
Eye for an Eye:

E�cient Concurrent Zero-Knowledge in the

Timing Model

Rafael Pass?, Wei-Lung Dustin Tseng??, and Muthuramakrishnan
Venkitasubramaniam

Cornell University, NY, USA

Abstract. We present new and e�cient concurrent zero-knowledge pro-
tocols in the timing model. In contrast to earlier works�which through
arti�cially-imposed delays require every protocol execution to run at the
speed of the slowest link in the network�our protocols essentially only
delay messages based on the actual response time of each veri�er (which
can be signi�cantly smaller).

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that
allow one player (called the prover) to convince another player (called the ver-
i�er) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the veri�er. This is formalized by requiring that for ev-
ery PPT adversary veri�er V ∗, there is a PPT simulator S that can simulate
the view of V ∗ interacting with the honest prover P . The idea behind this def-
inition is that whatever V ∗ might have learned from interacting with P could
have been learned by simply running the simulator S. The notion of concurrent
ZK (cZK), �rst introduced and achieved by Dwork, Naor and Sahai [DNS04]
extends the notion of ZK protocols to a concurrent and asynchronous setting.
More precisely, we consider a single adversary mounting a coordinated attack by
acting as a veri�er in many concurrent sessions, possibly with many independent
provers. cZK protocols are signi�cantly harder to construct and analyze, and are
often less e�cient than the �standalone� ZK protocols.

The original constant-round cZK protocol of [DNS04] is constructed in the
timing model (also explored in [Gol02]). Informally speaking, the timing model
assumes that every party (in our case every honest prover) has a local clock,
and that all these local clocks are roughly synchronized (1 second is roughly
the same on every clock). Also, all parties know a (pessimistic) upper-bound,
∆, on the time it takes to deliver a message on the network. As argued by
Goldreich [Gol02], this assumption seems to be most reasonable for systems

? Supported in part by a Microsoft New Faculty Fellowship, NSF CAREER Award
CCF-0746990, AFOSR Award FA9550-08-1-0197 and BSF Grant 2006317.

?? Supported in part by a NSF Graduate Research Fellowship.

today. The problem, however, is that known constructions of cZK protocols in
the timing model [DNS04,Gol02] are not very e�cient in terms of execution
time: Despite having a constant number of rounds (4 or 5 messages), the prover
in these protocols delays the response of certain messages by time ∆. In other
words, every instance of the protocol must take time longer than the pessimistic
bound on the max latency of the network (rather than being based on the actual
message-delivery time).

Leaving the timing model, Richardson and Kilian [RK99] (and subsequent
improvments by Kilian and Petrank [KP01] and Prabhakaran, Rosen and Sahai
[PRS02]) show how to construct cZK protocols in the standard model (with-
out clocks). Here the protocols are �message-delivery� driven, but there is a
signi�cant increase in round-complexity: Whereas constant-round ZK protocols
exists in the standalone setting, Õ(log n)-rounds are both necessary and suf-
�cient for (black-box) cZK protocols [PRS02,KPR98,Ros00,CKPR01]. Another
related work of Pass and Venkitasubramaniam [PV08] gives a constant-round
cZK protocol without clocks, but at the expense of having quasi-polynomial
time simulators (against quasi-polynomial time adversaries).

In this work we revisit the timing model. Ideally, we want to construct cZK
protocols that are e�cient in all three manners mentioned so far: Small (con-
stant) round-complexity, low imposed delays, and fast simulation. As communi-
cated by Goldreich [Gol02], Barak and Micciancio suggested the following pos-
sible improvement to cZK protocols in the timing model: The prover may only
need to impose a delay δ that is a linear fraction of ∆ (say δ = ∆/d), at the ex-
pense of increasing the running time of the ZK simulator exponentially (around
nO(d)). In other words, there could be a compromise between protocol e�ciency
and knowledge security [Gol01,MP06] (i.e., simulator running-time). However,
as discussed in [Gol02], this suggestion has not been proven secure. We show
that such a trade-o� is not only possible, but can be signi�cantly improved.1

Trading rounds for minimum delays. The original work of Richardson and
Kilian [RK99] shows that increasing the number of communication rounds can
decrease the running-time of the simulator. Our �rst result shows that by only
slightly increasing the number of rounds, but still keeping it constant (e.g., 10
messages), the prover may reduce the imposed delay to δ = ∆/2d, while keeping
the simulator running time at nO(d). This is accomplished by combining simu-
lation techniques from both the timing model [DNS04,Gol02] (polynomial time
simulation but high timing constraints) and the standard model [RK99,PV08]
(quasi-polynomial time simulation but no timing constraints). As far as we know,
this yeilds the �rst formal proof that constant-round concurrent zero-knowledge
protocols are possible using a delay δ that is smaller than ∆.

