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Abstract. Ever since the invention of Zero-Knowledge by Goldwasser,
Micali, and Rackoff [1], Zero-Knowledge has become a central building
block in cryptography - with numerous applications, ranging from elec-
tronic cash to digital signatures. The properties of Zero-Knowledge range
from the most simple (and not particularly useful in practice) require-
ments, such as honest-verifier zero-knowledge to the most demanding
(and most useful in applications) such as non-malleable and concur-
rent zero-knowledge. In this paper, we study the complexity of efficient
zero-knowledge reductions, from the first type to the second type. More
precisely, under a standard complexity assumption (ddh), on input a
public-coin honest-verifier statistical zero knowledge argument of knowl-
edge π′ for a language L we show a compiler that produces an argument
system π for L that is concurrent non-malleable zero-knowledge (under
non-adaptive inputs – which is the best one can hope to achieve [2, 3]).
If κ is the security parameter, the overhead of our compiler is as follows:
– The round complexity of π is r + Õ(log κ) rounds, where r is the

round complexity of π′.
– The new prover P (resp., the new verifier V) incurs an additional

overhead of (at most) r + κ · Õ(log2 κ) modular exponentiations.
If tags of length Õ(log κ) are provided, the overhead is only r +
Õ(log2 κ) modular exponentiations.

The only previous concurrent non-malleable zero-knowledge (under non-
adaptive inputs) was achieved by Barak, Prabhakaran and Sahai [4].
Their construction, however, mainly focuses on a feasibility result rather
than efficiency, and requires expensive NP-reductions.

1 Introduction

In this paper, we consider Zero-Knowledge argument systems that are non-
malleable and secure against concurrent man-in-the-middle attacks. In such sys-
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tems, the adversary has complete control over the communication channel and
can behave as honest prover and honest verifier in any polynomial number of
protocols, therefore controlling the scheduling of the messages. We aim at de-
signing efficient argument systems secure against these attacks, namely efficient
concurrent non-malleable zero knowledge argument systems. Despite the extreme
importance of these proof systems, no efficient and secure (plain model) proto-
col for such settings is known until today. Feasibility results have been given
originally by Dolev, Dwork, and Naor (ddn) [5], restricting the adversary to
two simultaneous proofs. In recent work, Barak, Prabhakaran and Sahai [4] have
obtained concurrent and non-malleable zero-knowledge without restricting the
adversary to a bounded number of proofs, however the solutions proposed there
can be viewed as constructing feasibility results only as their methods require
NP reductions and are highly inefficient.

The need of efficient instantiations of concurrent nmzk for useful languages
and its applicability as sub-protocols motivated the introduction of several strong
set-up assumptions [6–8]. In this paper, we focus on achieving efficient trans-
formations in the plain model which does not rely on any setup assumptions.
We show a transformation that on input a public-coin honest-verifier statistical
zero knowledge argument of knowledge π′ for a language L produces a con-
current non-malleable zero-knowledge argument system π for L. Further, our
transformation is an efficiency preserving transformation that does not require
any NP-reduction and works assuming standard number-theoretic assumptions
(see theorem 1 for a precise statement).

It should be noted that cnmzk arguments are significantly harder to con-
struct and analyze. In fact, Lindell proved that in the most general form of the
attack, (non-trivial) cnmzk arguments do not even exist [2, 3]. However, assum-
ing that the honest parties’ inputs are fixed in advance (i.e., are not chosen
adaptively based on the protocol execution), cnmzk was shown to be achievable
by Barak, Prabhakaran, and Sahai (bps). The impossibility results discussed
in [2, 3, 9] and the plausibility results of [4] suggest that cnmzk (under the non-
adaptive input notion) is the best notion of security for proof systems that one
can hope to achieve in the plain model. Our results are the first efficiency pre-
serving transformation for the concurrent man-in-the-middle setting in the plain
model, gaining dramatic efficiency improvements over [4] (see further discussion
on efficiency immediately after the statement of our main result).

Our Results. Assuming the hardness of (standard) decisional Diffie-Hellman
assumption, we show cnmzk argument-of-knowledge (see theorem 1). Our re-
sults require that the hvzk argument system admit statistical simulation and be
an “argument of knowledge”3. We remark that the statistical simulation require-
ment for the given hvzk argument, is easy to achieve as most hvzk protocols

3 The “argument of knowledge” requirement is actually due to the particular definition
of security we aim to achieve, namely simulation extractability (see Definition 1). If
the given protocol is not an argument of knowledge, our transformation still delivers
simulation soundness.
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that we know of already admit statistical simulation (by using statistically hiding
commitments such as [10] – which exist under the ddh assumption).

Theorem 1 (Main Result). Let π′ : 〈P ′ ,V ′〉 be a public coin honest verifier
statistical zero-knowledge argument of knowledge, for some language L ∈ NP.
Let κ be a security parameter, and q be a prime number whose length is de-
termined by κ. Then, assuming that the Decisional Diffie-Hellman Assumption
holds, it is possible to transform π′ into a new argument system π : 〈P,V〉 such
that,

– Protocol π is a computational concurrent non-malleable zero-knowledge ar-
gument of knowledge for L.

– Protocol π has r+ Õ(log κ) rounds of interaction, where r is the round com-
plexity of π′.

– The new prover P (resp., the new verifier V) incurs an additional overhead
of r+κ · Õ(log2 κ) exponentiations in Zq. For tag-based non-malleability, the

overhead is only r + Õ(log2 κ) additional exponentiations in Zq, assuming

tags of length Õ(log κ).

Although our main focus is the plain model, our results about tag-based non-
malleability, lead to more efficient constructions in the Bare-Public-Key (BPK)
model [11]. The BPK model, assumes an untrusted setup which brings it very
close to the plain model. Like the plain model, our results in the BPK model are
the first efficient transformations (see section 5 for more details).

