
New Techniques for Dual System Encryption
and Fully Secure HIBE with Short Ciphertexts

Allison Lewko1 ? and Brent Waters2 ??

1 University of Texas Austin
alewko@cs.utexas.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. We construct a fully secure HIBE scheme with short cipher-
texts. The previous construction of Boneh, Boyen, and Goh was only
proven to be secure in the selective model, under a non-static assump-
tion which depended on the depth of the hierarchy. To obtain full secu-
rity, we apply the dual system encryption concept recently introduced
by Waters. A straightforward application of this technique is insufficient
to achieve short ciphertexts, since the original instantiation of the tech-
nique includes tags that do not compress. To overcome this challenge,
we design a new method for realizing dual system encryption. We pro-
vide a system in composite order groups (of three primes) and prove the
security of our scheme under three static assumptions.

1 Introduction

An IBE system is a public key system where an encryptor uses only the identity
of the recipient and a set of global public parameters, so a separate public key for
each entity is not required. A trusted authority holds a master secret key which
allows it to create secret keys for identities and distribute them to authenticated
users. A Hierarchical IBE system (HIBE) [1, 2] provides more functionality by
forming levels of an organizational hierarchy. A user at level k can delegate se-
cret keys to descendant identities at lower levels, but cannot decrypt messages
intended for a recipient that is not among its descendants. For example, a user
with the identity “University of Texas: computer science department” can dele-
gate a key for the identity “University of Texas: computer science department:
grad student”, but cannot delegate keys for identities that do not begin with
“University of Texas : computer science department”. A more formal definition
of an HIBE system is given in Section 2.

Most previous HIBE constructions were proven secure in the selective model
of security (where an attacker must declare the identity he intends to attacker

? Supported by National Defense Science and Engineering Graduate Fellowship.
?? Supported by NSF CNS-0716199, CNS-0915361 and Air Force Office of Scientific

Research (AFO SR) under the MURI award for “Collaborative policies and assured
information sharing” (Project PRESIDIO).



before seeing the public parameters of the system), with two recent exceptions.
Gentry and Halevi [3] employ the techniques of [4] to obtain full security, but at
the cost of a strong assumption (the BDHE-Set assumption) and ciphertext size
growing linearly in the depth of the hierarchy. Waters [5] obtained full security
with his new dual system encryption methodology from the well-established
d-BDH and decisional Linear assumptions, but also had ciphertexts with size
growing linearly in the depth of the hierarchy. This fell short of the constant size
ciphertexts achieved by Boneh, Boyen, and Goh [6], but their HIBE system was
only proven to be selectively secure in the standard model (or fully secure in the
random oracle model).

In this paper, we resolve the question of whether full security and short
ciphertexts (like [6]) can be simultaneously achieved in a HIBE system. A natural
approach is to combine the Waters realization of dual system encryption with the
Boneh-Boyen-Goh construction. This direct combination presents two problems:

1. tags for each level that do not compress
2. keys that are not fully rerandomized at delegation.

In the Boneh-Boyen-Goh system, group elements corresponding to each level
of an identity are compressed (multiplied together) into a constant number of
ciphertext elements. The tags in the Waters system do not allow this. These
tags also prevent a key from being fully rerandomized upon delegation, meaning
that an attacker can tell the difference between a delegated key and one freshly
generated by the key generation algorithm. This requires a security definition
that keeps track of such subtleties, which substantially complicates the security
proof. Removing the tags from the Waters realization of dual system encryption
is a nontrivial task because the tags were used to avoid a potential paradox in
the dual system proof strategy.

1.1 Our Approach

We develop a new realization of dual system encryption that does not use tags.
This provides several benefits:

1. compression of ciphertext is now possible
2. negligible correctness error caused by the tags is removed
3. schemes appear very natural and closely related to prior schemes.

Before giving the details of our approach, we first review the concept of dual
system encryption.

Dual System Encryption In a dual system, ciphertexts and keys can take on
two forms: normal or semi-functional. Semi-functional ciphertexts and keys are
not used in the real system, they are only used in the security proof. A normal
key can decrypt normal or semi-functional ciphertexts, and a normal ciphertext
can be decrypted by normal or semi-functional keys. However, when a semi-
functional key is used to decrypt a semi-functional ciphertext, decryption will



fail. More specifically, the semi-functional components of the key and ciphertext
will interact to mask the blinding factor by an additional random term. Security
for dual systems is proved using a sequence of games which are shown to be in-
distinguishable. The first game is the real security game (with normal ciphertext
and keys). In the next game, the ciphertext is semi-functional, while all the keys
are normal. For an attacker that makes q key requests, games 1 through q follow.
In game k, the first k keys are semi-functional while the remaining keys are nor-
mal. In game q, all the keys and the challenge ciphertext given to the attacker
are semi-functional. Hence none of the given keys are useful for decrypting the
challenge ciphertext. At this point, proving security becomes relatively easy.

The Waters Realization When arguing that games k and k − 1 are indistin-
guishable, we create a simulator who can use any legal identities for the chal-
lenge ciphertext and keys. This creates a potential problem. The simulator is
prepared to make a semi-functional ciphertext for an identity ID and is also
prepared to make the kth key for identity ID, so it may seem like the simulator
can determine whether key k is semi-functional for itself by test decrypting with
a semi-functional ciphertext for the same identity. To resolve this paradox, the
Waters IBE scheme associates random tag values with each ciphertext and key.
Decryption works only when the tag values of the ciphertext and decrypting
key are unequal. If the simulator attempted to test semi-functionality of key k
for itself by creating a semi-functional ciphertext for the same identity, it would
only be able to create one with an equal tag, and hence decryption would un-
conditionally fail. This correlation of tags is hidden from an attacker who cannot
request a key with the same identity as the challenge ciphertext, so the tags look
randomly distributed from the attacker’s point of view.

Tags are used similarly in the Waters HIBE scheme, but here they cause two
additional problems. First, there is a separate tag value associated with each
level of the identity in a ciphertext or key. All these tag values must be given
out in a ciphertext, so this forces ciphertext size to grow linearly with the depth
of the hierarchy. Secondly, there is no method for rerandomizing the tags in key
delegation. This means that a key at level d+ 1 which is delegated from a key at
level d will share its first d tag values, a property which links the distribution of
a key to its lineage. Some previous security definitions for HIBE [1, ?] which did
not keep track of delegation paths of keys are hence invalid for such a system.
Security must be argued under a more complete definition introduced in [7].

Our Realization The additional complications of the proof and the linear cipher-
text size are undesirable artifacts of building the HIBE system with the same tag
techniques as the IBE system. To remove the tags, we must find a different way
to resolve the paradox. Instead of having decryption unconditionally fail when
the simulator attempts to test semi-functionality of the kth key, we design our
system so that decryption will unconditionally succeed. We introduce a variant
of semi-functional keys which we call nominally semi-functional keys. These keys
are semi-functional in name only, meaning that they are distributed like semi-
functional keys, but are actually correlated with semi-functional ciphertexts so



that when a nominally semi-functional key is used to decrypt a semi-functional
ciphertext, the interaction of the two semi-functional components results in can-
celation and decryption is successful. If the simulator attempts to answer its own
question by creating the kth key and challenge ciphertext for the same identity,
the created key will be nominally semi-functional and hence test decrypting will
not distinguish this from a normal key. This nominally semi-functional key will
appear to be distributed like a regular semi-functional key to the attacker, who
cannot request a key that can decrypt the challenge ciphertext.

