S,B)

. Furthermore, for some integers t, q > 0 and some ε ∈ [0, 1),

Guesst,q(B |S) ≤ ε.

Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1
2 , there exists a measure M for

(S, B) with µ(M) ≥ 1− ε such that the following two properties are satisfied:

(i) For S′
$←M, t′ := t/ϕhc, and q′ := q/ϕhc,

Guesst′,q′(B(S′) |S(S′)) ≤ γ.

(ii) There exists a (ζ1, ζ2)-sampler for M and A(S,B) with length sA(S,B)
(ψhc ·

q′). Moreover, if (S(s), B(s)) is deterministic for all s, then there also exists
a (0, 0)-sampler for M and A(S,B) with length sA(S,B)

((7 · γ−2 · (1− ε)−3 +
1) · q′).

In the remainder of this section, we outline the main ideas behind the proof.
The complete proof is found in the full version.

Proof Outline. The proof is by contradiction: We assume that for all mea-
sures M with µ(M) ≥ 1− ε admitting a (ζ1, ζ2)-sampler as in (ii), there exists
an adversary A with time complexity t′ and query complexity q′ such that

GuessA(B(S′) |S(S′)) > γ for S′
$←M. The core of the proof consists of prov-

ing that, under this assumption, there exists a sufficiently small family of ad-
versaries A (more specifically, |A| = 7 · γ−2 · (1 − ε)−3 + 1) such that either
(A) α(S) > γ holds with probability higher than 1 − 1−ε

4 over the choice of

S, where α(s) := E
[
GuessA

′
(B(s) |S(s))

]
for all s, where A′

$← A, or (B)

E [α(S′)] > Θ
(
(1− ε)2γ

)
for all measures M with density 1− ε and S′

$←M.
In Case (A), a simple majority-voting based strategy yields a good adversary

breaking the assumed hardness of (S, B), whereas in Case (B) such an adversary
can be built from A using techniques similar to the case of random variables [5,
3]. Both adversaries heavily rely on the cc-stateless property of (S, B).

To show the existence of an appropriate family, we associate with each family
A and τ ∈ N a measure MA,τ such that elements for which A is worse, i.e.,
|A| · α(s) ≤ τ , are given high weight (i.e. MA,τ (s) = 1), whereas elements for
which A performs well, i.e., |A|·α(s) ≥ τ+ 1

γ(1−ε) , are not chosen (MA,τ (s) = 0).

An intermediate measure value is assigned to states not falling into one of these
two categories. In particular, M∅,0 is the all-one measure (i.e., PM equals the
state distribution PS), which has density 1 ≥ 1 − ε. A crucial property is that
MA,τ admits an (ζ1, ζ2)-state sampler for all A and τ , which is shown by using
the observation that MA,τ (S) can always be estimated given black-box access
to (S(S), B(S)). We then consider the following iterative process: It starts with
A := ∅ and then, at each round, it possibly increases τ to ensure that µ(MA,τ ) ≥
1−ε and then uses the assumption of the HCL being wrong to find an adversary
achieving advantage larger than γ for MA,τ , and adds it to A. We prove that
within 7 · γ−2 · (1− ε)−3 + 1 iterations, A satisfies (A) or (B).



Remark 1. A natural question is whether the HCL can be extended to arbitrary
system-bit pairs, where the measure is defined on the randomness of the imple-
mentation of the system-bit pair, regardless of the system having a cc-stateless
representation. Yet, techniques similar to the ones used in counter-examples
to soundness amplification for interactive arguments via parallel repetition [1,
14] yield (non cc-stateless) efficiently implementable system-bit pairs for which,
given multiple independent instances of the system-bit pair, the probability of
guessing all of the bits given access to all of the associated systems in parallel
does not decrease with the number of instances. If such a a general HCL were
true, then it is not hard to prove that the guessing probability would decrease
exponentially in the number of instances.

3.3 The Hardcore Lemma for Computational Indistinguishability

This section presents the hardcore lemma for computational indistinguishability
of interactive systems, which generalizes the statement for random variables
previously shown in [11].