�Eye-for-an-eye� delays. The traditional approach for constructing cZK pro-
tocols is to �penalize� all parties equally, whether it is in the form of added round

1 It seems that traditional techniques can be used to demonstrate the Barak-
Micciancio trade-o� when the adversary employs a static scheduling of messages.
However, complications arise in the case of adaptive schedules. See Section 3.1 for
more details.

complexity or imposed timing delays. One may instead consider the notion of
punishing only adversarial behaviour, similar to the well-known �tit-for-tat� or
�eye-for-an-eye� technique of game theory (see e.g., [Axe84]). The work of Cohen,
Kilian and Petrank [CKP01] �rst implemented such a strategy (with respect to
cZK) using an iterated protocol where in each iteration, the veri�er is given a
time constraint under which it must produce all of its messages; should a veri�er
exceed this constraint, the protocol is restarted with doubled the allowed time
constraint (the punishment here is the resetting); their protocol had Õ(log2n)
rounds and Õ(log n) �responsive complexity��namely, the protocol takes time
Õ(log n)T to complete if each veri�er message is sent within time T . The work
of Persiano and Visconti [PV05] and Rosen and shelat [Rs09] takes a di�erent
approach and punish adversaries that perform �bad� schedulings of messages by
adaptively adding more rounds to the protocol; their approaches, however, only
work under the assumption that there is a single prover, or alternatively that
all messages on the network are exposed on a broadcast channel (so that the
provers can check if a problematic scheduling of messages has occurred).

In our work, we instead suggest the following simple approach: Should a
veri�er provide its messages with delay t, the prover will delay its message ac-
cordingly so that the protocol completes in time p(t)+δ, where p is some penalty
function and δ is some small minimal delay. We note that, at a high-level, this ap-
proach is somewhat reminiscent of how message delivery is performed in TCP/IP.

As we show, such penalty-based adaptive delays may signi�cantly improve
the compromise between protocol e�ciency and knowledge security. For exam-
ple, setting p(t) = 2t (i.e., against a veri�er that responds in time t < ∆, the
prover responds in time t + δ) has a similar e�ect as increasing the number of
rounds: The prover may reduce the minimal imposed delay to δ = ∆/2d, while
keeping the simulator running time at nO(d). Moreover, if we are willing to use
more aggressive penalty functions, such as p(t) = t2, the minimal delay may be

drastically reduced to δ = ∆1/2d

, greatly bene�ting �honest� parties that respond
quickly, while keeping the same simulator running time. Note that, perhaps sur-
prisingly, we show that such a �tit-for-tat� technique, which is usually employed
in the setting of rational players, provides signi�cant e�ciency improvements
even with respect to fully adversarial players.

Combining it all. Finally, we combine our techniques by both slightly in-
creasing the round complexity and implementing penalty-based delays. We state
our main theorem below for p(t) = t (no penalty), ct (linear penalty), and tc

(polynomial penalty) (in the main text we provide an expression for a generic
p(t)):

Theorem 1. Let ∆ be an upper-bound on the time it takes to deliver a message
on the network. Let r and d be integer parameters, and p(t) be a (penalty) func-
tion. Then, assuming the existence of claw-free permutations, there is a (2r+6)-
message black-box perfect cZK argument for all of NP with the following proper-
ties:

� The simulator has running time (rn)O(d).

� For any veri�er that cumulatively delays its message by time at most T , the
prover will provide its last message in time at most p(T) + δ, where

δ =


2∆/rd if p(t) = t (no penalty)
2∆/(cr)d if p(t) = ct (linear penalty)

(2∆)1/cd

r1+1/c+···+1/cd−1 ≤ (2∆)1/cd

r if p(t) = tc (polynomial penalty)

Remark 1 (On the number of rounds). Even without penalty-based delays, if
r = 2, we achieve an exponential improvement in the imposed delay (δ = ∆/2d),
compared to the suggestion by Barak and Micciancio (which required a delay of
δ = ∆/d). Larger r (i.e., more rounds) allows us to further improve the delay.

Remark 2 (On adversarially controlled networks). If an adversary controls the
whole network, it may also delay messages from the honest players. In this case,
honest players (that answer as fast as they can) are also penalized. However, the
adversary can anyway delay message delivery to honest players, so this problem
is unavoidable. What we guarantee is that, if a pair of honest players are com-
municating over a channel that is not delayed (or only slightly delayed) by the
adversary, then the protocol will complete fast.

Remark 3 (On networks with failure). Note that even if the network is not un-
der adversarial control, messages from honest parties might be delayed due to
network failures. We leave it as an open question to (experimentally or other-
wise) determine the �right� amount of penalty to employ in real-life networks:
Aggressive delays allow us to minimize the imposed delay δ, but can raise the
expected protocol running time if network failures are common.

Remark 4 (On concurrent multi-part computation). [KLP05] and [LPV09] show
that concurrent multi-party computation (MPC) is possible in the timing model
using delays of length O(∆). Additionally, [LPV09] shows that at least ∆/2 de-
lays are necessary to achieve concurrent MPC in the timing model. In retrospect,
this separation between concurrent ZK and MPC should not be surprising since
cZK can be constructed in the plain model [RK99,KP01,PRS02], but concurrent
MPC cannot [CF01,Lin04].

1.1 Organization

In Sect. 2 we give de�nitions regarding the timing model and primitives used in
our constructions. An overview of our protocol and zero-knowledge simulator,
followed by their formal descriptions, is given in Sect. 3. Actual formal analyses
are given in Sect. 4 and the appendix.