With this technique, we are able to construct a fully secure IBE system with
short parameters without tags, and also give a fully secure HIBE system with
constant-size ciphertexts. Our proofs rely on simple (constant-size) assumptions
which do not depend on the number of queries the attacker makes. Our proof
for our HIBE system is considerably simplified by the fact that our keys can
be fully rerandomized upon delegation, avoiding the corresponding difficulties of
the Waters HIBE proof.

In our the main body we provide a construction under a group of composite
order N where N is the product of three primes. In Appendix C, we provide an
analog of this for prime order groups. Our analog takes advantage of asymmetric
bilinear groups where there is no efficient isomorphism between G1 and G2.

An interesting observation arising from our work is that the existing Boneh-
Boyen IBE [8] and Boneh-Boyen-Goh HIBE [6] schemes which were only proven
to be selectively secure can be transformed into fully secure systems by embed-
ding them in composite order groups. Our IBE and HIBE systems are remarkably
similar to these schemes.

1.2 Related Work

Identity Based Encryption was introduced by Shamir [9] and first realized by
Boneh and Franklin [10] and Cocks [11]. The Boneh-Franklin IBE construc-
tion [10] proved security in the random oracle model. Subsequent constructions
by Canetti, Halevi, and Katz [12] and Boneh and Boyen [8] were proved secure
in the standard model, but under the weaker notion of selective security. Later,
Boneh and Boyen [13] and Waters [14] gave constructions which were fully se-
cure in the standard model. The Waters system was efficient and fully secure
in the standard model under the decisional Bilinear Diffie-Hellman assumption
(d-BDH), but it had public parameters consisting of O(λ) group elements for
security parameter λ. Gentry [4] constructed an IBE system with short public
parameters and proved full security in the standard model, but used an as-
sumption (q-ABHDE) which is substantially more complicated than d-BDH and
depends on the number of queries made by the attacker. Gentry, Peikert, and
Vaikuntanathan also gave an IBE construction based on lattice assumptions [15].

Hierarchical Identity Based Encryption was introduced by Horwitz and Lynn [2]
and then constructed by Gentry and Silverberg [1] in the random oracle model.
Boneh and Boyen [8] achieved security in the selective model without random
oracles. Boneh, Boyen, and Goh [6] then gave an HIBE with constant size ci-
phertexts, also in the selective model under a q-based assumption. These short



ciphertexts were particularly useful for applications, including forward secure
encryption [12] and converting the NNL broadcast encryption system [16] into
a public-key system [17]. Gentry and Halevi [3] constructed the first fully secure
HIBE for polynomial depth, though also under a complex assumption. Waters [5]
attained full security under the d-BDH and decisional Linear assumptions, but
with ciphertext size growing linearly in the hierarchy depth. We note that Waters
first instantiated this result in composite order groups. The complete definition
of security for HIBE that we use in this paper was formulated by Shi and Wa-
ters [7].

1.3 Organization

In Section 2, we formally define an HIBE system and give the complete security
definition, give background on bilinear groups, and state our assumptions. In
Section 3, we present our IBE scheme and prove its security. In Section 4, we
give our HIBE scheme and prove its security. In Section 6, we conclude and
discuss open directions for further research.

2 Background

2.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme has five algorithms: Setup,
Encrypt, KeyGen, Decrypt, and Delegate.

Setup(λ) → PK,MSK The setup algorithm takes a security parameter λ as
input and outputs the public parameters PK and a master secret key MSK.

KenGen(MSK, I)→ SKI The key generation algorithm takes the master secret
key and an identity vector I as input and outputs a private key SKI .

Delegate(PK,SKI , I)→ SKI:I The delegation algorithm takes a secret key for
the identity vector I of depth d and an identity I as input and outputs a secret
key for the depth d+ 1 identity vector I : I formed by concatenating I onto the
end of I.

Encrypt(PK,M, I) → CT The encryption algorithm takes the public parame-
ters PK, a messageM , and an identity vector I as input and outputs a ciphertext
CT .

Decrypt(PK,CT, SK)→M The decryption algorithm takes the public param-
eters PK, a ciphertext CT , and a secret key SK as input and outputs the
message M , if the ciphertext was an encryption to an identity vector I and the
secret key is for the same identity vector.

Notice that the decryption algorithm is only required to work when the iden-
tity vector for the ciphertext matches the secret key exactly. However, someone
who has a secret key for a prefix of this identity vector can delegate to themselves
the required secret key and also decrypt.



Security definition We give the complete form of the security definition [7] which
keeps track of how keys are generated and delegated. Security is defined through
the following game, played by a challenger and an attacker.

Setup The challenger runs the Setup algorithm to generate public parameters
PK which it gives to the adversary. We let S denote the set of private keys
that the challenger has created but not yet given to the adversary. At this point,
S = ∅.

Phase 1 The adversary makes Create, Delegate, and Reveal key queries. To
make a Create query, the attacker specifies an identity vector I. In response, the
challenger creates a key for this vector by calling the key generation algorithm,
and places this key in the set S. It only gives the attacker a reference to this key,
not the key itself. To make a Delegate query, the attacker specifies a key SKI

in the set S and specifies an identity I ′. In response, the challenger appends I ′

to I and makes a key for this new identity by running the delegation algorithm
on SKI and I ′. It adds this key to the set S and again gives the attacker only a
reference to it, not the actual key. To make a Reveal query, the attacker specifies
an element of the set S. The challenger gives this key to the attacker and removes
it from the set S. We note that the attacker need no longer make any delegation
queries for this key because it can run the delegation algorithm on the revealed
key for itself.

Challenge The adversary gives the challenger two messages M0 and M1 and a
challenge identity vector I∗. This identity vector must satisfy the property that
no revealed identity in Phase 1 was a prefix of it. The challenger sets β ∈ {0, 1}
randomly, and encrypts Mβ under I∗. It sends the ciphertext to the adversary.

Phase 2 This is the same as Phase 1, with the added restriction that any revealed
identity vector must not be a prefix of I∗.

Guess The adversary must output a guess β′ for β.
The advantage of an adversary A is defined to be Pr[β′ = β]− 1

2 .

Definition 1. A Hierarchical Identity Based Encryption scheme is secure if all
polynomial time adversaries achieve at most a negligible advantage in the security
game.

2.2 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [18]. We define them
by using a group generator G, an algorithm which takes a security parameter λ
as input and outputs a description of a bilinear group G. In our case, G outputs
(N = p1p2p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab



2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We further require that the group operations in G and GT as well as the
bilinear map e are computable in polynomial time with respect to λ. Also, we
assume the group descriptions of G and GT include generators of the respective
cyclic groups. We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2 and
p3 in G respectively. We note that when hi ∈ Gpi

and hj ∈ Gpj
for i 6= j, e(hi, hj)

is the identity element in GT . To see this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 . We let
g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and
gp2p3 generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 .
We note:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 , Gp2 , Gp3 will be a principal tool in our con-
structions.

We now give our complexity assumptions. These same assumptions will be
used to prove the security of our IBE and HIBE systems. We note that they are
static (not dependent on the depth of the hierarchy or the number of queries
made by an attacker). The first assumption is just the subgroup decision problem
in the case where the group order is a product of 3 primes. In Appendix A,
we show that these assumptions hold in the generic group model if finding a
nontrivial factor of the group order is hard. We prove this by applying the
theorems of Katz, Sahai, and Waters [19]. Their work also used composite order
bilinear groups and provided a general framework for proving generic security of
assumptions in this setting.