Theorem 2 (HCL for Computational Indistinguishability). Let S ≡ S(S)
and T ≡ T(T ) be cc-stateless systems, with respective implementations AS (with
space complexity sAS

) and AT (with space complexity sAT
). Furthermore, for

some integers t, q > 0 and some ε ∈ [0, 1),

∆t,q(S,T) ≤ ε.

Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1
2 , there exist measures MS and

MT such that µ(MS) ≥ 1− ε and µ(MT) ≥ 1− ε and the following properties
hold:

(i) For S′
$←MS, T ′

$←MT, t′ := t/ϕhc, and q′ := q/ϕhc, we have

∆t′,q′(S(S′),T(T ′)) ≤ 2γ;

(ii) There exist a (ζ1, ζ2)-sampler OS for MS and AS with length sAS
(ψhc ·

q′) and a (ζ1, ζ2)-sampler OT for MT and AT with length sAT
(ψhc · q′).

Furthermore, if both S and T are random functions, then both samplers
can be made error-less with lengths sAS

(ψ · q′) and sAT
(ψ · q′), where ψ :=

7 · γ−2 · (1− ε)−3 + 1.

We postpone the proof to the full version, which relies on Theorem 1, and only
present the main ideas in the following.

Proof Sketch.We define (F, B) ≡ (F(X,B), B) to be the cc-stateless system-
bit pair with a uniform random bit B and where F behaves as S if B = 0 and
as T if B = 1. In particular, the initial state (X,B) of (F, B) is sampled by first

letting B
$← {0, 1}, and then choosing X

$← PS if B = 0 and X
$← PT otherwise,

and

(F(x, b), B(x, b)) =

{
(S(x), 0) if b = 0,
(T(x), 1) if b = 1.



By a standard argument ∆t,q(S,T) = Guesst,q(B |F) ≤ ε holds (also cf. Exam-
ple 2), and Theorem 1 thus implies that there exists a measure M for (F, B)

such that µ(M) ≥ 1 − ε, and Guesst′,q′(B
′ |F(X ′)) ≤ γ, where (X ′, B′)

$←M,
t′ = t/ϕhc, and q′ = q/ϕhc. Define MS(s) := M(s, 0) and MT(t) := M(t, 1),
and note that

PX′B′(s, 0) =
1

2µ(M)
· PS(s) · MS(s),

PX′B′(t, 1) =
1

2µ(M)
· PT (t) · MT(t).

(1)

If B′ were uniformly distributed (i.e.,
∑
s PX′B′(s, 0) =

∑
t PX′B′(t, 1) = 1

2 ), we
then would have µ(MS) = µ(MT) = µ(M) ≥ 1 − ε by (1), and (X ′, B′) could

be sampled by choosing B′ uniformly, and letting X ′ = S′
$←MS if B′ = 0, and

X ′ = T ′
$←MT if B′ = 1. This would also yield

∆t′,q′(S(S′),T(T ′)) = Guesst′,q′(B
′ |F(X ′)) ≤ γ,

concluding the proof. The main challenge in the full proof is dealing with the
fact that B′ is generally only Θ(γ)-close to uniform.

Remark 2. Theorem 2 can be seen as a computational analogue of Lemma 5
in [9], which shows a similar property for information-theoretic indistinguisha-
bility (i.e., with respect to computationally unbounded distinguishers). Theo-
rem 2 can of course also be used in the IT setting, and it is somewhat stronger
in that it yields events defined on the initial state of the system, instead of
interaction-dependent sequences of events as in [9]. However, Lemma 5 in [9]
holds for arbitrary systems and presents a tight reduction with q′ = q and no
additive term γ, which we do not know how to achieve in the computational
setting.

