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Abstract. Learning is a task that generalizes many of the analyses that
are applied to collections of data, and in particular, collections of sen-
sitive individual information. Hence, it is natural to ask what can be
learned while preserving individual privacy. [Kasiviswanathan, Lee, Nis-
sim, Raskhodnikova, and Smith; FOCS 2008] initiated such a discussion.
They formalized the notion of private learning, as a combination of PAC
learning and differential privacy, and investigated what concept classes
can be learned privately. Somewhat surprisingly, they showed that, ig-
noring time complexity, every PAC learning task could be performed
privately with polynomially many samples, and in many natural cases
this could even be done in polynomial time.
While these results seem to equate non-private and private learning,
there is still a significant gap: the sample complexity of (non-private)
PAC learning is crisply characterized in terms of the VC-dimension of
the concept class, whereas this relationship is lost in the constructions
of private learners, which exhibit, generally, a higher sample complexity.
Looking into this gap, we examine several private learning tasks and give
tight bounds on their sample complexity. In particular, we show strong
separations between sample complexities of proper and improper private
learners (such separation does not exist for non-private learners), and
between sample complexities of efficient and inefficient proper private
learners. Our results show that VC-dimension is not the right measure
for characterizing the sample complexity of proper private learning.
We also examine the task of private data release (as initiated by [Blum,
Ligett, and Roth; STOC 2008]), and give new lower bounds on the sample
complexity. Our results show that the logarithmic dependence on size of
the instance space is essential for private data release.

1 Introduction

Consider a scenario in which a survey is conducted among a sample of random
individuals and datamining techniques are applied to learn information on the
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entire population. If such information will disclose information on the individ-
uals participating in the survey, then they will be reluctant to participate in
the survey. To address this question, Kasiviswanathan et al. [10] introduced the
notion of private learning. Informally, a private learner is required to output a
hypothesis that gives accurate classification while protecting the privacy of the
individual samples from which the hypothesis was obtained. The formal notion
of a private learner is a combination of two qualitatively different notions. One
is that of PAC learning [17], the other of differential privacy [7]. In PAC (prob-
ably approximately correct) learning, a collection of samples (labeled examples)
is generalized into a hypothesis. It is assumed that the examples are generated
by sampling from some (unknown) distribution D and are labeled according
to an (unknown) concept c taken from some concept class C. The learned hy-
pothesis h should predict with high accuracy the labeling of examples taken
from the distribution D, an average-case requirement. Differential privacy, on
the other hand, is formulated as a worst-case requirement. It requires that the
output of a learner should not be significantly affected if a particular example d
is replaced with arbitrary d′, for all d and d′. This strong notion provides rig-
orous privacy guarantees even against attackers empowered with arbitrary side
information [11].

Recent research on privacy has shown, somewhat surprisingly, that it is pos-
sible to design differentially private variants of many analyses (see [6] for a recent
survey). In this line, the work of [10] demonstrated that private learning is gen-
erally feasible – any concept class that is PAC learnable can be learned privately
(but not necessarily efficiently), by a “Private Occam’s Razor” algorithm, with
sample complexity that is logarithmic in the size of the hypothesis class. Fur-
thermore, taking into account the earlier result of [2] (that all concept classes
that can be efficiently learned in the statistical queries model can be learned pri-
vately and efficiently) and the efficient private parity learner of [10], we get that
most “natural” computational learning tasks can be performed privately and ef-
ficiently (i.e., with polynomial resources). This is important as learning problems
generalize many of the computations performed by analysts over collections of
sensitive data.