In the assumptions below, we let Gp1p2 , e.g., denote the subgroup of order
p1p2 in G.

Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator
G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .
We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of

Gp1 and an element of Gp2 . We refer to these elements as the “Gp1 part of T1”
and the “Gp2 part of T1” respectively. We will use this terminology in our proofs.

Definition 2. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.



Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G, T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1

can be (uniquely) written as the product of an element of Gp1 , an element of
Gp2 , and an element of Gp3 . We refer to these as the “Gp1 part of T1”, the “Gp2
part of T1”, and the “Gp3 part of T1”, respectively. T2 can similarly be written
as the product of an element of Gp1 and an element of Gp3 .

Definition 3. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 4. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

3 Our IBE System

We begin by giving our new dual system encryption realization of IBE. Our
construction will use composite order groups of order N = p1p2p3 and identities
in ZN . Remarkably, our construction looks almost exactly like the Boneh-Boyen
IBE with keys additionally randomized in the subgroup Gp3 . This resemblance
to preexisting selectively secure schemes will continue in our HIBE system as
well. We regard this as a desirable feature of our approach.



We note that the subgroup Gp2 is not used in our actual scheme, instead it
serves as our semi-functional space. Keys and ciphertexts will be semi-functional
when they include terms in Gp2 and decryption will proceed by pairing key
elements with ciphertext elements. This will give us the decryption functionality
we need: when we pair a normal key with a semi-functional ciphertext or a
normal ciphertext with a semi-functional key, the terms in Gp2 are orthogonal
to terms in Gp1 and Gp3 under the pairing and will cancel out. When we pair a
semi-functional key with a semi-functional ciphertext, we will get an additional
term arising from the pairing of the terms in Gp2 .

3.1 Construction

Setup The setup algorithm chooses a bilinear group G of order N = p1p2p3

(where p1, p2, and p3 are distinct primes). We let Gpi
denote the subgroup of

order pi in G. It then chooses u, g, h ∈ Gp1 and α ∈ ZN . The public parameters
are published as:

PK = {N, u, g, h, e(g, g)α}.
The secret parameters are α and a generator of Gp3 .

Encrypt(M, ID) The encryption algorithm chooses s ∈ ZN randomly and cre-
ates the ciphertext as:

C0 = Me(g, g)αs, C1 = (uIDh)s, C2 = gs.

KeyGen(ID,MSK) The key generation algorithm chooses r ∈ ZN and R3, R
′
3 ∈

Gp3 randomly. (Random elements of Gp3 can be obtained by taking a generator
of Gp3 and raising it to random exponents modulo N .) The key is formed as:

K1 = grR3,K2 = gα(uIDh)rR′3.

Decryption If the ID’s of the ciphertext and key are equal, the decryption algo-
rithm computes the blinding factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uIDh, g)rs

e(uIDh, g)rs
.

3.2 Security

To prove security of our IBE system, we first define two additional structures:
semi-functional keys and semi-functional ciphertexts. These will not be used in
the real system, but they will be used in our proof.

Semi-functional Ciphertext We let g2 denote a generator of the subgroup Gp2 .
A semi-functional ciphertext is created as follows: first, a normal ciphertext
C ′0, C

′
1, C

′
2 is generated by the encryption algorithm. Random exponents x, zc ∈

ZN are chosen. Then, C0 is set to be C ′0, C1 is set to be C ′1g
xzc
2 , and C2 is set

to be C ′2g
x
2 .



Semi-functional Key A semi-functional key is created as follows: first, a normal
key K ′1, K ′2 is generated by the key generation algorithm. Random exponents
γ, zk ∈ ZN are chosen. K1 is set to be K ′1g

γ
2 and K2 is set to be K ′2g

γzk

2 .
Notice that if a semi-functional key is used to decrypt a semi-functional ci-

phertext, the blinding factor will be obscured by an additional factor of e(g2, g2)xγ(zk−zc).
If zc = zk, decryption will still work. In this case, we say that the key is nominally
semi-functional: it has terms in Gp2 , but these do not hinder decryption.

Our proof of security relies on Assumptions 1, 2, 3 defined in Section 2. We
will prove security by a hybrid argument using a sequence of games. The first
game, GameReal, will be the real security game. The next game, GameRestricted,
will be like the real security game except that the attacker cannot ask for keys for
identities which are equal to the challenge identity modulo p2. This is a stronger
restriction than the real security game, where the identities must be unequal
modulo N . We will retain this stronger restriction throughout the subsequent
games. The reason for it will be explained in the proof. We let q denote the
number of key queries the attacker makes. For k from 0 to q, we define Gamek
as:

Gamek This is like the restricted security game, except that the ciphertext given
to the attacker is semi-functional and the first k keys are semi-functional. The
rest of the keys are normal.

In Game0, all the keys are normal and the ciphertext is semi-functional. In
Gameq, the ciphertext and all of the keys are semi-functional. Our last game is
GameFinal, which is the same as Gameq except that the ciphertext is a semi-
functional encryption of a random message, not one of the two messages re-
quested by the attacker. We will prove that each of these games is indistinguish-
able in the following four lemmas.

Lemma 1. Suppose there exists an algorithm A such that GameRealAdvA −
GameRestrictedAdvA = ε. Then we can build an algorithm B with advantage ≥ ε

2
in breaking either Assumption 1 or Assumption 2.

Proof. Given g,X3, B can simulate GameReal with A. With probability ε, A
produces identities ID and ID∗ such that ID 6= ID∗ modulo N and p2 divides
ID − ID∗. B uses these identities to produce a nontrivial factor of N by com-
puting a = gcd(ID − ID∗, N). We set b = N

a . We note that p2 divides a and
N = ab = p1p2p3. We consider two cases:

1. p1 divides b
2. a = p1p2 and b = p3.

At least one of these cases must occur with probability ≥ ε
2 . In case 1, B

will break Assumption 1. Given g,X3, T , B can determine that p1 divides b by
verifying that gb is the identity and will then test whether T b is the identity. If
it is, then T ∈ Gp1 . If it is not, T ∈ Gp1p2 .

In case 2, B will break Assumption 2. Given g,X1X2, X3, Y2Y3, B can deter-
mine that a = p1p2 by verifying that (X1X2)a is the identity and will then test



whether e((Y2Y3)b, T ) is the identity. If it is, then T ∈ Gp1p3 . If it is not, then
T ∈ G.

Lemma 2. Suppose there exists an algorithm A such that GameRestrictedAdvA−
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B first receives g,X3, T . It simulates GameRestricted or Game0 with A.
It sets the public parameters as follows. It chooses random exponents α, a, b ∈ ZN
and sets g = g, u = ga, h = gb. It sends these public parameters {N, u, g, h, e(g, g)α}
toA. Each time B is asked to provide a key for an identity IDi, it chooses random
exponents ri, ti, and wi ∈ ZN and sets:

K1 = griXti
3 ,K2 = gα(uIDih)riXwi

3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B chooses
β ∈ {0, 1} randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T aID+b, C2 = T.