Our starting point to avoid NP-reductions is “Simulatable Commitments”
as defined by Micciancio and Petrank [12] (though our construction and proof
requires development of several new techniques and ideas on top of this work).
Using simulatable commitments, Micciancio and Petrank demonstrate how to
efficiently transform any hvzk argument system into a concurrent zk argument
system which is secure against a cheating verifier V ∗ mounting a concurrent
attack. Their transformation increases the round complexity of the original ar-
gument system by Õ(log κ) and incurs an additional overhead of r + Õ(log κ)
exponentiations in Zq.

Technical Overview and Main Difficulties. We design a new protocol to
make the given protocol πhv secure in the cnmzk model without much compro-
mise in its efficiency. As we explain below, our transformation is conceptually
different from the only known cnmzk protocol of bps. Due to this conceptual
difference in the construction, our proof of security is entirely new.

To explain the main conceptual ideas/differences, we now sketch our trans-
formation.4 At a very high level, our transformation has following structure: (1)
Our verifier, V, first executes a kp/prs preamble for a secret v; (2) Our prover,
P, then commits to 0κ using a (properly instantiated) ddn-commitment; (3) V
then reveals v; (4) and finally, P proves to V that “x ∈ L OR P committed to
v”.
4 Unfortunately, here reader’s familiarity with the bps-protocol and their proof struc-

ture is required.
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Note that in phase-(3) we need an efficient version of ddn-commitments.5

Also, phase 4 needs typically required NP reductions to apply “FLS”-trick which
requires an NP reduction. Instead, we design a new protocol by extending and
applying in a non-trivial way the Micciancio-Petrank (mp) [12] transformation
to the input protocol πhv. We now explain the main conceptual differences from
bps and their proof.

Note that our protocol has only four phases whereas bps has five: we do not
require a separate phase involving a statistically hiding commitment to 0κ, fol-
lowed by a szkaok for the knowledge of randomness to the commitment. This
phase is crucial for bps-proof to go through. This changes the proof significantly
– we directly rely on phase-(3) and phase-(4). Next, it is clear that simulation
will proceed by S extracting v (from kp/prs-preamble) and then committing
to v (instead of 0κ) in the left sessions of ddn. Protocol of bps commits to
the witness (of the statement) instead and relies on this stage for extraction.
Clearly, this completely changes how our extractor would work. Instead, we
must rely on the last phase to perform extraction. This is more involved than
it seems: when simulator uses commitment to v as witness for succeeding in the
last phase. Thus, to be able to argue correctness of extraction, we need statisti-
cal simulation.6 Unfortunately, because of mp-transformation, transformed πhv
loses its statistical simulation – making the proof stuck. However, we identify
a new property: mp-transformation admits “statistical simulation with respect
to lucky provers” (see section 3), and this suffices to argue the correctness of
extraction. Briefly. a “lucky” prover is one who can guess the prs-secret cor-
rectly, in advance. Our extractor also differs from “standard” methods: we first
test whether man-in-the-middle has succeeded in setting up a trapdoor by doing
a preliminary ddn-extraction before performing actual extraction from the last
phase (otherwise the extractor may not be expected-ppt).

Other Related Work. Achieving practical constructions/instantiations of ad-
vanced cryptographic tasks has become an increasingly popular research direc-
tion in recent years. To gain efficiency, NP-reductions has been a common bot-
tleneck that most of these research works also aim at avoiding. Among these, the
most relevant works are those of Garay, MacKenzie, and Yang [6], and De Santis,
Di Crescenzo, Ostrovsky, Persiano, and Sahai [15] (CRS model), and Micciancio
and Petrank [12] (plain model). In the area of secure two-party computation, see
the works of Mohassel and Franklin [16], Woodruff [17], Lindell and Pinkas [18],
and Goyal, Mohassel, and Smith [19]. For non-interactive zero-knowledge see
Chase and Lysyanskaya [20], and Groth, Ostrovsky, and Sahai [21].

5 Interestingly, this is not immediately clear. Before this work, to the best of our knowl-
edge, the only hope for achieving an efficient non-malleable commitment was from
a recent protocol of Lin, Pass, and Venkitasubramaniam [13]. Here, we show a new
and simple technique which provides an efficient instantiation of ddn-commitments
(see section 3.2).

6 This is a somewhat common issue in non-malleability proofs when going from one
hybrid to another (e.g., the non-malleable commitments of Pass and Rosen [14]).
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2 Definitions

In this section we present relevant definitions. We assume familiarity with (stan-
dard) cryptographic concepts such as computational and statistical indistin-
guishability, NP-relations, interactive proof and argument systems, simulation
paradigm, etcetera (see [22]). In the following, L is an NP-language with witness
relation RL. That is, a statement x ∈ L iff there exists a y of length poly(|x|)
such that RL(x, y) = 1.

Concurrent Man-in-the-Middle Attack. The concurrent man-in-the-middle
setting proceeds as follows. First, the inputs to the honest provers, i.e., state-
ments x1, . . . , xmL

∈ L ∩ {0, 1}n are chosen; thereafter, mL honest provers,

Pi
def
= P (xi, yi;ωi), are constructed (for i ∈ [mL]) such that RL(xi, yi) = 1, and

ωi is a uniformly chosen random tape of sufficient (polynomial in κ) length. Ad-
versary M may now start interacting with these provers while playing the role of
a verifier of π with each one of them. These interactions are called “left” interac-
tions. At any point, M , may adaptively output a new statement x̃i ∈ L∩{0, 1}n.