The results of [2, 10] show that private learning is feasible in an extremely
broad sense, and hence one can essentially equate learning and private learning.
However, the costs of the private learners constructed in [2, 10] are generally
higher than those of non-private ones by factors that depend not only on the
privacy, accuracy, and confidence parameters of the private learner. In particular,
the well-known relationship between the sampling complexity of PAC learners
and the VC-dimension of the concept class (ignoring computational efficiency) [5]
does not hold for the above constructions of private learners – as their sample
complexity is proportional to the logarithm of the size of the concept class. Recall
that the VC-dimension of a concept class is bounded by the logarithm of its size,
and is significantly lower for many interesting concept classes, hence there may
exist learning tasks for which “very practical” non-private learner exists, but
any private learner is “impractical”.
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The focus of this work is on a fine-grain examination of the differences in
complexity between private and non-private learning. The hope is that such
an examination will eventually lead to an understanding of which complexity
measure is relevant for the sample complexity of private learning, similar to the
well-understood relationship between the VC-dimension and sample complexity
of PAC learning. Such an examination is interesting also for other tasks, and
a second task we examine is that of releasing a sanitization of a data set that
simultaneously protects privacy of individual contributors and offers utility to
the data analyst. See the discussion in Section 1.1.

1.1 Our Contributions

We now give a brief account of our results. Throughout this rather informal
discussion we will treat the accuracy, confidence, and privacy parameters as
constants (a detailed analysis revealing the dependency on these parameters is
presented in the technical sections). We use the term “efficient” for polynomial
time computations.

Following standard computational learning terminology, we will call learn-
ers for a concept class C that only output hypotheses in C proper, and other
learners improper. The original motivation in computational learning theory for
this distinction is that there exist concept classes C for which proper learning
is computationally intractable [16], whereas it is possible to efficiently learn C
improperly [17]. As we will see below, the distinction between proper and im-
proper learning is useful also when discussing private learning, and for more
reasons than making intractable learning tasks tractable.
Proper and Improper Private Learning. It is instructive to look into the
construction of the Private Occam’s Razor algorithm of [10] and see why its
sample complexity is proportional to the logarithm of the size of the hypothe-
sis class used. The algorithm uses the exponential mechanism of McSherry and
Talwar [14] to choose a hypothesis. The choice is probabilistic, where the prob-
ability mass that is assigned to each of the hypotheses decreases exponentially
with the number of samples that are inconsistent with it. A union-bound argu-
ment is used in the claim that the construction actually yields a learner, and a
sample size that is logarithmic in the size of the hypothesis class is needed for
the argument to go through.

For our analyses in this paper, we consider a simple, but natural, class
POINT d containing the concepts cj : {0, 1}d → {0, 1} where cj(x) = 1 for
x = j, and 0 otherwise. The VC-dimension of POINT d is one, and hence it can
be learned (non-privately and efficiently, properly or improperly) with merely
O(1) samples.

In sharp contrast, (when used for properly learning POINT d) the Private
Occam’s Razor algorithm requires O(log |POINT d|) = O(d) samples – obtain-
ing the largest possible gap in sample complexity when compared to non-private
learners! Our first result is a matching lower bound. We prove that any proper
private learner for POINT d must use Ω(d) samples, therefore, answering nega-
tively the question (from [10]) of whether proper private learners should exhibit
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sample complexity that is approximately the VC-dimension (or even a function
of the VC-dimension) of the concept class4.

A natural way to improve on the sample complexity is to use the Private
Occam’s Razor to improperly learn POINT d with a smaller hypothesis class
that is still expressive enough for POINT d, reducing the sample complexity to
the logarithm of the smaller hypothesis class. We show that this indeed is possi-
ble, as there exists a hypothesis class of size O(d) that can be used for learning
POINT d improperly, yielding an algorithm with sample complexity O(log d).
Furthermore, this bound is tight, any hypothesis class for learning POINT d

must contain Ω(d) hypotheses. These bounds are interesting as they give a sep-
aration between proper and improper private learning – proper private learning
of POINT d requires Ω(d) samples, whereas POINT d can be improperly privately
learned using O(log d) samples. Note that such a combinatorial separation does
not exist for non-private learning, as a VC-dimension number of samples are
needed and sufficient for both proper and improper non-private learners. Fur-
thermore, the Ω(d) lower bound on the size of the hypothesis class maps a clear
boundary to what can be achieved in terms of sample complexity using the Pri-
vate Occam’s Razor for POINT d. It might even suggest that any private learner
for POINT d should use Ω(log d) samples.