(This implicitly sets gs equal to the Gp1 part of T .) If T ∈ Gp1p2 , then this is
a semi-functional ciphertext with zc = aID + b. We note that the value of zc
modulo p2 is not correlated with the values of a and b modulo p1, so this is
properly distributed. If T ∈ Gp1 , this is a normal ciphertext. Hence, B can use
the output of A to distinguish between these possibilities for T .

Lemma 3. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . B picks random exponents a, b, α ∈
ZN and sets the public parameters as: g = g, u = ga, h = gb, e(g, g)α. It sends
these to A. When A requests the ith key for IDi when i < k, B creates a semi-
functional key. It does this by choosing random exponents ri, zi, ti ∈ ZN and
setting:

K1 = gri(Y2Y3)ti ,K2 = gα(uIDih)ri(Y2Y3)zi .

This is a properly distributed semi-functional key with gγ2 = Y ti2 . (We note that
the values of ti and zi modulo p2 and modulo p3 are uncorrelated by the Chinese
Remainder Theorem.)

For i > k, B generates normal keys by using random exponents ri, ti, wi ∈ ZN
and setting:

K1 = griXti
3 ,K2 = gα(uIDih)riXwi

3 .

To create the kth requested key, B lets zk = aIDk + b, chooses a random
exponent wk ∈ ZN , and sets:

K1 = T,K2 = gαT zkXwk
3 .



At some point, A sends B two messages, M0 and M1, and a challenge identity,
ID. B sets β ∈ {0, 1} randomly. The challenge ciphertext is formed as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)aID+b, C2 = X1X2.

We note that this sets gs = X1 and zc = aID+b. Since f(ID) = aID+b is a
pairwise independent function modulo p2, as long as IDk 6= ID(mod p2), zk and
zc will seem randomly distributed to A (again, we note that the values of a and b
modulo p2 are uncorrelated with their values modulo p1). If IDk ≡ ID(mod p2),
then A has made an invalid key request. This is where we use our additional
modular restriction.

Though it is hidden from A, this relationship between zc and zk is crucial:
if B attempts to test itself whether key k is semi-functional by creating a semi-
functional ciphertext for IDk and trying to decrypt, then decryption will work
whether key k is semi-functional or not, because zc = zk. In other words, the
simulator B can only make a nominally semi-functional key k.

If T ∈ Gp1p3 , then B has properly simulated Gamek−1. If T ∈ G, then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish
between these possibilities for T .

Lemma 4. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2, T . B chooses random exponents

a, b ∈ ZN and sets the public parameters as g = g, u = ga, h = gb, e(g, g)α =
e(gαX2, g). It sends these to A. When A requests a key for identity IDi, B
generates a semi-functional key. It does this by choosing random exponents
ci, ri, ti, wi, γi ∈ ZN and setting:

K1 = griZγi

2 X
ti
3 ,K2 = gαX2(uIDih)riZci

2 X
wi
3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B sets
β ∈ {0, 1} randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)aID+b, C2 = gsY2.

This sets zc = aID + b. We note that the value of zc only matters modulo p2,
whereas u = ga and h = gb are elements of Gp1 , so when a and b are chosen
randomly modulo N , there is no correlation between the values of a and b modulo
p1 and the value zc = aID + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext
with message Mβ . If T is a random element of GT , then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for T .

We have now proven the following theorem:

Theorem 1. If Assumptions 1, 2, and 3 hold, then our IBE system is secure.



Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous
lemmas that the real security game is indistinguishable from GameFinal, in which
the value of β is information-theoretically hidden from the attacker. Hence the
attacker can attain no advantage in breaking the IBE system.

4 Our HIBE System

We build upon our IBE system and extend our techniques to give an HIBE
system with short ciphertexts. The absence of tags allows us to compress the
ciphertext into a constant number of group elements and also to rerandomize
keys fully upon delegation. This dramatically simplifies our proof of security. Our
construction again uses composite order groups of order N = p1p2p3, and looks
almost exactly like the Boneh-Boyen-Goh HIBE system with keys additionally
randomized in subgroup Gp3 . Gp2 will be our semi-functional space, which is not
used in the real system.

4.1 Construction

Setup The setup algorithm chooses a bilinear group G or order N = p1p2p3.
We let ` denote the maximum depth of the HIBE. The setup algorithm chooses
g, h, u1, . . . , u` ∈ Gp1 , X3 ∈ Gp3 , and α ∈ ZN . The public parameters are pub-
lished as:

PK = {N, g, h, u1, . . . , u`, X3, e(g, g)α}.
The secret parameter is α.

Encrypt(M, (ID1, . . . , IDj)) The encryption algorithm chooses s ∈ ZN ran-
domly. It sets:

C0 = Me(g, g)αs, C1 =
(
uID1

1 · · ·uIDj

j h
)s
, C2 = gs.

KeyGen(MSK, (ID1, . . . , IDj)) The key generation algorithm chooses r ∈ ZN
randomly and also chooses random elements R3, R

′
3, Rj+1, . . . , R` of Gp3 . It sets:

K1 = grR3,K2 = gα
(
uID1

1 · · ·uIDj

j h
)r
R′3, Ej+1 = urj+1Rj+1, . . . , E` = ur`R`.

Delegate Given a key K ′1,K
′
2, E

′
j+1, . . . , E

′
` for (ID1, . . . , IDj), the delegation

algorithm creates a key for (ID1, . . . , IDj+1) as follows. It chooses a random
r′ ∈ ZN and random elements of Gp3 denoted, e.g., by R̃3. The new key is set
as:

K1 = K ′1g
r′R̃3,

K2 = K ′2

(
uID1

1 · · ·uIDj

j h
)r′

(E′j+1)IDj+1u
r′IDj+1
j+1 R̃′3,

Ej+2 = E′j+2u
r′

j+2R̃j+2, . . . , E` = E′`u
r′

` R̃`.

We note that this new key is fully rerandomized: its only tie to the previous key
is in the values ID1, . . . , IDj .



Decrypt The decryption algorithm assumes that the key and ciphertext both
correspond to the same identity (ID1, . . . , IDj). If the key identity is a prefix of
this instead, then the decryption algorithm starts by running the key delegation
algorithm to create a key with identity matching the ciphertext identity exactly.
The decryption algorithm then computes the blinding factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uID1

1 · · ·uIDj

j h, g)rs

e(g, uID1
1 · · ·uIDj

j h)rs
= e(g, g)αs.

4.2 Security

To prove security of our HIBE system, we again rely on the static Assumptions
1, 2, and 3. We first define two additional structures: semi-functional ciphertexts
and semi-functional keys. These will not be used in the real system, but will be
used in our proof.

Semi-functional Ciphertext We let g2 denote a generator ofGp2 . A semi-functional
ciphertext is created as follows: first, we use the encryption algorithm to form a
normal ciphertext C ′0, C

′
1, C

′
2. We choose random exponents x, zc ∈ ZN . We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .

Semi-functional Keys To create a semi-functional key, we first create a normal
key K ′1, K ′2, E′j+1, . . ., E′` using the key generation algorithm. We choose random
exponents γ, zk, zj+1, . . . , z` ∈ ZN . We set:

K1 = K ′1g
γ
2 ,K2 = K ′2g

γzk

2 , Ej+1 = E′j+1g
γzj+1
2 , . . . , E` = E′`g

γz`

2 .