2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and argu-
ments, and stand-alone (black-box) zero-knowledge. Let N denote the set of
natural numbers. Given a function g : N → N, let gk(n) be the function com-
puted by composing g together k times, i.e., gk(n) = g(gk−1(n)) and g0(n) = n.

2.1 Timing model

In the timing model, originally introduced by Dwork, Naor and Sahai [DNS04],
we consider a model that incorporates a �timed� network. Informally, in such a
network, a (known) maximum network latency ∆�the time it takes for a mes-
sage to be computed and delivered over the network�is assumed. Moreover,
each party (in our case the honest provers) possesses a local clock that is some-
what synchronized with the others (in the sense that a second takes about the
same time on each clock).

As in [DNS04,Gol02,KLP05], we model all the parties in the timing model
as interactive Turing machines that have an extra input tape, called the clock
tape. In an adversarial model, the adversary has full control of the content of
everyone's clock tape (it can initialize and update the tape value at will), while
each machine only has read access to its own clock tape. More precisely, when
a party Pi is invoked, the adversary initializes the local clock of Pi to some
time t of its choice. Thereafter the adversary may, at any time, overwrite the all
existing clock tapes with new time values. To model that in reality most clocks
are reasonably but not perfectly synchronized, we consider adversaries that are
ε-drift preserving, as de�ned below:

Let σ1, σ2, . . . be a series of global states of all machines in play; these states
are recorded whenever the adversary initiates a new clock or updates the existing
clocks. Denote by clkP (σ) the value of the local clock tape of machine P at state
σ. We say that an adversary is ε-drift preserving if for every pair of parties P
and P ′ and every pair of states σ and σ′, it holds that

1
ε
(clkP (σ)− clkP (σ′)) ≤ clkP ′(σ)− clkP ′(σ′) ≤ ε(clkP (σ)− clkP (σ′))

As in [DNS04,Gol02,KLP05], we use the following constructs that utilize the
clock tapes. Below, by local time we mean the value of the local clock tape.

Delays: When a party is instructed to delay sending a message m by δ time,
it records the present local time t, checks its local clock every time it is
updated, and sends the message when the local time reaches t+ δ.

Time-out: When a party is instructed to time-out if a response from some other
party Pi does not arrive in δ time, it records the present time t. When the
message from Pi does arrive, it aborts if the local time is greater than t+ δ.

Measure: When a party is instructed to measure the time elapsed between two
messages, it simply reads the local time t when the �rst message is sent/
received, and reads the local time t′ again when the second message is sent/
received. The party then outputs the elapsed time t′ − t.

Although the measure operator is not present in previous works, it is essentially
the quantitative version of the time-out operation, and can be implemented with-
out additional extensions of the timing model. For simplicity, we focus on the
model where the adversary is 1-drift preserving, i.e. all clocks are synchronized,
but our results easily extend to ε-drift preserving adversaries.

2.2 Black-Box Concurrent Zero-Knowledge in the Timing Model

The standard notion of concurrent zero-knowledge extends straightforwardly to
the timing model; all machines involved are simply augmented with the afore-
mentioned clock tape. The view of a party still consists of all incoming messages
as well as the parties random tape. In particular, the view of the adversary deter-
mines the value of all the clocks. We repeat the standard de�nition of black-box
concurrent zero-knowledge below.

Let 〈P, V 〉 be an interactive proof for a language L, and let V ∗ be a concurrent
adversarial veri�er that may interact with multiple independent copies of P
concurrently, without any restrictions over the scheduling of the messages in
the di�erent interactions with P . Let {VIEW2[P (x) ↔ V ∗(x, z)]} denote the
random variable describing the view of the adversary V ∗ in an interaction with
P on common input x and auxiliary input z.

De�nition 1. Let 〈P, V 〉 be an interactive proof system for a language L. We
say that 〈P, V 〉 is black-box concurrent zero-knowledge if for every polynomi-
als q and m, there exists a probabilistic polynomial time algorithm Sq,m, such
that for every concurrent adversary V ∗ that on common input x and auxiliary
input z opens up m(|x|) sessions and has a running-time bounded by q(|x|),
Sq,m(x, z) runs in time polynomial in |x|. Furthermore, it holds that the en-
sembles {VIEW2[P (x)↔ V ∗(x, z)]}x∈L,z∈{0,1}∗ and {Sq,m(x, z)}x∈L,z∈{0,1}∗ are
computationally indistinguishable over x ∈ L. We say 〈P, V 〉 is black-box perfect

concurrent zero-knowledge if the above ensembles are identical.

Remark: [Gol02] de�nes concurrent ZK in the timing model with the assump-
tion (WLOG) that the adversary never trigger a time-out from any prover.
[Gol02] also made the assumption that the adversary always delays the veri-
�er messages as much as permitted, but is assumption is no longer WLOG for
protocols with penalty-based delays. Therefore in our model, the adversary is
given total control over all the clocks (subject to ε-drift preserving), similar to
the de�nition of [KLP05] for the setting of concurrent multi-party computation.

2.3 Other primitives

We informally de�ne other primitives used in the construction of our protocols.