It turns out, however, that the intuition expressed in the last sentence is
at fault. We construct an efficient improper private learner for POINT d that
uses merely O(1) samples, hence establishing the strongest possible separation
between proper and improper private learners. For the construction we extrapo-
late on a technique from the efficient private parity learner of [10]. The construc-
tion of [10] utilizes a natural non-private proper learner, and hence results in a
proper private learner, whereas, due to the bounds mentioned above, we cannot
use a proper learner for POINT d, and hence we construct an improper (rather
unnatural) learner to base our construction upon. Our construction utilizes a
double-exponential hypothesis class, and hence is inefficient (even outputting a
hypothesis requires super-polynomial time). We use a simple compression using
pseudorandom functions (akin to [15]) to make the algorithm efficient.
Efficient and Inefficient Proper Private Learning. We apply the above
lower bound on the number of samples for proper private learning POINT d to
show a separation in the sample size between efficient and inefficient proper
private learning. Assuming the existence of pseudorandom generators with ex-
ponential stretch, we present a concept class P̂OINT d – a variant of POINT d

– such that every efficient proper private learner for this class requires Ω(d)
samples. In contrast, an inefficient proper private learner exists that uses only a
super-logarithmic number of samples. This is the first example where requiring
efficiency on top of privacy comes at a price of larger sample size.
The Sample Size of Non-Interactive Sanitization Mechanisms. Given
a database containing a collection of individual information, a sanitization is
4 Our proof technique yields lower bounds not only on private learning POINT d prop-

erly, but on private learning of any concept class C with various hypothesis classes
that we call α-minimal for C.
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a release that protects the privacy of the individual contributors while offering
utility to the analyst using the database. The setting is non-interactive if once
the sanitization is released the original database and the curator play no further
role. Blum et al. [3] presented a construction of such non-interactive sanitizers
for count queries. Let C be a concept class consisting of efficiently computable
predicates from a discretized domain X to {0, 1}. Given a collection D of data
items taken from X, Blum et al. employ the exponential mechanism [14] to
(inefficiently) obtain another collection D′ with data items from X such that D′

maintains approximately correct count of
∑

d∈D c(d) for all concepts c ∈ C. Also,
they show that it suffices for D to have a size that is O(log |X| · VCDIM (C)).
The database D′ is referred to as a synthetic database as it contains data items
drawn from the same universe (i.e., from X) as the original database D.

We provide new lower bounds for non-interactive sanitization mechanisms.
We show that for POINT d every non-interactive sanitization mechanism that
is useful5 for POINT d requires a database of Ω(d) size. This lower bound is
tight as the sanitization mechanism of Blum et al. for POINT d uses a database
of O(d · VCDIM (POINT d)) = O(d) size. Our lower bound holds even if the
sanitized output is an arbitrary data structure and not a synthetic database.

1.2 Related Work

The notion of PAC learning was introduced by Valiant [17]. The notion of differ-
ential privacy was introduced by Dwork et al. [7]. Private learning was introduced
in [10]. Beyond proving that (ignoring computation) every concept class can be
PAC learned privately (see Theorem 2 below), they proved an equivalence be-
tween learning in the statistical queries model and private learning in the local
communication model (aka randomized response). The general private data re-
lease mechanism we mentioned above was introduced in [3] along with a specific
construction for halfspace queries. As we mentioned above, both [10] and [3] use
the exponential mechanism of [14], a generic construction of differential private
analyses, that (in general) does not yield efficient algorithms.

A recent work of Dwork et al. [8] considered the complexity of non-interactive
sanitization under two settings: (a) sanitized output is a synthetic database, and
(b) sanitized output is some arbitrary data structure. For the task of sanitizing
with a synthetic database they show a separation between efficient and inefficient
sanitization mechanisms based on whether the size of the instance space and
the size of the concept class is polynomial in a (security) parameter or not.
For the task of sanitizing with an arbitrary data structure they show a tight
connection between the complexity of sanitization and traitor tracing schemes
used in cryptography. They leave the problem of separating efficient private and
inefficient private learning open.