We note that when a semi-functional key is used to decrypt a semi-functional
ciphertext, the decryption algorithm will compute the blinding factor multiplied
by the additional term e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work.
In this case, the key is nominally semi-functional.

Our proof of security will again be structured as a hybrid argument over a
sequence of games. The first game, GameReal, is the real HIBE security game.
The next game, GameReal′ , is the same as the real game except that all key
queries will be answered by fresh calls to the key generation algorithm (the
challenger will not be asked to delegate keys in a particular way). The next
game, GameRestricted is the same as GameReal′ except that the attacker cannot
ask for keys for identities which are prefixes of the challenge identity modulo
p2. We will retain this restriction in all subsequent games. We let q denote the
number of key queries the attacker makes. For k from 0 to q, we define Gamek
as:

Gamek This is like GameRestricted, except that the ciphertext given to the at-
tacker is semi-functional and the first k keys are semi-functional. The rest of the
keys are normal.



In Game0, only the challenge ciphertext is semi-functional. In Gameq, the
challenge ciphertext and all of the keys are semi-functional. We define GameFinal
to be like Gameq, except that the challenge ciphertext is a semi-functional en-
cryption of a random message, not one of the messages provided by the attacker.
We will show these games are indistinguishable in five lemmas. The proofs are
very similar to the proofs for our IBE system, and can be found in Appendix B.

5 Moving to Prime Order Groups

In Appendix C we show an analog of our previous construction in prime order
groups. The prime order group construction we give takes advantage of asym-
metric groups where there is a pairing function e : G1 ×G2 → GT , but there is
not believed to be an efficient isomorphism from either G1 to G2 or G2 to G1.

Our prime construction can be viewed as an analog of the composite order one
where we “emulate” the three subgroups with multiple group elements to create
three subspaces. Our “emulation” technique uses some ideas from the Waters [5]
prime order group realization; however, we are able to “squeeze” things down
by using asymmetric groups.

A potential future direction is be to realize our methods in prime order groups
without relying on the lack of isomorphism for security. A natural approach
would be to use an “unsqueezed” version of our techniques. It is possible that
this approach might give a reduction with more cancelations that in turn provides
security from even simpler assumptions.

6 Conclusions and Open Directions

We have given the first HIBE system with constant size ciphertext that is fully
secure in the standard model from simple assumptions. In doing so, we discovered
that instantiations of the selectively secure Boneh-Boyen IBE and Boneh-Boyen-
Goh HIBE schemes in composite order bilinear groups can be proved to be fully
secure using the dual encryption technique of Waters. We overcame the initial
challenges introduced by the use of tags in the original Waters IBE and HIBE
systems by introducing the concept of nominally semi-functional keys. Our work
further demonstrates the power and versatility of the dual system encryption
technique, which we believe will have many future applications.

We leave it as an open problem to transfer our IBE and HIBE systems
into prime order groups with security proven from standard assumptions such
as the decisional Linear assumption and d-BDH. This kind of translation was
previously achieved by Waters [5] for his IBE and HIBE systems, which were
originally constructed in composite order groups.

References

1. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Advances in
Cryptology - ASIACRYPT 2002. Volume 2501 of LNCS., Springer (2002) 548–566



2. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Advances
in Cryptology - EUROCRYPT 2002. Volume 2332 of LNCS., Springer (2002) 466–
481

3. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Theory of Cryptography. Volume 5444 of LNCS., Springer (2009)
437–456

4. Gentry, C.: Practical identity-based encryption without random oracles. In: Ad-
vances in Cryptology - EUROCRYPT 2006. Volume 4004 of LNCS., Springer
(2006) 445–464

5. Waters, B.: Dual system encryption: realizing fully secure ibe and hibe under
simple assumptions. In: Advances in Cryptology - CRYPTO 2009. Volume 5677
of LNCS., Springer (2009) 619–636

6. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Advances in Cryptology - EUROCRYPT 2005. Volume
3493 of LNCS., Springer (2005) 440–456

7. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Automata, Languages and Programming. Volume 5126 of LNCS., Springer (2008)
560–578

8. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption with-
out random oracles. In: Advances in Cryptology - EUROCRYPT 2004. Volume
3027 of LNCS., Springer (2004) 223 – 238

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in
Cryptology - CRYPTO 1984. Volume 196 of LNCS., Springer (1984) 47–53

10. Boneh, D., Franklin, M.: Identity based encryption from the weil pairing. In:
Advances in Cryptology - CRYPTO 2001. Volume 2139 of LNCS., Springer (2001)
213–229

11. Cocks, C.: An identity based encryption scheme based on quadratic residues.
In: Proceedings of the 8th IMA International Conference on Cryptography and
Coding. (2001) 26–28

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Advances in Cryptology - EUROCRYPT 2003. Volume 2656 of LNCS., Springer
(2003) 255–271

13. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Advances in Cryptology - CRYPTO 2004. Volume 3152 of LNCS., Springer
(2004) 443–459

14. Waters, B.: Efficient identity-based ecnryption without random oracles. In: Ad-
vances in Cryptology - EUROCRYPT 2005. Volume 3493 of LNCS., Springer
(2005) 114–127

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th annual ACM Symposium
on Theory of Computing, ACM (2008) 197–206

16. Naor, D., Naor, M., Lotspiech, J. In: Advances in Cryptology - CRYPTO 2001.
Volume 2139 of LNCS., Springer (2001) 41–62

17. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Proceedings of the Digital Rights Management Workshop 2002. Volume 2696 of
LNCS., Springer (2002) 61–80

18. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In:
Theory of Cryptography. Volume 3378 of LNCS., Springer (2005) 325–342

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Advances in Cryptology - EUROCRYPT
2008. Volume 4965 of LNCS., Springer (2008) 146–162



A Generic Security of Our Complexity Assumptions

We now prove our three complexity assumptions hold in the generic group model,
as long as it is hard to find a nontrivial factor of the group order, N . We adopt
the notation of [19] to express our assumptions. We fix generators gp1 , gp2 , gp3
of the subgroups Gp1 , Gp2 , Gp3 respectively. Every element of G can then be
expressed as ga1

p1 g
a2
p2 g

a3
p3 for some values of a1, a2, a3. We denote an element of G

by (a1, a2, a3). The element e(gp1 , gp1)a1e(gp2 , gp2)a2e(gp3 , gp3)a3 in GT will be
denoted by [a1, a2, a3]. We use capital letters to denote random variables, and we
reuse random variables to denote relationships between elements. For example,
X = (X1, Y1, Z1) is a random element of G, and Y = (X1, Y2, Z2) is another
random element that shares the same component in the Gp1 subgroup.

Given random variables X, {Ai} expressed in this form, we say that X is
dependent on {Ai} if there exists values λi ∈ Zn such that X =

∑
i λiAi as

formal random variables. Otherwise, we say that X is independent of {Ai}. We
note the following two theorems from [19]:

Theorem 2. (Theorem A.1 of [19]) Let N =
∏m
i=1 pi be a product of distinct

primes, each greater than 2λ. Let {Ai} be random variables over G, and let
{Bi}, T0, T1 be random variables over GT , where all random variables have degree
at most t. Consider the following experiment in the generic group model:

An algorithm is given N, {Ai}, and {Bi}. A random bit b is chosen, and the
adversary is given Tb. The algorithm outputs a bits b′, and succeeds if b′ = b. The
algorithm’s advantage is the absolute value of the difference between its success
probability and 1

2 .
Say each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}. Then given any

algorithm A issuing at most q instructions and having advantage δ in the above
experiment, A can be used to find a nontrivial factor of N (in time polynomial
in λ and the running time of A) with probability at least δ −O(q2t/2λ).