Special-sound proofs: A 3-round public-coin interactive proof for the lan-
guage L ∈ NP with witness relation RL is special-sound with respect to
RL, if for any two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial
messages α, α′ are the same but the challenges β, β′ are di�erent, there is a
deterministic procedure to extract the witness from the two transcripts that
runs in polynomial time. Special-sound WI proofs for languages in NP can
be based on the existence of non-interactive commitment schemes, which in
turn can be based on one-way permutations. Assuming only one-way func-
tions, 4-round special-sound WI proofs for NP exists2. For simplicity, we use

2 A 4-round protocol is special sound if a witness can be extracted from any two
transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ′, α = α′ and β 6= β′.

3-round special-sound proofs in our protocol though our proof works also
with 4-round proofs.

Proofs of knowledge: Informally an interactive proof is a proof of knowledge
if the prover convinces the veri�er not only of the validity of a statement,
but also that it possesses a witness for the statement. If we consider com-
putationally bounded provers, we only get a �computationally convincing�
notion of a proof of knowledge (aka arguments of knowledge).

3 Our Protocol and Simulator

3.1 Protocol Overview

Following the works of [FS90,GK96], later extended to the concurrent setting by
[RK99,KP01,PRS02,PV08], we consider ZK protocols with two stages:

Stage 1: First the veri�er V �commits to a trapdoor� (the start message). This
is followed by one or multiple slots; each slot consists of a prover challenge
(the opening of the slot) followed by a veri�er response (the closing of the
slot). A rewinding black-box ZK simulator can rewind any one of these slots
to extract the veri�er trapdoor.

Stage 2: The protocol ends with a modi�ed proof of the original statement that
can be simulated given the veri�er trapdoor.

To generate the view of an adversarial veri�er V ∗ in the standalone setting, a
black-box simulator simply rewinds a slot to learn the trapdoor, and use it to
simulate the �nal modi�ed proof.

In the concurrent setting, however, V ∗ may fully nest another session inside a
slot (i.e., after the prover sends the opening message, V ∗ schedules a full session
before replying with closing message). In order for the simulator to rewind this
slot, it would need to simulate the view of the nested session twice. Therefore,
repeated nesting may cause a naive simulator to have super-polynomial running
time [DNS04]. Di�erent techniques were employed in di�erent models to circum-
vent this di�culty caused by nesting. In the timing model, [DNS04,Gol02] shows
that by delaying the Stage 2 proof and limiting the time allowed between the
opening and closing of any slot, we can avoid the nesting situation all together.
On the other hand, [RK99] showed that if the protocol has enough slots, the
simulator can always �nd a slot that isn't �too nested� to rewind.

The work of Pass and Venkitasubramaniam describes a simulator (based on
the work of [RK99]) that works also for constant-round protocols. Its running
time (implicitly) depends on the maximum nesting level/depth of the least nested
slot. Speci�cally, the running time of the simulator is nO(d) when this maximum
depth of nesting is d. Building upon this, we now focus on reducing the maximum
depth of nesting in the timing model.

In the following overview of our techniques, we assume that V ∗ interleaves
di�erent sessions in a static schedule; the full generality of dynamic scheduling
is left for our formal analysis. Additionally, we keep track of the running time of

our protocols as a function of T�the total amount of accumulated delay caused
by the veri�er in all the messages.

Imposing traditional timing delays with one slot. We �rst review the
works of [DNS04,Gol02]. Recall that ∆ is the maximum network latency�the
time it takes for a message to be computed and delivered over the network. We
require that the time between the opening and closing of each slot be bounded
by 2∆ (otherwise the prover aborts); this is the smallest time-out value that we
may ask of the honest veri�er. At the same time, the prover delays the Stage 2
proof by δ time (after receiving the closing message of the last slot), where δ is a
parameter (Fig. 1(a)). It is easy to see that if δ = 2∆, then no nesting can occur
(Fig. 1(b)). In this case the running time of the protocol is T +∆.

start

opening

closing

Stage 2

P V

a slot
times-out

in 2∆
delay δ

(a) 1 slot protocol with traditional timing constraints

session 1

times-out

in 2∆

session 2

2∆

(b) δ = 2∆ prevents nesting.

Fig. 1. Traditional timing delays with 1 slot.

If we consider the suggestion of Barak and Micciancio and set δ = 2∆/d,
then up to d levels of nesting can occur (Fig. 2). In this case, the running time
of the protocol is T + 2∆ and T + 2∆/d, respectively.

Increasing the number of slots. This idea was �rst explored by [RK99] in
the standard model where intuitively, more slots translates to more rewinding
opportunities for the simulator. In the timing model, the e�ect of multiple slots is
much more direct. Let us look at the case of 2 slots. Suppose in some session, V ∗

delays the closing of a slot by the maximum allowed time, 2∆. Further suppose

times-out

in 2∆

up to d levels

<
2(1− 1

d
)∆

2∆/d

2∆/d

• • •

Fig. 2. δ = 2∆/d gives at most d levels of nesting.

that V ∗ nests an entire session inside this slot. Then in this nested session, one of
the slots must have taken time less than∆ (Fig. 3(a)). Continuing this argument,
some fully nested session at level d must take time less than 2∆/2d. Therefore
if we set δ = 2∆/2d, V ∗ cannot fully nest every slot beyond depth d, and the
running time of the protocol becomes T + 2∆/2d.