It is well known that for all concept classes C, every learner for C requires
Ω(VCDIM (C)) samples [9]. This lower bound on the sample size also holds for
5 Informally, a mechanism is useful for a concept class if for every input, the output

of the mechanism maintains approximately correct counts for all concepts in the
concept class.
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private learning. Blum, Ligett, and Roth [4] have recently extended this result
to the setting of private data release. They show that for all concept classes
C, every non-interactive sanitization mechanism that is useful for C requires
Ω(VCDIM (C)) samples. We show in Section 4 that this bound is not tight –
there exists a concept class C of constant VC-dimension such that every non-
interactive sanitization mechanism that is useful for C requires a much larger
sample size.

2 Preliminaries
Notation. We use [n] to denote the set {1, 2, . . . , n}. The notation Oγ(g(n)) is
a shorthand for O(h(γ) · g(n)) for some non-negative function h. Similarly, the
notation Ωγ(g(n)). We use negl(·) to denote functions from R+ to [0, 1] that
decrease faster than any inverse polynomial.

2.1 Preliminaries from Privacy

A database is a vector D = (d1, . . . , dm) over a domain X, where each entry
di ∈ D represents information contributed by one individual. Databases D and
D′ are called neighbors if they differ in exactly one entry (i.e., the Hamming
distance between D and D′ is 1). An algorithm is private if neighboring databases
induce nearby distributions on its outcomes. Formally:

Definition 1 (Differential Privacy [7]). A randomized algorithm A is ε-
differentially private if for all neighboring databases D, D′, and for all sets S
of outputs,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S]. (1)

The probability is taken over the random coins of A.

An immediate consequence of Equation (1) is that for any two databases D, D′

(not necessarily neighbors) of size m, and for all sets S of outputs, Pr[A(D) ∈
S] ≥ exp(−εm) · Pr[A(D′) ∈ S].

2.2 Preliminaries from Learning Theory

We consider Boolean classification problems. A concept is a function that labels
examples taken from the domain X by the elements of the range {0, 1}. The
domain X is understood to be an ensemble X = {Xd}d∈N. A concept class C is
a set of concepts, considered as an ensemble C = {Cd}d∈N where Cd is a class of
concepts from {0, 1}d to {0, 1}.

A concept class comes implicitly with a way to represent concepts and size(c)
is the size of the (smallest) representation of c under the given representation
scheme. Let D be a distribution on Xd. PAC learning algorithms are designed
assuming a promise that the examples are labeled consistently with some target
concept c from a class C. Define,

error
D

(c, h) = Pr
x∼D

[h(x) 6= c(x)].



Sample Complexity for Private Learning and Private Data Release 7

Definition 2 (PAC Learning [17]). An algorithm A is an (α, β)-PAC learner
of a concept class Cd over Xd using hypothesis class Hd and sample size n if for
all concepts c ∈ Cd, all distributions D on Xd, given an input D = (d1, · · · , dn),
where di = (xi, c(xi)) and xi are drawn i.i.d. from D for i ∈ [n], algorithm
A outputs a hypothesis h ∈ Hd satisfying Pr[errorD(c, h) ≤ α] ≥ 1 − β. The
probability is taken over the random choice of the examples D and the coin
tosses of the learner.

An algorithm A, whose inputs are d, α, β, and a set of samples (labeled ex-
amples) D, is a PAC learner of a concept class C = {Cd}d∈N over X = {Xd}d∈N
using hypothesis class Hd = {Hd}d∈N if there exists a polynomial p(·, ·, ·, ·) such
that for all d ∈ N and 0 < α, β < 1, the algorithm A(d, α, β, ·) is an (α, β)-
PAC learner of the concept class Cd over Xd using hypothesis class Hd and
sample size n = p(d, size(c), 1/α, log(1/β)). If A runs in time polynomial in
d, size(c), 1/α, log(1/β), we say that it is an efficient PAC learner. Also, the
learner is called a proper PAC learner if H = C, otherwise it is called an im-
proper PAC learner.

A concept class C = {Cd}d∈N over X = {Xd}d∈N is PAC learnable using
hypothesis class H = {Hd}d∈N if there exists a PAC learner A learning C over
X using hypothesis class H. If A is an efficient PAC learner, we say that C is
efficiently PAC learnable.