Theorem 3. (Theorem A.2 of [19]) Let N =
∏m
i=1 pi be a product of distinct

primes, each greater than 2λ. Let {Ai}, T0, T1 be random variables over G, and
let {Bi} be random variables over GT , where all random variables have degree
at most t. Consider the same experiment as in the theorem above.

Let S := {i|e(T0, Ai) 6= e(T1, Ai)} (where inequality refers to inequality as
formal polynomials). Say each of T0 and T1 is independent of {Ai}, and fur-
thermore that for all k ∈ S it holds that e(T0, Ak) is independent of {Bi} ∪
{e(Ai, Aj)}∪{e(T0, Ai)}i 6=k, and e(T1, Ak) is independent of {Bi}∪{e(Ai, Aj)}∪
{e(T1, Ai)}i 6=k. Then given any algorithm A issuing at most q instructions and
having advantage δ, the algorithm can be used to find a nontrivial factor of N
(in time polynomial in λ and the running time of A) with probability at least
δ −O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the
generic group model.



Assumption 1 We apply Theorem 3. We can express this assumption as:

A1 = (1, 0, 0), A2 = (0, 0, 1),

T0 = (X1, X2, 0), T1 = (X1, 0, 0).

We note that S = ∅ in this case. It is clear that T0 and T1 are both indepen-
dent of {A1, A2} because X1 does not appear in A1 or A2. Thus, Assumption 1
is generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 2 We apply Theorem 3. We can express this assumption as:

A1 = (1, 0, 0), A2 = (X1, 1, 0), A3 = (Y1, 0, 0), A4 = (0, X2, 1),

T0 = (Z1, Z2, Z3), T1 = (Z1, 0, Z3).

We note that S = {2, 4} in this case. It is clear that T0 and T1 are both
independent of {Ai} since Z1 does not appear in the Ai’s, for example. We
see that e(T0, A2) is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i6=2 because it is
impossible to obtain X1Z1 in the first coordinate of a combination of elements
of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=2. This also allows us to conclude that e(T1, A2)
is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=2. We similarly note that e(T0, A4)
is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i6=4 and e(T1, A4) is independent of
{e(Ai, Aj)}∪{e(T1, Ai)}i 6=4 because we cannot obtain Z3 in the third coordinate.
Thus, Assumption 2 is generically secure, assuming it is hard to find a nontrivial
factor of N .

Assumption 3 We apply Theorem 2. We can express this assumption as:

A1 = (1, 0, 0), A2 = (B, 1, 0), A3 = (0, 0, 1), A4 = (S,X2, 0), A5 = (0, Y2, 0),

T0 = [BS, 0, 0], T2 = [Z1, Z2, Z3].

T1 is independent of {e(Ai, Aj)} because Z1, Z2, Z3 do not appear in {Ai}.
T0 is independent of {e(Ai, Aj)} because the only way to obtain BS in the first
coordinate is to take e(A2, A4), but then we are left with an X2 in the second
coordinate that cannot be canceled. Thus, Assumption 3 is generically secure,
assuming it is hard to find a nontrivial factor of N .

B HIBE Security Proof

Lemma 5. For any algorithm A, GameRealAdvA = GameReal′AdvA.

Proof. We note that keys are identically distributed whether they are produced
by the key delegation algorithm from a previous key or from a fresh call to the
key generation algorithm. Thus, in the attacker’s view, there is no difference
between these games.



Lemma 6. Suppose there exists an algorithm A such that GameReal′AdvA −
GameRestrictedAdvA = ε. Then we can build an algorithm B with advantage ≥ ε

2
in breaking either Assumption 1 or Assumption 2.

Proof. This proof is identical to the proof of Lemma 5.

Lemma 7. Suppose there exists an algorithm A such that GameRestrictedAdvA−
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B first receives g,X3, T . It simulates GameReal or Game0 with A. It sets
the public parameters as follows. It chooses random exponents α, a1, . . . , a`, b ∈
ZN and sets g = g, ui = gai for i from 1 to ` and h = gb. It sends these
public parameters {N, g, u1, . . . , u`, h, e(g, g)α} to A. Each time B is asked to
provide a key for an identity (ID1, . . . , IDj), it chooses random exponents r, t,
w, vj1 , . . . , v` ∈ ZN and sets:

K1 = grXt
3,K2 = gα(uID1

1 · uIDj

j h)rXw
3 , Ej+1 = urj+1X

vj+1
3 , . . . , E` = ur`X

v`
3 .

A sends B two messages,M0 andM1, and a challenge identity, (ID∗1 , . . . , ID
∗
j ).

B chooses β ∈ {0, 1} randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T a1ID
∗
1+···ajID

∗
j +b, C2 = T.

(This implicitly sets gs equal to the Gp1 part of T .) If T =∈ Gp1p2 , then this is
a semi-functional ciphertext with zc = a1ID

∗
1 + · · ·+ajID

∗
j + b. If T ∈ Gp1 , this

is a normal ciphertext. Hence, B can use the output of A to distinguish between
these possibilities for T .

Lemma 8. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . B picks random exponents a1, . . . , a`,
b ∈ ZN and sets the public parameters as: g = g, ui = gai , h = gb, e(g, g)α. It
sends these to A. When A requests the ith key for (ID1, . . . , IDj) when i < k,
B creates a semi-functional key. It does this by choosing random exponents r, z,
t, zj+1, . . . , z` ∈ ZN and setting:

K1 = gr(Y2Y3)t,K2 = gα(uID1
1 · · ·uIDj

j h)r(Y2Y3)z,

Ej+1 = urj+1(Y2Y3)zj+1 , . . . , E` = ur`(Y2Y3)z` .

This is a properly distributed semi-functional key with gγ2 = Y t2 .
For i > k, B generates normal keys by calling the usual key generation

algorithm.
To create the kth requested key for (ID1, . . . , IDj), B lets zk = a1ID1 +

· · · ajIDj + b, chooses random exponents wk, wj+1, . . . , w` ∈ ZN , and sets:

K1 = T,K2 = gαT zkXwk
3 , Ej+1 = T aj+1X

wj+1
3 , . . . , E` = T a`Xw`

3 .



If T ∈ Gp1p3 , this is a normal key with gr equal to the Gp1 part of T . If T ∈ G,
this is a semi-functional key.

At some point, A sends B two messages, M0 and M1, and a challenge identity,
(ID∗1 , . . . , ID

∗
j ). B sets β ∈ {0, 1} randomly. The challenge ciphertext is formed

as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)a1ID
∗
1+···+ajID

∗
j +b, C2 = X1X2.

We note that this sets gs = X1 and zc = a1ID
∗
1 + · · · ajID∗j +b. Since the kth

key is not a prefix of the challenge key modulo p2, zk and zc will seem randomly
distributed to A. Though it is hidden from A, this relationship between zc and
zk is crucial: if B attempts to test itself whether key k is semi-functional by
creating a semi-functional ciphertext for this identity and trying to decrypt, then
decryption will work whether key k is semi-functional or not, because zc = zk.
In other words, the simulator can only create a nominally semi-functional key k.