Connection to Computational Entropy. Let Q be a cc-stateless ran-
dom permutation on X (with N := |X |) with function table Q and such that
∆t,q(Q,P) ≤ ε for a URP P. Theorem 2 yields events A on Q and B on a
uniform permutation table P such that P [A] ≥ 1 − ε, P [B] ≥ 1 − ε, and
∆t′,q′(Q

′,P′) ≤ γ, where Q′ and P′ are cc-stateless random functions with

function tables Q′
$← PQ|A and P ′

$← PP |B, respectively. In particular, PP ′(π) =
PP (π)·PB|P (π)

P[B] ≤ 1
(1−ε)·(N !) for all permutations π, and the min-entropy H∞(P ′) :=

− log maxπ PP ′(π) is at least log(N !) − log
(
(1− ε)−1

)
. Informally, this can be

interpreted as Q having “computational” min-entropy at most log
(
(1− ε)−1

)
away from the maximum achievable entropy log(N !) with probability 1 − ε.6

Clearly, the statement also extends to the two-sided case as well as to other
types of systems.

6 We stress, however, that the distribution P ′ depends on t, q, as well as on γ.



Remark 3. Another useful fact is that P ′ has statistical distance ε from P . This
follows from the observation that the distribution of P ′ is a convex combination
of flat distributions over subsets of size at least (1 − ε) · (N !): As each such
distribution is ε-away from uniform, the bound follows from the convexity of the
statistical distance. Therefore, ∆t,q(P

′,P) ≤ ∆t,q(〈P′〉 , 〈P〉) ≤ d(P ′, P ) ≤ ε for
all t, q.

4 Cascade of Weak Permutations

4.1 Cascade of Permutations with Large Entropy

Let Q1 and Q2 be two independent cc-stateless random permutations on the set
X (with N := |X |) with the property that the min-entropies of their respective
function tables Q1 and Q2 satisfy H∞(Q1) ≥ log(N !) − log

(
(1− ε)−1

)
and

H∞(Q2) ≥ log(N !) − log
(
(1− ε)−1

)
for some ε ∈

[
0, 1− 1

N

)
. We prove that

the cascade Q1 B Q2 is indistinguishable from a URP P for computationally
unbounded distinguishers, both in the one- and in the two-sided cases.

Theorem 3 (Cascade of Large-Entropy Permutations). For all q, Λ ≥ 1,

∆q(〈Q1 B Q2〉 , 〈P〉) ≤ 4qΛ
N + 2Λ(q+Λ)

(1−ε)N + 2

(
q log((1−ε)−1)

Λ

) 1
2

.

The same bound applies to any cascade Q′1 B · · · B Q′m of m independent cc-
stateless random permutations such that Q′i ≡ Q1 and Q′j ≡ Q2 for some

i < j, as such a cascade can be seen as the cascade of two permutations Q1 :=
Q′1B · · ·BQ′i and Q2 := Q′i+1B · · ·BQ′m with the same min-entropy guarantees
on their function tables. The theorem allows free choice of Λ: For our purposes,
it suffices to set Λ := (logN)ζ (for a slowly growing ζ = ω(1) in the security
parameter logN) to achieve indistinguishability for q = poly(logN) queries and

any ε ≤ 1− (logN)3ζ

N .
The core of the proof, which is omitted for lack of space, is a lemma stating

that 〈Qi〉 (for i = 1, 2) is indistinguishable from a random permutation 〈Qi〉Di

which is initialized by letting a carefully chosen distinguisher Di (making Λ
queries) interact with 〈Qi〉, and then answering queries according to a randomly
chosen permutation consistent with Di’s interaction. (This extends a previous
result by Unruh [15] to random permutations.) We employ tools from the random
systems framework [8] (including a new lemma) to prove that the cascade of two
independent such permutations is indistinguishable from a URP.

4.2 Security Amplification of Weak PRPs

Let Q be a cc-stateless random permutation with domain X (for N := |X | = 2n,
where n is the security parameter) such that 〈Q〉 is implemented by the algorithm
A〈Q〉 with time complexity tA〈Q〉 and space complexity sA〈Q〉 . We also consider



the canonical (efficient) implementation of a two-sided URP 〈P〉 that maintains
a table consisting of all input-output pairs (xi, yi) of previous queries as its state,
and, upon a new query (x,+) or (y,−), it chooses uniformly at random a y′ (or
x′) not appearing as the second (first) element in a previous input-output pair,
and adds (x, y′) (or (x′, y)) to the table. (If a corresponding pair is in the table,
it answers accordingly.) Thus each query is answered in time O(log(s)), where s
is the size of the table, and s = O(q · n) after q queries.