It is well known that improper learning is more powerful than proper learning.
For example, Pitt and Valiant [16] show that unless RP=NP, k-term DNF
formulae are not learnable by k-term DNF, whereas it is possible to learn a
k-term DNF using k-CNF [17]. For more background on learning theory, see,
e.g., [13].

Definition 3 (VC-Dimension [18]). Let C = {Cd} be a class of concepts over
X = {Xd}. We say that Cd shatters a point set Y ⊂ Xd if |{c(Y ) : c ∈ Cd}| =
2|Y |, i.e., the concepts in Cd when restricted to Y produce all the 2|Y | possible
assignments on Y . the VC-dimension of C is defined as the size of the maximum
point set that is shattered by Cd, as a function of d.

Theorem 1 ([5]). A concept class C = {Cd} over X = {Xd} is PAC learnable
using C by a PAC learner A that uses O((VCDIM (Cd)·log 1

α +log 1
β )/α) samples.

2.3 Private Learning

Definition 4 (Private PAC Learning [10]). Let d, α, β be as in Definition 2
and ε > 0. Concept class C is ε-differentially privately PAC learnable using H if
there exists an algorithm A that takes inputs ε, d, α, β,D, where n, the number
of samples (labeled examples) in D is polynomial in 1/ε, d, size(c), 1/α, log(1/β),
and satisfies

Privacy. For all d and ε, α, β > 0, algorithm A(ε, d, α, β, ·) is ε-differentially
private (Definition 1);
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Utility. For all ε > 0, algorithm A(ε, ·, ·, ·, ·) PAC learns C using H (Defini-
tion 2).

A is an efficient private PAC learner if it runs in time polynomial in 1/ε, d,
size(c), 1/α, log(1/β). Also, the private learner is called proper if H = C, oth-
erwise it is called improper.

Remark 1. The privacy requirement in Definition 4 is a worst-case requirement.
That is, Equation (1) must hold for every pair of neighboring databases D, D′

(even if these databases are not consistent with any concept in C). In contrast,
the utility requirement is an average-case requirement, where we only require the
learner to succeed with high probability over the distribution of the databases.
This qualitative difference between the utility and privacy of private learners is
crucial. A wrong assumption on how samples are formed that leads to a mean-
ingless outcome can usually be replaced with a better one with very little harm.
No such amendment is possible once privacy is lost due to a wrong assumption.

Note also that each entry di in a database D is a labeled example. That is,
we protect the privacy of both the example and its label.

Observation 1. The computational separation between proper and improper
learning also holds when we add the privacy constraint. That is unless RP=NP
no proper private learner can learn k-term DNF, whereas there exists an effi-
cient improper private learner that can learn k-term DNF using a k-CNF. The
efficient k-term DNF learner of [17] uses statistical queries (SQ) [12] which can
be simulated efficiently and privately as shown by [2, 10].

More generally, such a gap can be shown for any concept class that cannot
be properly PAC learned, but can be efficiently learned (improperly) in the
statistical queries model.

3 Learning vs. Private Learning

We begin by recalling the upper bound on the sample (database) size for private
learning from [10]. The bound in [10] is for agnostic learning, and we restate it
for (non-agnostic) PAC learning using the following notion of α-representation:

Definition 5. We say that a hypothesis class Hd α-represents a concept class
Cd over the domain Xd if for every c ∈ Cd and every distribution D on Xd there
exists a hypothesis h ∈ Hd such that errorD(c, h) ≤ α.

Theorem 2 (Kasiviswanathan et al. [10], restated). Assume that there is
a hypothesis class Hd that α-represents a concept class Cd. Then, there exists
a private PAC learner for Cd using Hd that uses O((log |Hd| + log(1/β))/(εα))
labeled examples, where ε, α, and β are parameters of the private learner. The
learner might not be efficient.

In other words, using Theorem 2 the number of labeled examples required for
learning a concept class Cd is logarithmic in the size of the smallest hypothesis
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class that α-represents Cd. For comparison, the number of labeled examples
required for learning Cd non-privately is proportional to the VC-dimension of
Cd [5, 9].