Penalizing the adversarial veri�er with adaptive delays. Here we imple-
ment our �eye-for-an-eye� approach of penalizing adversarial veri�ers that delay
messages. Let p(t) be a penalty function that satis�es p(t) > t and is mono-
tonically increasing. During Stage 1 of the protocol, the prover measures t, the
total time elapsed from the opening of the �rst slot to the closing of the last
slot. Based on this measurement, the prover delays Stage 2 by time p(t) − t or
by the minimal imposed delay δ, whichever is greater. As a result, Stage 2 only
starts after p(t) time has elapsed starting from the opening of the �rst slot. For
example, suppose p(t) = 2t and that the protocol has 1 slot. Then for V ∗ to fully
nest a session inside a slot that took time 2∆, the slot of the nested session must
have taken time at most ∆, giving the same e�ect as having 2 slots (Fig. 3(b)).
Furthermore, if we implement more aggressive penalties, such as p(t) = t2,3

then the slot of the nested session is reduced to time
√

2∆. Therefore if we set
δ = (2∆)1/2

d

, V ∗ cannot fully nest every slot beyond depth d, and the running

time of the protocol becomes T 2 + (2∆)1/2
d

.

Combining the techniques. In general, we can consider concurrent ZK

protocols that both contain multiple slots and impose penalty-based delays
(e.g., Fig. 4). If we have r slots and impose p(t) penalty on delays, and de�ne

3 Formally we may use p(t) = t2 + 1 to ensure that p(t) > t.

times-out

in 2∆

< ∆

?

• • •

(a) 2 slots, no penalty. One of the
nested slot must have half the delay.

times-out

in 2∆

< ∆

adaptive
delay

• • •

(b) 1 slot, 2t penalty. The nested slot
must have half the delay as well.

Fig. 3. Our main techniques of restricting the nesting depth of V ∗.

g(t) = p(rt), then δ can be decreased to

d times

{ p−1

(
· · ·

p−1

(
p−1(2∆)

r

)
r

)
r

= (g−1)d(2∆)

=


2∆/rd if p(t) = t (no penalty)
2∆/(cr)d if p(t) = ct (linear penalty)

(2∆)1/cd

r1+1/c+···+1/cd−1 ≤ (2∆)1/cd

r if p(t) = tc (polynomial penalty)

while keeping the simulator running time at (rn)O(d). The running time of the
protocol is then p(T) + δ.

Handling dynamic scheduling. So far we have discussed our analysis (and
have drawn our diagrams) assuming that V ∗ follows a static schedule when
interleaving multiple sessions. In general though, V ∗ may change the schedul-
ing dynamically based on the content of the prover messages. As a result, the
schedule (and nesting) of messages may change drastically when a black-box
simulator rewinds V ∗. This phenomenon introduces many technical di�culties

times-out

in 2∆
<
√

2∆/2

<
√

2∆

adaptive
delay

• • •

Fig. 4. 2 slots and t2 penalty. Slots of nesting sessions decrease in size very quickly.

into the analysis, but fortunately the same di�culties were also present and re-
solved [PV08]. By adapting the analysis in [PV08], we give essentially the same
results in the case of dynamic scheduling, with one modi�cation: An additional
slot is needed whenever δ < 2∆ (this includes even the case illustrated in Fig. 2).
For example, a minimal of 2 slots is needed to implement penalty-based delays,
and a minimum of 3 slots is needed to reap the improvements that result from
multiple slots.

Handling ε-drifts in clock tapes. As in the work of [DNS04,Gol02] we merely
need to scale the time-out values in our protocols when the local clocks are not
perfectly synchronized. Speci�cally, if the adversary is ε-drift preserving for some
ε ≥ 1, then our protocol will impose a minimal delay of εδ and an adaptive delay
of εp(t) (when applicable) between the closing of the last slot and Stage 2.

3.2 Description of the protocol

Our concurrent ZK protocol is a slight variant of the precise ZK protocol of
[MP06], which in turn is a modi�cation of the Feige-Shamir protocol [FS90].
Given a one-way function f , a parameter r, a penalty function p(t), and a min-
imal delay δ, our protocol for language L ∈ NP proceeds in the following two
stages on common input x ∈ {0, 1}∗ and security parameter n:

Stage 1: The veri�er picks two random strings s1, s2 ∈ {0, 1}n and sends c1 =
f(s1), c2 = f(s2) to the prover. The veri�er also sends α1, . . . , αr+1, the �rst
messages of r + 1 invocations of a WI special-sound proof of the statement
�c1 and c2 are in the image set of f �. These proofs are then completed
sequentially in r + 1 iterations.
In the jth iteration, the prover �rst sends βj ← {0, 1}n

2
, a random second

message for the jth proof (opening of the jth slot), then the veri�er replies
with the third message γj of the j

th proof (closing of the jth slot). The prover
times-out the closing of each slot with time 2∆, and measures the time that
elapsed between the opening of the �rst slot and the closing of the r + 1st

slot as t.