Whenever it does so, an honest verifier Vi
def
= V (x̃i; ω̃i), is created with input x̃i

and uniformly chosen randomness ω̃i. Such verifiers are created to the “right”
of M who may try to convince Vi of the validity of statement x̃i by playing the
role of the prover in a session of π. These interactions are called the “right”
interactions, and M may simultaneously continue its left interactions. Let mR

denote the number of right hand side sessions before M halts.

A concurrent non-malleable attack, a man-in-the-middle adversary M inter-
acts with provers P1, . . . , PmL

in mL “left sessions” and verifiers V1, . . . , VmR
in

mR “right sessions” of the protocol with M controlling the scheduling of all the
sessions. “Left inputs” x1, . . . , xmL

are fixed in advance, whereas “right inputs”
x̃1, . . . , x̃mR

can be decided by M adaptively. We consider only non-uniform PPT
adversaries M , and so both mL,mR are polynomial in κ.

Following the work of Pass and Rosen [14], when dealing with non-malleability
it is sometimes easier to work with a somewhat stronger notion called the
simulation-extractability. They demonstrate that simulation-extractability im-
plies non-malleable zero-knowledge argument (proof) of knowledge property.
This approach was also followed by bps, and we stick to their definition.

Definition 1. A protocol π
def
= 〈P, V 〉 is said to be a Concurrent Non-Malleable

Zero Knowledge (cnmzk) argument of knowledge for membership in an NP
language L with witness relation RL, if it is an interactive argument system
between a prover and verifier (both PPT) such that the following conditions hold.

Completeness For every x, y such that RL(x, y) = 1, P (x, y) makes V accept
with probability 1.

Soundness, Zero Knowledge, and Non-malleability For every PPT ad-
versary M launching a concurrent non-malleable attack as above (i.e., M
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interacts with P1, . . . , PmL
in “left sessions” and V1, . . . , VmR

in right ses-
sions as defined above), there exists an expected polynomial time simulator-
extractor S such that for every set of “left inputs” x1, . . . , xmL

we have
S(x1, . . . , xmL

) = (ν, ỹ1, . . . , ỹmR
) such that,

– ν is the simulated joint view of M and V1, . . . , VmR
. Further, for any set

of witnesses (y1, . . . , ymL
) defining the provers P1, . . . , PmL

, the view ν
is distributed computationally indistinguishably from the view of M in a
real execution.

– In the view ν, let transh denote the transcript of hth left execution,
and ˜trans` that of `th right execution, h ∈ [mL],` ∈ [mR]. If x̃` is the
common input in ˜trans`, ˜trans` 6= transh (for all h) and V` accepts,
then RL(x̃`, ỹ`) = 1 except with probability negligible in κ.

The probability is taken over the random coins of S. Further, the protocol is
black-box cnmzk, if S is an universal simulator that uses M only as an oracle,
i.e., S = SM .

The second condition in the definition of soundness above, says that if some right
session is not an exact copy of any of the left sessions, then S should output a
valid witness for the statement of that right session.

The DDH Assumption. Let q be a sufficiently large randomly chosen prime
such that there exists another sufficiently large prime p that divides q − 1. Let
Gp be an order p (multiplicative cyclic) subgroup of Zq, with some generator g.
Then, the ddh assumption states that for randomly and independently chosen
a, b, c ∈ Zp, the following two distributions are computationally indistinguish-
able:

(
ga, gb, gab

)
and

(
ga, gb, gc

)
.

Strong Signatures. A signature scheme (K, sign,verify) is said to be strongly
unforgeable if no efficient adversary, with access to a signing oracle with respect
to verification key vk, can output a pair (m,σ) with non-negligible probability,
such that: verify(m,σ,vk) = 1 and the pair (m,σ) does not correspond to the
input-output pair of a performed oracle query. A strong signature scheme is a
signature scheme that is strongly unforgeable.

Notation. Throughout the paper, µ : N→ R denotes a negligible function in κ
(the security parameter). If a message u appears in the “left” session, then its
counterpart in the “right” session will be denoted by ũ.

3 Building Blocks: Efficient Instantiations

We discuss two of our main building blocks: (a) simulatable commitments, and
(b) ddn-commitments. We assume here familiarity with commitment schemes
and their computational/statistical/perfect binding and hiding properties (see [22]).
Simulatable commitments were used by [12] to compile hvzk arguments into
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concurrent zk arguments (for us just stand-alone zk suffices) – which we dis-
cuss briefly. Thereafter, we discuss an efficient implementation of the ddn-
commitment scheme. Our descriptions are brief, and we refer the reader to the
respective works for more details.

3.1 Simulatable Commitments

A simulatable commitment [12] scheme is a tuple (com,dcom, Pcom, Vcom, Scom)
such that (com,dcom) specifies an usual (non-interactive, perfectly binding,
computationally hiding) commitment scheme. Additionally, it comes with a 3-
round hvzk proof system (Pcom, Vcom) to show, given two strings (c, v), c is a
commitment to v (i.e., ∃r s.t. c ← com(v; r)). The proof system has perfect
completeness, optimal soundness7, and efficient prover (given input r); Scom is
the simulator for the hvzk property of the system. A construction of a simu-
latable commitment scheme, based on the ddh assumption, is given in the full
version of this paper (the construction is due to [12], and admits statistical sim-
ulation). Note that because of the (computational) hiding property, it follows
that the output of Scom on input a true statement (c, v), is computationally
indistinguishable from its output on input a false statement (c, v′).