3.1 Separation Between Private and Non-private PAC Learning

Our first result shows that private learners may require many more samples than
non-private ones. We consider a very simple concept class of VC-dimension one,
and hence is (non-privately) properly learnable using Oα,β(1) labeled examples.
We prove that for any proper learner for this class the required number of la-
beled examples is at least logarithmic in the size of the concept class, matching
Theorem 2.

Proving the lower bound, we show that a large collection of m-record databases
D1, . . . , DN exists, with the property that every PAC learner has to output a
different hypothesis for each of these databases (recall that in our context a
database is a collection of labeled examples, supposedly drawn from some dis-
tribution and labeled consistently with some target concept).

As any two databases Da and Db differ on at most m entries, a private learner
must, because of the differential privacy requirement, output on input Da the
hypothesis that is accurate for Db (and not accurate for Da) with probability
at least (1 − β) · exp(−εm). Since this holds for every pair of databases, unless
m is large enough we get that the private learner’s output on Da is, with high
probability, a hypothesis that is not accurate for Da. We use the following notion
of α-minimality:

Definition 6. If Hd α-represents Cd, and every H′d ( Hd does not α-represent
Cd, then we say that Hd is α-minimal for Cd.

Theorem 3. Let Hd be an α-minimal class for Cd. Then any private PAC
learner that learns Cd using Hd requires Ω((log |Hd| + log(1/β))/ε) labeled ex-
amples.

Proof. Let Cd be over the domain Xd and let Hd be α-minimal for Cd. Since
for every h ∈ Hd, Hd \ {h} does not α-represent Cd, we get that there exists a
concept ch ∈ Cd and a distribution Dh on Xd such that on inputs drawn from
Dh labeled by ch, every PAC learner (that learns Cd using Hd) has to output h
with probability at least 1− β.

Let A be a private learner that learns Cd using Hd, and suppose A uses m
labeled examples. For every h ∈ Hd, note that there exists a database Dh ∈ Xm

d

on which A has to output h with probability at least 1 − β. To see that, note
that if A is run on m examples chosen i.i.d. from the distribution Dh and labeled
according to ch, then A outputs h with probability at least 1 − β (where the
probability is over the sampling from Dh and over the randomness of A). Hence,
a collection of m labeled examples over which A outputs h with probability 1−β
exists, and Dh can be set to contain these m labeled examples.
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Take h, h′ ∈ Hd such that h 6= h′ and consider the two corresponding
databases Dh and Dh′ with m entries each. Clearly, they differ in at most m
entries, and hence we get by differential privacy of A that

Pr[A(Dh) = h′] ≥ exp(−εm) · Pr[A(Dh′) = h′] ≥ exp(−εm) · (1− β).

Since the above inequality holds for every pair of databases, we fix any h and
get,

Pr[A(Dh) 6= h] = Pr[A(Dh) ∈ Hd \ {h}] =
∑

h′∈Hd\{h}
Pr[A(Dh) = h′]

≥ (|Hd| − 1) · exp(−εm) · (1− β).

On the other hand, we chose Dh such that Pr[A(Dh) = h] ≥ 1−β, equivalently,
Pr[A(Dh) 6= h] ≤ β. We hence get that (|Hd|−1)·exp(−εm)·(1−β) ≤ β. Solving
the last inequality for m, we get m = Ω((log |Hd|+log(1/β))/ε) as required. ut

Using Theorem 3, we now prove a lower bound on the number of labeled
examples needed for proper private learning a specific concept class. Let T = 2d

and Xd = {1, . . . , T}. Define the concept class POINT d to be the set of points
over {1, . . . , T}:
Definition 7 (Concept Class POINT d). For j ∈ [T ] define cj : [T ] → {0, 1}
as cj(x) = 1 if x = j, and cj(x) = 0 otherwise. POINT d = {cj}j∈[T ].

We note that we use the set {1, . . . , T} for notational convenience only. We never
use the fact that the set elements are integer numbers.

Proposition 1. POINT d is α-minimal for itself.