The following is the main security amplification result of this paper.

Theorem 4. Let Q1, . . . ,Qm be independent instances of Q and let P be a
URP, and assume that for some t, q we have ∆t,q(〈Q〉 , 〈P〉) ≤ ε. For all γ > 1
and Λ > 0,

∆t′′,q′′(〈Q1 B · · ·B Qm〉 , 〈P〉) ≤ (m− (m− 1)ε) · εm + 4q′′Λ
N + 2Λ(q′′+Λ)

(1−ε)N

+ 2

(
q′′ log((1−ε)−1)

Λ

) 1
2

+ (2m+ 2)γ,

where t′′ := t/ϕhc−(m−1) max
{
tA〈Q〉(q

′′, sA〈Q〉(q
′′ · ψ)),O (q′′ log(q′′ · (ψ + 1)n))

}
and q′′ := q/ϕhc, for ψ := 7 · γ−2 · (1− ε)−3 + 1 and ϕhc as in Theorem 2.

Essentially the same result can be proven for the single-sided case. The proof
of Theorem 4 follows from the observation that, with very high probability, at
least two permutations in the cascade are computational indistinguishable from
random permutations with large entropy, allowing application of Theorem 3.
Extra work is required to prove a non-trivial bound for the case where at most one
permutation is guaranteed to have high-entropy. The tightness of these bounds
is discussed in Section 4.3.

Proof. Theorem 2 implies that we can define (two-sided) random permutations
〈Q′〉 , 〈Q′′〉, and 〈P′〉 such that the following three properties hold for some p ≤ ε:
(i) The function table of 〈P′〉 has min-entropy at least log(N !)− log

(
(1− ε)−1

)
,

(ii) 〈Q〉 behaves as 〈Q′〉 with probability 1− p and as 〈Q′′〉 with probability p,
and (iii) ∆t′,q′′(〈Q′〉 , 〈P′〉) ≤ 2γ for t′ := t/ϕhc. Furthermore, 〈Q′〉 and 〈Q′′〉 can
both be perfectly implemented using A〈Q〉 initialized with some appropriately
distributed state of length at most sA〈Q〉(q

′′ · ψ) given as advice. Similarly, 〈P′〉
can be simulated by running the above canonical algorithm initialized with an
appropriate state of length O(q′′ · ψ · n). (See the discussion in Section 3.1.)

Additionally, for I ⊆ {1, . . . ,m}, let AI be the event that 〈Qi〉 behaves
as 〈Q′〉 for all i ∈ I whereas 〈Qi〉 behaves as 〈Q′′〉 for all i /∈ I. Likewise,
for independent instances 〈Q′i〉 and 〈Q′′i 〉 (for i = 1, . . . ,m) of 〈Q′〉 and 〈Q′′〉,
respectively, let QI := S1 B · · ·BSm, where Si := Q′i for all i ∈ I and Si := Q′′i
for all i /∈ I.

We now fix some distinguisher D with time complexity t′′ and making q′′

queries, and we first observe that

δD(〈Q1 B · · ·B Qm〉 , 〈P〉) =
∑

I⊆{1,...,m}

qI · δD(〈QI〉 , 〈P〉), (2)



where δD(F,G) := P [D(F) = 1]− P [D(G) = 1] and qI := P [AI ] = (1− p)|I| ·
pm−|I|. Note that the maximum of δD(F,G) over all distinguishers D with time
complexity t′′ and space complexity q′′ is ∆t′′,q′′(F,G).