HVZK to Stand-alone ZK. Using simulatable commitments, [12] show how to
transform any public coin hvzk argument system πhv : 〈Phv, Vhv〉 to a new
system, which is zero-knowledge with respect to any (PPT) verifier (i.e., the new
system is stand-alone zk). We call this transformation the Micciancio-Petrank
transformation, and denote the new system by πmp : 〈Pmp, Vmp〉.8

To pinpoint a crucial property we need, we briefly explain how the trans-
formed protocol πmp proceeds. First, parties Pmp and Vmp execute a preamble
phase, in which Vmp commits to a value v ∈ Zp, using a statistically hiding
commitment; Pmp then commits to 0κ using simulatable commitments (let the
commitment be denoted by c). Finally Vmp opens the value v to Pmp. The tran-
script of conversation is thus (c, v). Now the second phase of the proof starts,
in which Vmp acts like Vhv, but each challenge of Vmp is decided using “coin-
tossing”-type style (see the full version of this paper for concrete details). The
proof system, that comes with simulatable commitments, is used for this pur-
pose with input statement (c, v). Statement (c, v) is false in a real execution with
high probability (which results in uniform output for Vhv’s challenges), but the
simulator can setup a true (c, v) via rewinding (and hence bias the output of
coin-tossing to any value). The protocol is thus both: zk and sound. The crucial
property that we need, is described next.

7 Informally, it means that for a false statement (c, v), given the first prover-message
and the verifier-query, there is exactly one convincing answer.

8 As mentioned earlier, the main result of [12] gives concurrent zk; stand-alone zk is
a special case and adds only four more rounds to πhv.
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Statistical Simulation with respect to “lucky” Provers. In general, πmp is only
computational zk, since the prover commits to 0κ while the simulator commits
to v (the message opened by Vmp). However, consider a prover who can always
guess the value v correctly and commits to it instead of 0κ (but uses its witness
in the rest of the execution of Pmp). Call such a prover “lucky”.9 Then, for such
provers, the statement (c, v) (from first phase) is always true. Thus, if πhv admits
statistical simulation, the protocol πmp also admits statistical simulation with
respect to the “lucky” provers. Formally, there exists a simulator Smp for every
verifier V ∗mp (of the protocol πmp) such that the output of Smp is statistically
indistinguishable from the view of V ∗mp in a real execution with a “lucky” prover

(say P
(lucky)
mp ).

3.2 The DDN Commitment

Our construction needs an efficient instantiation of the ddn-commitment proto-
col. The ddn-commitment protocol is non-malleable which means – intuitively
– given a commitment c on some message v, knowledge of c does not help a
man-in-the-middle adversary in constructing a new commitment c′ of a related
message v′. The formal definition that we shall stick to appears in the full ver-
sion of this paper.(This definition is satisfied by the variant of ddn-commitment
protocol given in [4].) An efficient instantiation appears in Fig. 1.

In step 2, we mention the use of an efficient szkaok. An appropriate szkaok
would be the one obtained by sequentially repeating the Schnorr protocol [23]
ω(1) times. The size of verifier’s challenge in each execution of Schnorr protocol,
however, would only be log κ.

In step 3 of the bck protocol, we need an efficient proof system for statements
of type: “c, c1−r are commitments to v, x1−r resp., s.t. α = x1−r + v mod p”.
Informally, it can be achieved as follows. Commitment c is a pair of values in
Zq: (a, b). Similarly, c1−r = (a′, b′). Compute A = aa′ mod q,B = bb′ mod q.
Now use the proof system of simulatable commitments, to prove that (A,B) is a
commitment to α. (Note that the proof system is only hvzk, but it can be first
converted to (general) zk by using the Micciancio-Petrank transformation once
again before it is used in step 3 of the bck protocol). The details are an easy
exercise, which we defer to the full version of the paper.

4 An Efficiency Preserving Transformation

4.1 The Extraction Preamble

The extraction preamble is just the the “kp/prs-preamble”. This is a protocol
between two players: a sender, A, and a receiver, B. The sender holds a value

9 Note that in real executions provers will not be “lucky” w.h.p.; the simulator will,
however, setup the situation of the “lucky” prover to succeed.



Efficiency Preserving Transformations for Concurrent NMZK 9

The ddn-commitment protocol.

1. Sddn sends vk – the verification key of a strong signature scheme, computed using
K(1κ). Let |vk| = κ.

2. Sddn commits to v using the simulatable commitment scheme (com,dcom), and
sends c ← com(v;ω) to Rddn. Sddn then proves to Rddn the knowledge of (v, ω)
using an efficient ω(1)-round public-coin statistical zk argument of knowledge
(szkaok). The last message of this szkaok is called the “Knowledge Determining
Message”(kdm).

3. For i = 1, . . . , κ, define t(i) = i◦vki. Thus, |t(i)| = 1 + log κ. Let bck‖ denote the
protocol obtained by composing β parallel executions of the bck protocol (de-
scribed below), here β ∈ ω(log κ). Recall that ddn defines two types of scheduling
for bck‖: type-0 and type-1 (see [5]).

4. In parallel, for i = 1, . . . , |vk|, execute the following protocol
– For j = 1, . . . , (1 + log κ) do sequentially –

Execute bck‖ with type-t
(i)
j scheduling.

Execute bck‖ with type-(1− t(i)j ) scheduling.
5. Sddn signs the full transcript of execution, and sends the signature σ to Rddn.
Rddn verifies the signature.

The bck protocol mentioned in step 3 above.

1. Sddn chooses x0, x1 ∈ Zp, and commits to each one of them using simulatable
commitments; cb ← com(xb;ωb), b ∈ {0, 1}. (Step bck1)

2. Rddn sends a bit r to Sddn. (Step bck2)
3. Sddn opens xr and sends α = x1−r + v mod p. Sddn then proves to Rddn using

an efficient zk protocol that:“c, c1−r are commitments to v, x1−r resp., s.t. α =
x1−r + v mod p”. This protocol is discussed in section 3.2. (Step bck3)

Fig. 1. The O(log κ)-round ddn commitment scheme. Sddn holds a value v ∈ Zp.

v ∈ Zp.10 Let ai
def
= {(vi,j0 , vi,j1 )}βj=1 be the list of pairs such that vi,j0 + vi,j1 = v

mod p where values vi,jb ∈ Zp for all b ∈ {0, 1} and i, j ∈ [β]. Here β = β(κ) is
any function in ω(log κ). So there are β such lists, each consisting of β pairs.