Stage 2: The prover delays by time max{p(t)− t, δ} , and then provides a WI
proof of knowledge of the statement �either x ∈ L, or that (at least) one of
c1 and c2 are in the image set of f �.

More precisely, let L′ be the language characterized by the witness relation
RL′(c1, c2) = {(s1, s2) | f(s1) = c1 or f(s2) = c2}. Let f be a one-way function, r
and δ be integers, p(t) : N→ N be a monotonically increasing function satisfying
p(t) > t, and L be a language in NP. Our ZK argument for L, ConcZKArg, is
depicted in Figure 5.

Protocol ConcZKArg

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).

Parameters: r (round complexity), p (penalty function), ∆ (max delay), δ
(min delay)

Stage 1:

V uniformly chooses s1, s2 ∈ {0, 1}n.
V → P: c1 = f(s1), c2 = f(s2), and r + 1 �rst messages α1, . . . , αr+1 of

WI special-sound proofs of knowledge of the statement (c1, c2) ∈ L′
(called the start message). The proof of knowledge is with respect to
the witness relation RL′ .

For j = 1 to r + 1 do

P → V [opening of slot j]: Select a second message βj ← {0, 1}n
2

for the jth WI special-sound proof. P times-out if the next veri�er
message is not received in time 2∆.

V → P [closing of slot j]: Third message γj for the jth WI special-
sound proof.

P measures the time elapsed between the opening of the �rst slot and the
closing of the r + 1st slot as t.

Stage 2:

P delays the next message by time max{p(t)− t, δ}.
P↔ V: A perfect-WI argument of knowledge of the statement (x, c1, c2) ∈
L ∨ L′, where L ∨ L′ is characterized by the witness relation

RL∨L′(x, c1, c2) = {(w, s′1, s′2) | w ∈ RL(x) ∨ (r′1, r
′
2) ∈ RL′(c1, c2)

The argument of knowledge is with respect RL∨L′ .

Fig. 5. Concurrent Perfect ZK argument for NP

The soundness and the completeness of the protocol follows directly from
the proof of Feige and Shamir [FS90]; in fact, the protocol is an instantiation of
theirs. Intuitively, to cheat in the protocol a prover must �know� an inverse to
either c1 or c2, which requires inverting the one-way function f .

3.3 Simulator Overview

At a very high-level our simulator follows that of Feige and Shamir [FS90].
The simulator will attempt to rewind one of the special-sound proofs (i.e., the
slots), because whenever the simulator obtains two accepting proof transcripts,
the special-soundness property allows the simulator to extract a �fake witness�
ri such that ci = f(ri). This witness can later be used in the second phase of
the protocol. At any point in the simulation, we call a session of the protocol
solved if such a witness has been extracted. On the other hand, if the simulation
reaches Stage 2 of a session without extracting any �fake witnesses�, we say the
simulation is stuck.

In more detail, our simulator is essentially identical to that of [PV08], which in
turn is based on the simulator of [RK99]. The general strategy of the simulator
is to �nd and rewind the �easiest� slot for each session; during a rewind, the
simulator recursively invokes itself on any nested sessions when necessary. The
main di�erence between our work and that of [RK99,PV08] lies in determining
which slot to rewind. In [RK99,PV08], a slot that contains a �small� amount of
start messages (freshly started sessions) is chosen, whereas in our simulation, a
slot with �little� elapsed time (between the opening and the closing) is rewound.
As we will see, part of the analysis from [PV08] applies directly to our simulator
modulo some changes in parameters; we only need to ensure that our de�nition of
�little� elapsed time allows the simulator to always �nd a slot to rewind (formally
argued in Claim 2).

3.4 Description of the simulator

Our simulator is de�ned recursively. Intuitively on recursive level 0, the simu-
lator's goal is to generate a view of V ∗, while on all other recursive levels, the
simulator's goal is to rewind a particular slot (from a previous recursion level).
On recursive level `, the simulator starts by feeding random Stage 1 messages to
V ∗. Whenever a slot s closes, S decides whether or not to rewind s depending
on the time elapsed between the opening and the closing of s. If the elapsed time
is �small� (where the de�nition of small depends on the level `), S begins to
rewind the slot. That is, S recursively invokes itself on level `+ 1 starting from
the opening of slot s with a new (random) message β, with the goal of reaching
the closing message of slot s. While in level ` + 1, S continues the simulation
until one of the following happens:

1. The closing message γ for slot s occurs: S extracts a �fake� witness using the
special-sound property and continues its simulation (on level `).

2. V ∗ aborts or delays �too much� in the rewinding: S restarts its rewinding
using a new challenge β for s. We show in expectation, S only restarts O(1)
times (intuitively, this follows since during the execution at level `, S only
starts rewinding a slot if V ∗ did not abort and only took �little time�).

3. S is �stuck� at Stage 2 of an unsolved session that started at level ` + 1: S
halts and outputs fail (we later show that this never happens).

4. S is �stuck� at Stage 2 of an unsolved session that started at level `: Again,
S restarts its rewinding. We show that this case can happen at most m− 1
times, where m is the total number of sessions.