We first upper bound the summands corresponding to sets I with at most
one element. To this end, for all i = 1, . . . ,m, we define the distinguisher Di

which, given access to a two-sided random permutation 〈S〉, outputs

D(
〈
Q′′1 B · · ·B Q′′i−1 B S B Q′′i+1 B · · ·B Q′′m

〉
),

and is implemented with time complexity t′′+ (m−1)tA〈Q〉(q
′, sA〈Q〉(ψ · q′)) ≤ t′

given the appropriate advice.
We have δ′i := δDi(〈Q′〉 , 〈P〉) = δDi(〈Q′〉 , 〈P′〉) + δDi(〈P′〉 , 〈P〉) ≤ 2γ + ε,

where the bound on the first term follows from the hardcore lemma (for every
fixed value of the advice), whereas the bound on the second term follows from
Remark 3. Additionally, δDi(〈Q〉 , 〈P〉) = (1 − p) · δ′i + p · δ′′i ≤ ε with δ′′i :=
δDi(〈Q′′〉 , 〈P〉) by the indistinguishability assumption on 〈Q〉 and the fact that
t′ < t. Since 〈

Q′′1 B · · ·B Q′′i−1 B P B Q′′i+1 B · · ·B Q′′m
〉
≡ 〈P〉 ,

we obtain δD(〈Q∅〉 , 〈P〉) = δ′′i and δD(
〈
Q{i}

〉
, 〈P〉) = δ′i for all i ∈ {1, . . . ,m},

and thus∑
|I|≤1

qI · δD(〈QI〉), 〈P〉) =

m∑
i=1

1

m
· pm · δ′′i + pm−1(1− p) · δ′i

≤ max
i∈{1,...,m}

{
pm · δ′′i +m · pm−1 · (1− p) · δ′i

}
.

However, for all i ∈ {1, . . . ,m}, we combine all of the above observations to
obtain

pmδ′′i +mpm−1(1− p)δ′i = pm−1(pδ′′i + (1− p)δ′i) + (m− 1)pm−1(1− p)δ′i
≤ pm−1ε+ (m− 1)pm−1(1− p)ε+ 2γ

≤ εm + (m− 1)εm(1− ε) + 2γ

= εm(m− (m− 1)ε) + 2γ,

where we also have used p ≤ ε and the fact that pm + (m− 1)pm−1(1− p) grows
monotonically for p ∈ [0, 1].

To bound the remaining summands of Equation (2) with |I| ≥ 2, we use a
standard hybrid argument and Theorem 3 to obtain

δD(〈QI〉 , 〈P〉) ≤ m · γ +
4q′′Λ

N
+

2Λ(q′′ + Λ)

(1− ε)N
.

This concludes the proof. ut

The following corollary follows by applying the theorem to all γ = 1/p (for
some polynomial p in n) and to all polynomially bounded t, q, and by choosing
an appropriate Λ := nω(1):



Corollary 1. Let E = {Ek}k∈K be a (two-sided) ε-PRP for ε ≤ 1 − 1
poly(n) ,

where n is the security parameter. Then, for any m = poly(n), the cascade {Ek1 ◦
· · · ◦ Ekm}k1,...,km∈K is a (two-sided) (εm(m − (m − 1)ε) + ν)-PRP for some
negligible function ν, where ◦ denotes permutation composition.

4.3 Tightness

Let ε < 1 − 2−n be such that log
(
(1− ε)−1

)
∈ {1, . . . , n}. Let Q : {0, 1}n →

{0, 1}n be the cc-stateless random permutation which initially chooses B ∈ {0, 1}
with PB(0) = ε. If B = 0, then Q behaves as the identity permutation id,
whereas if B = 1 it behaves as a uniformly chosen permutation Q′ with the
constraint that the first log

(
(1− ε)−1

)
bits of Q′(0n) are all equal to 0. Clearly,

it is possible to give an efficient stateful algorithm implementing Q (or 〈Q〉) by
using lazy sampling.7 Also, let Q1, . . . ,Qm be independent instances of Q. We
prove the following two statements:

(i) For all distinguishers D and an n-bit URP P, we have ∆D(〈Q〉 , 〈P〉) ≤ ε,
regardless of their computing power.

(ii) There exists a constant-time distinguisher D∗ making one single (forward)
query such that

∆D∗(Q1 B · · ·B Qm,P) ≥ (m− (m− 1)ε)εm − 1

2n
.

Hence, the bound of Theorem 4 cannot be substantially improved, even if allow-
ing a huge security loss (i.e., t′′ << t and q′′ << q). This extends to arbitrary
m a previous tightness result given by Myers [12] for the special case m = 2.