The preamble consists of three steps. First step is the commitment step.
Sender A chooses the parameters for the (perfectly binding) simulatable com-
mitment scheme11, and sends commitments to value v and to each share vi,jb ∈ Zp
(defined as above), using com. The second step, (called the challenge-response

10 Here, and everywhere else in this paper, when we mention Zp, it should be assumed
that Zp is an appropriately chosen order p subgroup of Zq in which ddh is hard,
where p, q are as defined in the ddh assumption.

11 These commitments will sometimes be referred to as Micciancio-Petrank commit-
ments.
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step), is an interactive protocol consisting of β rounds, where in round i, player
B sends a challenge ri ∈ {0, 1}β , and A sends a response as follows. The response
of A consists of an opening of the commitments to one of the elements of each
pair in ai. That is, if rji = b (the jth-bit of ri), then A includes in its response the

value vi,jb , and the randomness it used to commit to vi,jb . At the end of this step,
we say that the preamble has concluded. The final step is the opening step. This
step consists of A sending to B, the decommitment information corresponding to
all the commitments of the commitment step. That is, A sends to B the values
v, vi,jb , and the randomness it used to commit to them.

There can be other messages in the protocol between the prover concluding
the preamble and the verifier opening the commitments. It is easy to see that
if com is a commitment scheme12, the extraction-preamble is an interactive
commitment scheme. We now state a result from prs [25].

Lemma 1. (Adapted from [25]) Consider provers P1, . . . , Pm and an adversar-
ial verifier APRS running m sessions of a protocol with the extraction-preamble
as described above, where m is polynomial in κ. Then except with negligible prob-
ability in κ, in every thread of execution output by the kp/prssimulator, if the
simulation reaches a point where Pi accepts the extraction-preamble with v as
the secret of the sender (in that particular thread), then at the point when the
preamble was concluded, the simulator would have already recorded the value v.

In fact, we will also need a refinement of this lemma. However, both the lemma
and the refinement are not needed until the analysis of hybrid simulators (which
appears in the full version of this paper). Thus, the refinement and a more
detailed discussion is provided in the full version of this paper.

4.2 The Transformation

Overview. We provide an overview of our transformation here in order to present
the basic ideas in the construction (issues originating in the proof due to these
ideas, were discussed in the introduction). The transformed protocol has the
following structure. In the first phase, the verifier V executes the extraction
preamble (of Õ(log κ) rounds with a value v ∈ Zp chosen uniformly. In the
second phase, the prover commits to 0κ using our efficient ddn-commitment
scheme. Note that the first message of this ddn-commitment phase includes a
perfectly binding commitment to 0κ using a simulatable commitment scheme –
which we denote by c∗. V now opens the value v in the preamble (along with
opening all other commitments of the preamble). This defines the pair (c∗, v).

Let the input protocol be 〈πhv〉. Recall that the Micciancio-Petrank trans-
formation goes in two steps. In the first step a preamble is run, to obtain a pair

12 In our description, com is chosen to be a simulatable commitment which is per-
fectly binding. For the extraction-preamble, however, a perfectly hiding commitment
scheme (such as [10]) may be used as well. Also, for simplicity, we have chosen to
use the extraction preamble in the prs-style, but the original style of Richardson-
Kilian [24] will be more efficient.
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(c1, v1) and then the second step uses this pair to enforce random challenges
from the verifier of πhv. In our protocol also, both P,V now proceed exactly
like this transformation, except that the first step of the transformation is not
executed. Instead, (c∗, v) is used in place of (c1, v1).(We also use the standard
trick of sending a verification key vk of a strong signature scheme to be used as
the identity for the ddn-commitment, and in the end sign the whole transcript).

The formal description of our transformation (sometimes also referred to as
the compiler) is given in Figure 2. The compiler transforms any given public coin
statistical hvzk argument of knowledge in a cnmzk argument of knowledge.

The Compiler (from hvzk to cnmzk): The given hvzk argument is πhv : 〈Phv, Vhv〉.
P → V: Run the key generation algorithm, (vk, sk)← K(1κ). Send vk to V.

V ↔ P: V chooses a value v ∈r Zp. V and P then execute the “extraction pream-
ble” where V plays the role of the sender, with input v; P plays the role of the
receiver. Let c← com(v;ω), ci,jb ← com(vi,jb ;ωi,jb ) denote the corresponding com-
mitments. Recall that: b ∈ {0, 1}, i, j ∈ [β], vi,j0 + vi,j1 = v. Here, ω, ωi,jb denote the
randomness used by the commitment scheme.

P ↔ V: P and V execute a ddn-commitment protocol in which P plays
the role of Sddn with input 0κ, and V plays the role of Rddn. Let fm∗ =
(p∗, q∗, g∗, h∗,vk∗, c∗ ← com(0κ;ω∗)), denote the first message of the ddn-
commitment protocol.

V → P: V executes the opening step of the “extraction preamble”, by sending the
opening of all commitments sent in phase 2. That is, V sends to P the values:
v, vi,jb and randomness ω, ωi,jb , where b, i, j are defined as above.

P ↔ V: P (resp., V) applies the Micciancio-Petrank transformation to Phv (resp.,
Vhv) to obtain the algorithm Pmp (resp., Vmp). Now, P and V execute the (Pmp, Vmp)
protocol with common input (x, c∗, v) in which P (using Pmp) proves to V (using
Vmp) that x ∈ L ∩ {0, 1}n.