5. S is �stuck� at Stage 2 of an unsolved session that started at level `′ < `: S
returns the view to level `′ (intuitively, this is just case 4 for the recursion
at level `′).

In the unlikely event that S asks the same challenge β twice, S performs
a brute-force search for the witness. Furthermore, to simplify the analysis of
the running-time, the simulation is cut-o� if it runs �too long� and S extracts
witnesses for each session using brute-force search.

The basic idea behind the simulation is similar to [PV08]: We wish to de�ne
�little time� appropriately, so that some slot of every session is rewound and that
expected running time is bounded. For a technical reason (used later in Claim
2), we actually want the simulator to rewind one of the �rst r (out of r+1) slots
of each session.

Take for example p(t) = 2t and r = 2 (3 slots). Based on our intuition
from Sect. 3.1, a good approach would be to ensure that the simulation at
recursive level ` �nishes within time 2∆/4`, and de�ne �little time� on level ` to
be 2∆/4`+1. Then, we know that any session that is fully executed at recursive
level ` must have taken time less than 2∆/(4` · 2) in Stage 1 (due to penalty-
based delays), and therefore one of the �rst two slot must have taken time less
than 2∆/4`+1, making it eligible for rewind. To show that the expected running
time is bounded, we simply set δ appropriately (as a function of d, ∆ and r) as
in Sect. 3.1, and this would guarantee that the recursion depth of the simulator
is bounded.

A formal description of our simulator can be found in Figure 6. We rely on
the following notation.

� De�ne the function g : N → N by g(n) = p(rn). Recall that gk(n) be the
function computed by composing g together k times, i.e., gk(n) = g(gk−1(n))
and g0(n) = n. Let d (the maximum depth of recursion) be mind{gd(δ) >
2∆}. Note that if δ = (g−1)k(2∆), then d = k.

� slot (i, j) will denote slot j of session i.
� W is a repository that stores the witness for each session. The update W

command extracts a witness from two transcripts of a slot (using the special-
sound property). If the two transcripts are identical (i.e. the openings of the
slot are the same), the simulator performs a brute-force search to extract a
�fake� witness si s.t. ci = f(si) for i ∈ {1, 2}.

� R is a repository that stores the transcripts of slots of unsolved sessions.
Transcripts are stored in R when the simulator gets stuck in a rewinding
(cases 4 and 5 mentioned in the high-level description).

4 Analysis of the Simulator

To prove correctness of the simulator, we show that the output of the simulator
is correctly distributed and its expected running-time is bounded. We �rst prove

SOLVEV ∗
d (x, `, hinitial, s,W,R):

Let h← hinitial. Note that hinitial contains all sessions that are started on previous
recursion levels.
Repeat forever:
1. If v is a Stage 2 veri�er message of some session, continue.
2. If V ∗ aborts in the sessions of slot s, or the time elapsed since hinitial exceeds

gd+1−`(δ), restart SOLVE from hinitial.
3. If the next scheduled message is a Stage 2 prover message for session i and

W(i) 6= ⊥, then use W(i) to complete the WI proof of knowledge; if W(i) = ⊥
and start message of session i is in hinitial return h, otherwise halt with output
fail.

4. If the next scheduled message is a Stage 1 prover message for slot s′, pick a

random message β ← {0, 1}n
2
. Append β to h. Let v ← V ∗(h).

5. Otherwise, if v is the closing message for s′ = slot (i′, j′), then update W with v
(using R) and proceed as follows.
(a) If s = s′, then return h.
(b) Otherwise, if session i′ starts in hinitial, then return h.
(c) Otherwise, if W(i′) 6= ⊥ or the time elapsed since the opening of slot (i′, j′)

exceeds gd−`, then continue.
(d) Otherwise, let h′ be the pre�x of the history h where the prover message

for s′ is generated. Set R′ ← φ. Repeat the following m times:
i. h∗ ← SOLVEV ∗

d (x, `+ 1, h′, s′,W,R′)
ii. If h∗ contains an accepting proof transcript for slot s′, extract witness

for session i′ from h and h∗ and update W.
iii. Otherwise, if the last message in h∗ is the closing message for the last

slot of an session that started in hinitial return h
∗.

iv. Otherwise, add h∗ to R′.

SV ∗(x, z):

Let d← mind{gd(δ) > 2∆}. Run SOLVEV ∗
d (x, 0, , , ,) and output whatever SOLVE

outputs with one exception. If an execution of SOLVEV ∗
d (x, 0, , , ,) queries V ∗ more

that 2n times, proceed as follows:
Let h denote the view reached in the �main-line� simulation (i.e., in the top-level of
the recursion). Continue the simulation in a �straight-line� fashion from h by using
a brute-force search to �nd a �fake� witness each time Stage 2 of an session i is
reached.

Fig. 6. Description of our black-box ZK simulator.

in Claim 2 that the simulator never outputs fail. Using Claim 2, we show that the
output distribution of the simulator is correct in Prop. 3, and that the expected
running time of the simulator is at most poly(mdrd) in Prop. 4. Theorem 1 then
follows from Prop. 3 and 4, together with the fact that if δ = (g−1)k(2∆) then
d = k.