If T ∈ Gp1p3 , then B has properly simulated Gamek−1. If T ∈ G, then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish
between these possibilities for T .

Lemma 9. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2, T . B chooses random exponents

a1, . . . , a`, b ∈ ZN and sets the public parameters as g = g, u1 = ga1 , . . . , u` =
ga` , h = gb, e(g, g)α = e(gαX2, g). It sends these to A. When A requests a key
for identity (ID1, . . . , IDj), B generates a semi-functional key. It does this by
choosing random exponents c, r, t, w, z, zj+1, . . . , z`, wj+1, . . . , w` ∈ ZN and
setting:

K1 = grZz2X
t
3,K2 = gαX2Z

c
2(uID1

1 · · ·uIDj

j h)rXw
3 ,

Ej+1 = urj+1Z
zj+1
2 X

wj+1
3 , . . . , E` = ur`Z

z`
2 X

w`
3 .

A sends B two messages,M0 andM1, and a challenge identity, (ID∗1 , . . . , ID
∗
j ).

B sets β ∈ {0, 1} randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)a1ID
∗
1+···ajID

∗
j +b, C2 = gsY2.

This sets zc = a1ID
∗
1 + · · · + ajID

∗
j + b. We note that the value of zc only

matters modulo p2, whereas u1 = ga1 , . . . , u` = ga` , and h = gb are elements
of Gp1 , so when a1, . . . , a` and b are chosen randomly modulo N , there is no
correlation between the values of a1, . . . , a`, b modulo p1 and the value zc =
a1ID

∗
1 + · · ·+ ajID

∗
j + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext
with message Mβ . If T is a random element of GT , then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for T .



We have now proven the following theorem:

Theorem 4. If Assumptions 1, 2, and 3 hold, then our HIBE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous
lemmas that the real security game is indistinguishable from GameFinal, in which
the value of β is information-theoretically hidden from the attacker. Hence the
attacker can attain no advantage in breaking the HIBE system.

C IBE in Prime Order Groups

Our construction essentially replaces each single group element in our composite
order construction with a 3-tuple of group elements. This 3-tuple is inspired by
a simplification of the Waters dual encryption IBE system [5]. We prove security
under 3 new static assumptions. We leave it as an open problem to obtain security
from the decisional Linear and d-BDH assumptions. One approach would be to
use more of the Waters system (with less simplification).

C.1 Construction

For our construction, we employ prime order groups G1, G2, GT of order p such
that there is an efficient bilinear map e : G1×G2 → GT but no efficient isomor-
phism between G1 and G2. We use subscripts to clarify which elements are in
G1 and which are in G2, for example, g1 ∈ G1.

Setup Our setup algorithm chooses groups G1, G2, GT of order p as above. It
chooses g1, u1, h1 ∈ G1, g2 ∈ G2 randomly. It sets u2 and h2 so that the discrete
log of u2, h2 base g2 is equal to the discrete log of u1, h1 base g1 respectively. It
chooses a, α ∈ Zp randomly. It chooses v2, v′2, f2 ∈ G2 randomly and sets τ ∈ Zp
to satisfy fτ2 = v2(v′2)a. It publishes the public parameters as:

{g1, u1, h1, g
a
1 , u

a
1 , h

a
1 , g

τ
1 , u

τ
1 , h

τ
1 , e(g1, g2)α}.

The master secret key is g2, α, v2, v′2, u2, h2, f2.

Encrypt(M, ID) The encryption algorithm randomly chooses s ∈ Zp and creates
the ciphertext as:

C0 = Me(g1, g2)αs, C1,1 = (uID1 h1)s, C1,2 = (uID1 h)as, C1,3 = (uID1 h1)−sτ ,

C2,1 = gs1, C2,2 = gas1 , C2,3 = gτs1 .

KeyGen(ID,MSK) The key generation algorithm chooses random values y, c1, c2 ∈
Zp. It creates the key as:

K1,1 = gy2v
c1
2 ,K1,2 = (v′2)c1 ,K1,3 = f c12 ,

K2,1 = gα2 (uID2 h2)yvc22 ,K2,2 = (v′2)c2 ,K2,3 = f c22 .



Decryption If the ID’s of the ciphertext and key are equal, the decryption
algorithm computes the blinding factor as:

e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)
e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3K1,3)

.

C.2 Complexity Assumptions

We state the assumptions we will rely on in our security proof. These are non-
standard assumptions, but we emphasize that they are static.

Assumption 1 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let a, b, s ∈ Zp be
chosen randomly. Given

{f1, f bs1 , fs1 , f
a
1 , f

ab2

1 , f b1 , f
b2

1 , fas1 , f b
2s

1 , f b
3

1 , f b
3s

1 , T ∈ G1, f2, f
b
2 ∈ G2},

it should be hard to distinguish T = fasb
2

1 from random.

Assumption 2 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c, x ∈ Zp
be chosen randomly. Given

{f1, fd1 , fd
2

1 , f bx1 , fdbx1 , fd
2x

1 ∈ G1, f2, f
d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2},

it should be hard to distinguish T = f bc2 from random.

Assumption 3 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c ∈ Zp be
chosen randomly. Given

{f1, fa1 , f b1 , f c1 ∈ G1, f2, f
a
2 , f

b
2 , f

c
2 ∈ G2, T ∈ GT },

it should be hard to distinguish T = e(f1, f2)abc from random.

C.3 Security

We first define semi-functional keys and ciphertexts.

Semi-functional Ciphertext We let f1, v′1 denote elements of G1 such that the
discrete log of v′1 base f1 is the same as the discrete log of v′2 base f2. We let
t, zc denote random exponents in Zp. A semi-functional ciphertext is created as
follows: first, a normal ciphertext C ′0, C

′
1,1, C

′
1,2, C

′
1,3, C

′
2,1, C

′
2,2, C

′
2,3 is created.

Then, C0 is set to be C ′0, C1,1 = C ′1,1, C1,2 = C ′1,2f
tzc
1 , C1,3 = C ′1,3(v′1)−tzc ,

C2,1 = C ′2,1, C2,2 = C ′2,2f
t
1, C2,3 = C ′2,3(v′1)−t.



Semi-functional Key A semi-functional key is created as follows: a normal key
K ′1,1, K ′1,2, K ′1,3, K ′2,1,K

′
2,2,K

′
2,3 is generated. Random exponents w, zk ∈ Zp

are chosen. Then we set: K1,1 = K ′1,1f
−aw
2 ,K1,2 = K ′1,2f

w
2 ,K1,3 = K ′1,3, K2,1 =

K ′2,1f
−awzk
2 ,K2,2 = K ′2,2f

wzk
2 ,K2,3 = K ′2,3.

We note that when a semi-functional key is paired with a normal ciphertext
or a normal key is paired with a semi-functional ciphertext, decryption still
works. When a semi-functional key is paired with a semi-functional ciphertext,
the blinding factor is obscured by an additional term: e(f1, f2)tw(zk−zc). (When
zk = zc, decryption will still work.)

We will prove security through a hybrid argument over a sequence of games.
GameReal is the real security game. Game0 is like the real security game, ex-
cept with a semi-functional ciphertext. Gamek for k from 1 to q (where q is
the number of queries by the attacker) is like Game0, except that the first k
requested keys are semi-functional and the rest are normal. In GameFinal, the
semi-functional encryption is of a random message instead of one of the requested
messages. We will rely on Assumptions 1, 2, 3 as defined in the subsection above.
We prove security through the following 3 lemmas.