P → V: Let trans denote the transcript of communication so far. P computes
σ ← sign(trans, sk,vk), and sends σ to V.

Fig. 2. The Transformed Argument System π : 〈P,V〉

In all steps above, whenever a message is not according to the protocol speci-
fications, an honest party aborts the protocol.13 We will frequently refer to above

13 In particular, this means that in second phase (extraction preamble phase), all com-
mitments, challenges, and responses (i.e., openings) are valid; and during the fourth
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steps as phases. Thus, our transformation has six phases, where in phase-1 P
sends a verification key to V, in phase-2 V and P execute an extraction preamble,
and so on.

4.3 Proving Concurrent Non-malleability

We now proceed to the actual proof that π : 〈P,V〉 is indeed a cnmzk argument
of knowledge, given that πhv : 〈Phv, Vhv〉 is a public coin honest verifier statisti-
cal zero-knowledge argument of knowledge. Using a series of hybrid simulators,
we will show how to simulate the joint view of M and V1, . . . , VmR

, while simul-
taneously extracting a witness for each x̃` whenever V`’s view is accepting and

˜trans` 6= transh (for all h). Assume M to be deterministic, without loss of
generality. It is easy to see that if ṽk` = vkh for some `, h (i.e., M copies the
tag), then due to the strong unforgeability of the signature scheme, it holds that

˜trans` = transh except with negligible probability. Thus, in the proof we will
not attempt to extract a witness for x̃` whenever ṽk` = vkh. We now define
some random variables.

Let ν be a random variable denoting the joint view of M and V1, . . . , VmR

in a real execution of π. Similarly, ν(i) will be the random variable denoting the
output of hybrid simulator Hi, i = 1, 2, . . .. For every “left” session h ∈ [mL], let

v
(i)
h denote the value committed to by M in phase-2 (i.e., extraction-preamble)

of session h; and let v
(i)
h denote the value committed to by prover Ph in phase-

3 (i.e., the ddn-commitment phase) of that session. Of course, v
(i)
h = 0 for an

honest prover. Define random variables ṽ
(i)
` , ṽ

(i)
` for right sessions ` ∈ [mR], anal-

ogously. Thus, ṽ
(i)
` denotes the value committed to by V` in phase-2 of `th right

session; and ṽ
(i)
` denotes the value committed to by M to V` in phase-3 of the

same session on right, here ` ∈ [mR]. Finally, define b
(i)
` to be a random boolean

variable denoting whether in right-session `, V` rejects (b
(i)
` = 0 and 1 otherwise)

at the end of phase-3 (i.e., the ddn-commitment phase) in a simulation by Hi.

Overall strategy of the proof. In our proof the key-idea is to ensure that

∀`, ṽ(i)
` 6= ṽ

(i)
` while at the same time v

(i)
h = v

(i)
h (∀h) with high probability.

We do this by designing a series of hybrid experiments Hi setting up v
(i)
h =

v
(i)
h one-by-one for all left sessions h; it would be done while maintaining ṽ

(i)
` 6=

ṽ
(i)
` for every right session in all the hybrid experiments with high probability.

This would result in our final simulator using the Micciancio-Petrank method to
succeed on left; whereas the adversary M will be forced to use the real witness
due to the aforementioned condition on right. We start by presenting our first
hybrid.

(i.e., opening) phase, P confirms that all openings are valid and that vi,j0 + vi,j1 = v
mod p for all values of i, j.
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Simulator H0. This simulator is provided with auxiliary inputs y` ∈ RL(x`)
for all left statements x` for ` = 1, . . . ,mL. Let γ denote the uniformly cho-
sen random tape of H0. The simulator starts interacting with M(x, z), where

z is M ’s auxiliary input and x
def
= (x1, . . . , xmL

). On left, H0 acts as honest
provers P1, . . . , PmL

(with independent and uniform random tapes) using inputs
y1, . . . , ymL

. On right, H0 acts as honest verifiers V1, . . . , VmR
(with indepen-

dent and uniform random tapes). When M halts, H0 outputs the (joint) view
of M and all V`, ` ∈ [mR], and halts. Recall that ν denotes the joint view in
a real execution of π, and ν(0) is the output of H0. The simulation is perfect,
and so ν ≡ ν(0). Because we use a perfectly binding commitment scheme, values

ṽ
(0)
` , ṽ

(0)
` are well defined. Let p0 be the probability that there exists a right

session ` such that
(
ṽ
(0)
` = ṽ

(0)
`

)
conditioned on the occurrence of the event “V`

accepts”.

Claim. p0 ≤ µ(κ)

Proof. Contrary to the claim, suppose that p0 ≥ 1/s(κ) for some polynomial
s(·). Hence, for a non-negligible fraction of random tapes γ, it holds that for one

of the right-sessions (say `th) M succeeds in setting ṽ
(0)
` = ṽ

(0)
` , and V` accepts

at the end of ddn-commitment phase of right-session ` (i.e., b
(0)
` = 1). We

construct two machines M∗,M∗ddn, and use them to break the semantic security
of the commitment scheme denoted by the extraction preamble.

Machine M∗ incorporates M(x, z) and interacts with it exactly as H0 ex-
cept for the following two differences. First, in the `th-right-session, V` does not
execute the extraction-preamble internally; instead it receives the commitment
from an outside party A. That is, it chooses two values v′0, v

′
1 ∈ Zp uniformly at

random, and sends them to the outside sender A (of the extraction-preamble14).
A then commits to v′b, where b ∈R {0, 1} which M∗ forwards to M(x, z) as
part of V`. Second, as soon as the preamble (of `th-right-session) concludes, M∗

outputs its complete internal state, denoted stM∗ , and halts.