Claim 2. For every x ∈ L, SV ∗(x, z) never outputs fail.

Proposition 3. The ensembles {VIEW2[P (x,w)↔ V ∗(x, z)]} and {SV ∗(x, z)}
are identical over x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗.

Proposition 4. For all x ∈ L, z ∈ {0, 1}∗, and all V ∗ such that V ∗(x, z) opens
up at most m sessions, E[timeS̃V ∗ (x,z)] ≤ poly(mdrd)

The proof of Claim 2 is given below, while the proofs of Prop. 3 and 4 are
given in the full version of the paper; in any case, the proofs of Prop. 3 and 4
are essentially identical to [PV08], modulo a change of parameters. Throughout
the analysis we assume without loss of generality that the adversary veri�er V ∗

is deterministic (as it can always get its random coins as part of the auxiliary
input).

Proof: (Claim 2) Recall that SV
∗
(x, z) outputs fail only if SOLVEV

∗

d (x, 0, , ,)
outputs fail. Furthermore, SOLVE outputs fail at recursive level ` only if it
reaches Stage 2 of an unsolved session that started at level ` (see Step 3 of

SOLVE). We complete the proof in two parts. First we show SOLVEV
∗

d will
rewind at least one of the �rst r slots of every session at level `. Then, we show
that SOLVE always extracts a witness when it rewinds a slot.

In order for SOLVE to be stuck at a session i that starts at recursive level
`, session i must reach Stage 2 within g(d−`)(δ) time-steps (otherwise SOLVE
would have rewound as per Step 2). This implies that t, the time between the
opening of the �rst slot and the closing of th last slot of session i, must satisfy
p(t) ≤ g(d−`)(δ) (due to penalty-based delays). This in turn implies that one of
the �rst r slots of session i must have taking time at most

t

r
≤ p−1(g(d−`)(δ))

r
≤ g(d−`−1)(δ)

(here we use the monotonicity of p). By construction, SOLVE would have re-
wound this slot (i.e., execute Step 5.(d)).

Next we show that whenever SOLVE rewinds a slot, a witness for that session
is extracted. Assume for contradiction that SOLVE fails to extract a witness after
rewinding a particular slot. Let level ` and slot j of session i be the �rst time
this happens. This means at the end of Step 5.(d), m views are obtained, yet
none of them contained a second transcript for slot j. Observe that in such a
view, SOLVE most have encountered Stage 2 of some unsolved session i′ (i.e.,
stuck). Yet, we can show that the m − 1 other sessions can each cause SOLVE
to be stuck at most once; this contradicts the fact that SOLVE is stuck on all
m good views.

For every session i′ that SOLVE gets stuck on, both the opening and the clos-
ing of the last slot occurs inside the rewinding of slot (i, j); otherwise, SOLVE
would have rewound one of the r slots that occurred before the opening of
slot (i, j) successfully and extracted a witness for session i′ (l, i, j was the �rst
�failed� slot). Furthermore, the transcript of this slot enables SOLVE to never
get stuck on session i′ again, since the next time that the last slot of session i′

closes will allow SOLVE to extract a witness for session i′. ut

5 Acknowledgments

We would like to thank the anonymous TCC reviewers for their helpful com-
ments.

References

[Axe84] R. Axelrod. The evolution of cooperation. New York: Basic Books, 1984.
[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In

CRYPTO '01, pages 19�40, 2001.
[CKP01] Tzafrir Cohen, Joe Kilian, and Erez Petrank. Responsive round complexity

and concurrent zero-knowledge. In ASIACRYPT '01, pages 422�441, 2001.
[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concur-

rent zero-knowledge requires ω̃(logn) rounds. In STOC '01, pages 570�579,
2001.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
J. ACM, 51(6):851�898, 2004.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In STOC '90, pages 416�426, 1990.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167�190, 1996.

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186�208, 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography � Basic Tools. Cambridge
University Press, 2001.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In
STOC '02, pages 332�340, 2002.

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent
general composition of secure protocols in the timing model. In STOC '05,
pages 644�653, 2005.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-logarithmic rounds. In STOC '01, pages 560�569, 2001.

[KPR98] Joe Kilian, Erez Petrank, and Charles Racko�. Lower bounds for zero knowl-
edge on the internet. In FOCS '98, pages 484�492, 1998.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In TCC '04,
pages 203�222, 2004.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A
uni�ed framework for concurrent security: universal composability from
stand-alone non-malleability. In STOC '09, pages 179�188, 2009.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC '06, pages
306�315, 2006.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS '02, pages 366�375, 2002.

[PV05] Giuseppe Persiano and Ivan Visconti. Single-prover concurrent zero knowl-
edge in almost constant rounds. In Automata, Languages and Programming,
pages 228�240, 2005.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-
round concurrent zero-knowledge. In TCC '08, pages 553�570, 2008.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-
knowledge proofs. In Eurocrypt '99, pages 415�432, 1999.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge.
In CRYPTO '00, pages 451�468, 2000.

[Rs09] Alon Rosen and abhi shelat. A rational defense against concurrent attacks.
Manuscript., 2009.