Q is a two-sided ε-PRP. In the following, let Q and P be random variables
representing the distributions of the permutation tables of Q and P, respectively.
There are (1− ε)(2n!) permutations π for which the last log

(
(1− ε)−1

)
bits of

π(0n) all equal to 0, and the identity id is one such permutation. Hence,

PQ(id) = ε+ (1− ε) · 1

(1− ε)(2n!)
= ε+

1

2n!
≥ 1

2n!
= PP (id).

For all π 6= id, we have PQ(π) ≤ (1 − ε) · 1
(1−ε)(2n!) = 1

2n! = PP (π). This yields

∆D(〈P〉 , 〈Q〉) ≤ d(P,Q) = PQ(id)− PP (id) = ε for all distinguishers D.

7 Also, from any PRP E = {Ek}k∈{0,1}n with n-bit string domain, we can define
a permutation family E′ = {E′k′}k′∈{0,1}log(1/ε)+n which is computationally in-
distinguishable from Q under a uniform (log(1/ε) + n)-bit random key: For all
k′ ∈ {0, 1}log(1/ε) and k ∈ {0, 1}n, let E′k′‖k(x) := x if k′ = 0log(1/ε), and
E′k′‖k(x) := Ek(x) ⊕ Ek(0n)|log((1−ε)−1) otherwise, where z|r sets the last n − r

bits of z ∈ {0, 1}n to be 0 (and leaves the first r unchanged) and ‖ denotes string
concatenation.



Lower Bound for Distinguishing the Cascade. We define D∗ as the dis-
tinguisher querying 0n and outputting 1 if and only if the first log

(
(1− ε)−1

)
bits of the resulting output are all 0, and outputting 0 otherwise. In particu-

lar, P[D∗(P) = 1] = 2− log((1−ε)−1) = 1 − ε, as the output of P on input 0n is
uniform.

Denote as Bi the bit B associated with the i-th instance Qi, and let AI
for I ⊆ {1, . . . ,m} be the event that Bi = 1 for all i ∈ I and Bi = 0 for all
i /∈ I. Furthermore, let E be the event that AI occurs for some I with |I| ≤ 1.
Clearly, P [E ] = εm + m(1 − ε)εm−1 and P

[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E] = 1,
since Q1B · · ·BQm under E behaves either as the identity or as Q′, and in both
cases the first log

(
(1− ε)−1

)
output bits are all 0.

Let us fix I with k := |I| ≥ 2, and let Q′1, . . . ,Q
′
k be independent random

permutations answering according to Q′. Then,

P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣AI] = P [D∗(Q′1 B · · ·B Q′k) = 1] .

For any input x 6= 0n the probability that the first log
(
(1− ε)−1

)
output bits of

Q′k(x) are all 0 is exactly 1 − ε, whereas the probability that Q′k is invoked on
0n is at most 1

(1−ε)2n (as regardless of the input, the output Q′k−1 is uniformly

distributed on a set of at least size (1− ε)2n), and therefore

P [D∗(Q′1 B · · ·B Q′k) = 1] ≥
(

1− 1

(1− ε)2n

)
· (1− ε) = 1− ε− 1

2n
,

which in turn implies P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E] ≥ 1 − ε − 1
2n . From this,

we conclude ∆D∗(Q1 B · · ·B Qm,P) ≥ (m− (m− 1)ε)εm − 1
2n .

5 Conclusions and Open Problems

This paper has presented the first tight analysis of the security amplification
properties of the cascade of weak PRPs, both in the one- and two-sided cases.
Our main tool is a hardcore lemma (Theorem 2) for computational indistin-
guishability of discrete interactive cc-stateless systems. It is our belief that the
generality of this result makes it suitable to the solution of a number of other
problems. For instance, an interesting problem is whether parallel and determin-
istic security-amplifying constructions for arbitrarily weak pseudorandom func-
tions exist. To date, the best known constructions are either randomized [13, 10],
or only work for moderately weak PRFs [2, 10]. Also, quantitative improvements
of our results should also be of interest. One may try to minimize the length of
the state output by the state sampler or to improve the bound of Theorem 3.
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