Next, we use M∗ to construct a ddn-sender M∗ddn as follows. M∗ddn starts
with state stM∗ and continues the rest of the execution internally exactly as
H0, except for the following difference. In the ddn-commitment phase of `th-
right-session, instead of internally emulating the actions of a ddn-receiver, V`
(which is an internal part of M∗ddn) interacts with an external ddn-receiver Rddn.
M∗ddn halts as soon as this phase finishes.

Finally, to break the semantic security of the extraction-preamble, our ad-
versary (say Acom) proceeds as follows. Given M(x, z), Acom first acts as M∗ to
receive a commitment from external A. Once, this interaction is over, we have
the state stM∗ and hence the adversary M∗ddn. (By construction, the execution
of M∗ddn is identical to that of H0 up to the point where ddn-phase completes).
Now Acom interacts with M∗ddn while acting as Rddn, and if the interaction is

14 Recall that we can look at the extraction-preamble as an interactive commitment
scheme.
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accepting, it applies the ddn-extractor, Eddn, to M∗ddn and outputs whatever
Eddn outputs.

M∗ddn is a machine that succeeds in committing to v′b with probability ≥ p0
over the randomness of whole experiment. It follows that for at least p0/2 fraction
of views stM∗ , M

∗
ddn (using M(x, z)) successfully commits the value v′b to Rddn

with probability at least p0/2. Thus, from the properties of the ddn-commitment
scheme, we conclude that Eddn extracts v′b with probability p0/2 − µ(κ) by
running in expected polynomial time. Hence, Acom can guess b with probability
p0/2(p0/2− µ(κ)) ≥ p20/8 contradicting the semantic security of the extraction-
preamble. ut

Before proceeding further with the proof, imagine the following hybrid ex-
periment H′1: it is the same as H0 except that it also performs the extraction of
kp/prs-secrets vh on left by running both main as well as look-ahead threads
just like the kp/prs-simulator.15

Note that H′1 simulates honest verifiers V1, . . . , VmR
on right, and runs real

provers P1, . . . , PmL
on left of M(x, z) in executing all the threads. If extraction

of kp/prs-secrets fails, (i.e., kp/prs-simulator gets “stuck”) than H′1 aborts.
Recall that the “threads” of a kp/prs-simulator are classified into three

types: a main thread, look-ahead threads that share a prefix with the main
thread, and look-ahead threads that do not share any prefix with the main
thread. Furthermore, all these threads can be ordered by their finishing time:
thread 1 is the one that finishes first, thread 2 is the one that finishes second,
and so on.

Threads contain several left and right sessions. In each left session belonging
to a thread, if the execution of that session reaches the ddn-commitment phase,
that session will contain the first message fm∗. Each thread can contain at most
mL such first messages, and there are at most N ∈ O((βmL)2) fm∗s that ever
appear in an execution of H′1. Further, in any given thread, these fm∗s can be
ordered by their order of appearance, and since each thread can be ordered as
explained above, we have an implicit ordering on these first messages which we
denote by fm∗1, . . . , fm

∗
N .

Observe that instead of executing all look-ahead threads at once, it is pos-
sible to only execute look-ahead threads of H′1 up to a specific point (e.g., up
to the point where a specific first message fm∗i appears) and then from thereon
stop running any look-ahead threads and just complete the main-thread from
where it was left.

We are now ready to explain our next 3N + 1 hybrid simulators: Hi:0,Hi:1,
and Hi:2 for i = 1, . . . , N . Define H0:2 to be the same as H0.

Simulator Hi:0. This experiment is the same as Hi−1:2 except that it runs look-
ahead threads up to the point where fm∗i gets generated. After this point, the
experiment continues the execution of main-thread directly without running any

15 Values vh,vh, ṽ`, ṽ` are defined for session h of the main thread. For look-ahead
threads, we’ll introduce a new variable when needed.
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look-ahead threads at all. Note that up to this point, kp/prs-secret vj must have
been extracted for all left sessions j for which the extraction preamble concludes
successfully (in any thread), with high probability; and the experiment aborts
if this is not the case.

Simulator Hi:1. Consider an execution of our previous simulator Hi:0. Since
the execution reaches to the point fm∗i , Hi:0 must have extracted the value
committed to in the extraction preamble of the session to which fm∗i belongs.
Denote this value by ei.

Simulator Hi:1 is the same as Hi:0 except that when creating fm∗i , it commits
to ei instead of committing to 0κ using uniform randomness λi. It uses (ei, λi)
to complete the ddn-commitment phase of this session when needed.

Note that ei is extracted “correctly” (i.e., equals the value opened by M later
on in this session) with high probability. Hi:1 aborts if this is not the case.

Simulator Hi:2. This simulator is the same as Hi:1 except that in all sessions j
(across all threads) that belong to fm∗i , if phase-5 is ever reached, it uses the
Micciancio-Petrank simulator along with “trapdoor” (ei, λi) defined in previous
hybrid-simulator to succeed in this phase.

Our final simulator-extractor will use HN :2, to construct the final view. Due
to space constraints, an analysis of above hybrid simulators is provided in the
full version of this paper. We move on to present our final simulator.

The Final Simulator-extractor S. For succinctness, let us denote HN :2 by
H2. Our simulator-extractor S works as follows. It first runs the hybrid simulator
H2 to produce a joint view ν(2). The statements in the right executions (in ν(2))
are x̃1, . . . , x̃mR

. For each right session ` ∈ [mR], if V` accepts the proof and
∀h ∈ [mL] ṽk` 6= vkh, the simulator S extracts (a witness) ỹ` ∈ RL(x̃L). The
extraction for each such ` is performed one by one, as follows.