Lemma 10. Suppose there exists an algorithm A such that GameRealAdvA −
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B is given

{f1, f bs1 , fs1 , f
a
1 , f

ab2

1 , f b1 , f
b2

1 , fas1 , f b
2s

1 , f b
3

1 , f b
3s

1 , T ∈ G1, f2, f
b
2 ∈ G2}.

It chooses random exponents α,A,B, yg, yu, yh, y′v ∈ Zp and sets the parameters
as:

g1 = f b
2

1 f
yg

1 , u1 = (f b
2

1 )Afyu

1 , h1 = (f b
2

1 )Bfyh

1 , ga1 , u
a
1 , h

a
1 ,

f2 = f2, v2 = f b2 , v
′
2 = f

y′v
2 , τ = b+ ay′v.

Here, a is from the assumption and ga1 , u
a
1 , h

a
1 can be computed from fa1 and

fab
2

1 . We note that B can also compute gτ1 , uτ1 , and hτ1 using f b
3

1 , f b2a1 , fa1 , and
f b1 . It can also compute e(g1, g2)α using f b

2

1 , f b2 , and f b
3

1 .
To construct a normal key for ID, B chooses random exponents c′1, c

′
2, y ∈ Zp

and sets f c12 = f
c′1
2 (f b2)−y and f c22 = f

c′2
2 (f b2)−yAID+B−α. Then the key can be

formed as:
K1,1 = f

ygy
2 (f b2)c

′
1 ,K1,2 = (f c12 )y

′
v ,K1,3 = f c12 ,

K2,1 = f
αyg

2 (f b2)c
′
2f
y(yuID+yh)
2 ,K2,2 = (f c22 )y

′
v ,K2,3 = f c22 .

To construct the challenge ciphertext for Mβ and ID∗, B sets s = s from the
assumption. Then C1,1 and C2,1 can be computed from fs1 and f b

2s
1 . Next,

C1,2 = TAID+B(fas1 )yID+yh , C2,2 = T (fas1 )yg .



We can create C2,3 as:

C2,3 = f b
3s

1 (f bs1 )ygT y
′
v (fas1 )ygy

′
v .

C1,3 can similarly be constructed using T y
′
v(AID+B). We note that A,B are

information-theoretically hidden from the attacker.

Lemma 11. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B is given {f1, fd1 , fd
2

1 , f bx1 , fdbx1 , fd
2x

1 ∈ G1, f2, f
d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}.

It chooses random exponents α, a,A,B, yu, yh, yv ∈ Zp. It sets the parameters
as follows:

g1 = fd1 , u1 = (fd1 )Afyu

1 , h1 = (fd1 )Bfyh

1 , ga1 , u
a
1 , h

a
1 , g2 = fd2 , u2 = (fd2 )Afyu

2 ,

h2 = (fd2 )Bfyh

2 , v′2 = f b2 , v2 = fd2 f
−ba
2 fyv

2 , f2 = f2.

This sets τ = d − ba + yv + ab = d + yv, so the simulator B can also compute
gτ1 , u

τ
1 , h

τ
1 and send all of the public parameters to A.

To make normal keys for key queries < k, B can choose y, c1, c2 ∈ Zp ran-
domly and generate the keys from the MSK. To make semi-functional keys for
key queries > k, B can choose y, c1, c2, w, zk ∈ Zp randomly to generate the
semi-functional key.

To make the challenge key k for ID, B chooses y′, c′2 ∈ Zp randomly and
implicitly sets y = −c+ y′, c1 = c, c2 = c(AID +B) + c′2. The key can then be
formed as:

K1,1 = (fd2 )y
′
T−a(f c2)yv ,K1,2 = T,K1,3 = f c2 ,

K2,1 = gα2 T
−a(AID+B)(f b2)−ac

′
2(fd2 )y

′(AID+B)+c′2

(f c2)yuID+yh+yv(AID+B)f
y′(yuID+yh)+c′2yv

2 ,

K2,2 = TAID+B(f b2)c
′
2 ,K2,3 = (f c2)AID+Bf

c′2
2 .

We note that this sets zk = AID +B.
At some point, A sends two messages, M0,M1, to B along with a challenge

identity ID∗. B chooses β ∈ {0, 1} randomly and generates a semi-functional
ciphertext for Mβ and ID∗ as follows. B chooses a random exponent s′ ∈ Zp
and implicitly sets s = bx+ s′, t = −d2x. The ciphertext is formed as follows:

C0 = Mβe(fdbx1 , fd2 )e(g1, g2)αs
′
, C1,1 = (fdbx1 )AID

∗+B(f bx1 )yuID
∗+B(uID

∗

1 h1)s
′
,

C1,2 = (fdbx1 )a(AID
∗+B)(fd

2x
1 )−(AID∗+B)(uID

∗

1 h1)as
′
,

C1,3 = (fdbx1 )−yv(AID∗+B)(fd
2

1 )−s
′(AID∗+B)(fd1 )−yvs

′(AID∗+B),

C2,1 = fdbx1 (fd1 )s
′
, C2,2 = (fdbx1 )a(fd1 )s

′a(fd
2x

1 )−1,



C2,3 = (fdbx1 )−yv (fd
2

1 )−s
′
(fd1 )−yvs

′
.

We note that zc = AID∗ + B. Since A and B are information-theoretically
hidden from the attacker, this will seem properly distributed to the attacker. If
T = f bc2 , then B has properly simulated Gamek−1, and if T is random, then B
has properly simulated Gamek.

Lemma 12. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B is given

{f1, fd1 , fd
2

1 , f bx1 , fdbx1 , fd
2x

1 ∈ G1, f2, f
d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}.

It will implicitly set α = ab, s = c, and a = a. B chooses random exponents
yg, yu, yv, yv, y

′
v ∈ Zp. It sets the parameters as:

g1 = f
yg

1 , u1 = fyu

1 , h1 = fyh

1 , v2 = fyv

2 , v′2 = f
y′v
2 , g2 = f

yg

2

and sets τ = yv+ay′v. From this, it can calculate the rest of the public parameters
as:

ga1 = (fa1 )yg , ua1 = (fa1 )yu , ha1 = (fa1 )yh , gτ1 = (ga1 )y
′
vgyv

1 ,

uτ1 = (ua1)y
′
vuyv

1 , hτ1 = (ha1)y
′
vhyv

1 , e(g1, g2)α = e(fa1 , f
b
2)y

2
g .

To make semi-functional keys, B must cancel the term gα2 in K2,1 since this
is unknown. To do this, the simulator randomly chooses w, c1, c2, y, γ ∈ Zp and
implicitly sets wzk = b+ γ.

To make the challenge ciphertext for Mβ and ID∗, B sets s = c and chooses
random values δ, δ′ ∈ Zp. It implicitly sets ca+t = δ and ca(yuID∗+yh)+tzc = δ′

and acyg + t = δ.

C0 = MβT,C1,1 = (f c1)yuID
∗+yh , C1,2 = fδ

′

1 , C1,3 = (f c1)−yv(yuID
∗+yh)f

−y′vδ
′

1 ,

C2,1 = (f c1)yg , C2,2 = fδ1 , C2,3 = (f c1)−yvyg (fδ1 )−y
′
v .