1. First, S defines an adversarial machine A(`)
ddn as follows. A(`)

ddn incorporates
M(x, z) and proceeds exactly as H2 by internally simulating all the honest
parties, except for the part of V` in the main thread which receives the

phase-3 ddn-commitment. A(`)
ddn terminates the execution after sending the

knowledge-determining-message (kdm) to the external receiver. Now, S uses
the (guaranteed) extractor which can work on this prefix (up to the kdm)

to extract the value committed to by A(`)
ddn in view ν(2). Let the extracted

value be u (S aborts if extraction fails).

2. If u = ṽ
(2)
` , S aborts the extraction and halts. Otherwise, it defines a new

machine A(`)
mp as follows. A(`)

mp is exactly as H2 that incorporates M(x, z) and
all the simulated honest parties internally, except for the part of V` in the

main thread which receives the phase-5 (i.e., Micciancio-Petrank) proof. A(`)
mp

is then a Micciancio-Petrank prover. It then applies the extractor guaranteed
for such a prover, to extract a value ỹ` – supposedly a witness for x̃` (repeat
this procedure to obtain ỹ = {ỹ1, . . . , ỹmR

}). It then outputs ỹ and halts.
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A few remarks are in order. First, let us mention why we need to execute the first

step involving A(`)
ddn, and why not directly execute the second step and extract

ỹ` using A(`)
mp . This is done in order to ensure that the extraction procedure has

expected polynomial running time. Because otherwise, if ṽ
(2)
` = ṽ

(2)
` (even if with

only negligible probability – equation ??), the extraction procedure would never
halt. As a result, the running time of S will not be bounded by any polynomial.

Extracting u (=ṽ
(2)
` ) using A(`)

ddn allows S to abort whenever it is in this case.

Second, a subtlety in constructing A(`)
ddn (and A(`)

mp as well) is worth men-

tioning here. A(`)
ddn acts as H2 internally and hence executes various “threads of

execution” which may share a prefix with the main thread. When A(`)
ddn interacts

with the external receiver, it may define parts of some look-ahead threads. If the
kdm did not appear in the shared prefix, H2 will have to internally continue the
execution of these look-ahead threads who share a prefix with the main-thread
(defined by the external receiver). The fact that the protocol is public coin up to

the kdm, allows H2 to do that if required. Thus A(`)
ddn (and for the same reason,

A(`)
mp) is indeed well defined. From here, deriving our main theorem (Theorem 1)

is not hard. Due to space constraints, this proof appears in the full version of
this paper.

5 Efficiency

The Actual Cost. It is easy to see that the additional overhead incurred by the
new prover and verifier, is dominated by three steps (overhead from all other
steps is a small additive constant). First overhead is β2 exponentiations (in
Zq) due to the extraction-preamble.16 The second overhead is due to the ddn-

commitment phase, which as we discuss shortly, is κ · Õ(log2 κ) exponentiations.
Finally, the last overhead is due to the Micciancio-Petrank transformation, which
is r exponentiations, where r is the round complexity of πhv. As β ∈ Õ(log κ),
it follows that the additional overhead incurred by each party is (at most) r +
κ · Õ(log2 κ) exponentiations in Zq.

The overhead in ddn-commitments is as follows. The cost is dominated by
the following steps (overhead from all other steps is a small additive constant).
First costly operation is the execution of szkaok, which requires ω(1) exponen-
tiations. The next (in fact, the main) costly operation is the execution of step 3.
This involves performing κ · (1 + log κ) · 2 executions of bck‖. As bck‖ repeats
bck, in parallel, β times, and each bck has an overhead of constant (less than
10) exponentiations in Zq, it follows that the overall overhead is κ · Õ(log2 κ)
exponentiations in Zq.

Cost for Tag-based Non-malleability. Historically, the verification key vk used
in ddn-commitment protocol, is also called an identity or tag. Currently, the size
of this tag is κ. If identities (or tags) are given to exist, then the first and the

16 This overhead is only β exponentiations, if one chooses RK/KP-type preamble.
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last steps of the protocol are unnecessary (and hence are not executed). Non-
malleability in such cases requires the extraction of witness only when the adver-
sary does not copy the tag entirely, and is called “tag-based” non-malleability. If
tags of shorter length are possible, it results in more efficient protocols. The two
mainly cited reasons for justifying this notion are the following ones. First, for
some applications, it may be reasonable to assume that all parties have unique
identities. As there are only polynomially many parties in real world protocols,
they can all be represented by using tags of length at most ω(log κ). Second,
non-malleable protocols are typically used as building blocks in larger protocols.
The execution of these larger protocols, may somehow, result in establishing tags
for this building block.

For tag-based non-malleability, assuming the tag-length, |vk|, is Õ(log κ) –
which we believe is reasonable – the overhead in the ddn-commitment phase
would only be Õ(log2 κ). And thus, the overhead incurred by each party in our
transformation would be at most r + Õ(log2 κ).

We would like to mention here that our transformed protocol is very suitable
for the employment of preprocessing and batching techniques.

Efficient cnmzk in the BPK Model. In the full version of this paper we show that
our tag-based non-malleable protocols lead to first truly efficient constructions in
the BPK model [11]. This model has been used in sequence of papers [26–28] to
initially achieve round and computationally efficient concurrent zero knowledge
and later constant-round concurrent non-malleable zero-knowledge [29, 30].

We give an efficiency preserving compiler for obtaining cnmzk arguments
from any HVSZK argument π′ in the (true) BPK model. We obtain these results
by applying our efficient tag-based constructions of cnmzk arguments in the
plain model. (When coupled with a proper π′, this gives efficient constructions
of comparable efficiency.) By efficient we mean that the round complexity of
the new protocol is r + Õ(log κ) while the additional computational overhead
incurred by each party would be at most r + Õ(log2 κ).
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