Proof. Clearly, POINT d α-represents itself. To show minimality, consider a sub-
set H′d ( POINT d, where ci 6∈ H′d. Note that under the distribution D that
chooses i with probability one, errorD(ci, cj) = 1 for all j 6= i. Hence, H′d does
not α-represent POINT d. ut

The VC-dimension of POINT d is one6. It is well known that a standard
(non-private) proper learner uses approximately VC-dimension number of la-
beled examples to learn a concept class [5]. In contrast, we get that far more
labeled examples are needed for any proper private learner for POINT d. The
following corollary follows directly from Theorem 3 and Proposition 1:

Corollary 1. Every proper private PAC learner for POINT d requires Ω((d +
log(1/β))/ε) labeled examples.

6 Note that every singleton {j} where j ∈ [T ] is shattered by POINT d as cj(j) = 1
and cj′(j) = 0 for all j′ 6= j. No set of two points {j, j′} is shattered by POINT d as
cj′′(j) = cj′′(j

′) = 1 for no j′′ ∈ [T ].
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Remark 2. We note that the lower bound for POINT d can be improved to Ω((d+
log(1/β))/(εα)) labeled examples, matching the upper bound from Theorem 2.
Also, the proper learner for POINT d from Theorem 2 can be made efficient.
Details are deferred to the full version [1].

We conclude this section showing that every hypothesis class H that α-
represents POINT d should have at least d hypotheses. Therefore, if we use Theo-
rem 2 to learn POINT d we need Ω(log d) labeled examples. At first sight, it may
seem that the relationship between |H| and the sample complexity is essential,
and hence, the number of labeled examples needed for every private PAC learner
for POINT d is super-constant. However, this turns out not to be the case. In
Section 3.2, we present a private learner for POINT d that uses Oα,β,ε(1) labeled
examples. For this construction, we use techniques that are very different from
those used in the proof of Theorem 2. In particular, our private learner uses a
very large hypothesis class.

Lemma 1. Let α < 1/2. |H| ≥ d for every hypothesis class H that α-represents
POINT d.

Proof. Let H be a hypothesis class with |H| < d. Consider a table whose T =
2d columns correspond to the possible 2d inputs 1, . . . , T , and whose |H| rows
correspond to the hypothesis in H. The (i, j)th entry is 0 or 1 depending on
whether the ith hypothesis gives 0 or 1 on input j. Since |H| < d = log T , at
least two columns j 6= j′ are identical. That is, h(j) = h(j′) for every h ∈ H.
Consider the concept cj ∈ POINT d (defined as cj(x) = 1 if x = j, and 0
otherwise), and the distribution D with probability mass 1/2 on both j and j′.
We get that errorD(cj , h) ≥ 1/2 > α for all h ∈ H (since any hypothesis either
errs on j or on j′). Therefore, H does not α-represent POINT d. ut

3.2 Separation Between Proper and Improper Private PAC
Learning

We now use POINT d to show a separation between proper and improper private
PAC learning. We show that POINT d can be privately (and efficiently) learned
by an improper learner using Oα,β,ε(1) labeled examples. We begin by presenting
a non-private improper PAC learner A1 for POINT d that succeeds with only
constant probability. Roughly, A1 applies a simple proper learner for POINT d,
and then modifies its outcome by adding random “noise”. We then use sampling
to convert A1 into a private learner A2, and like A1 the probability that A2

succeeds in learning POINT d is only a constant. Later we amplify the success
probability of A2 to get a private PAC learner. Both A1 and A2 are inefficient
as they output hypotheses with exponential description length. However, using
a pseudorandom function it is possible to compress the outputs of A1 and A2,
and hence achieve efficiency.

Algorithm A1. Given labeled examples (x1, y1), . . . , (xm, ym), algorithm A1 per-
forms the following:
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1. If (x1, y1), . . . , (xm, ym) are not consistent with any concept in POINT d,
return ⊥ (this happens only if xi 6= xj and yi = yj = 1 for some i, j ∈ [m] or
if xi = xj and yi 6= yj).

2. If yi = 0 for all i ∈ [m], then let c = 0 (the all zero hypothesis); otherwise,
let c be the (unique) hypothesis from POINT d that is consistent with the m
input labeled examples.

3. Modify c at random to get a hypothesis h by letting h(x) = c(x) with prob-
ability 1− α/8, and h(x) = 1− c(x) otherwise for all x ∈ [T ]. Return h.

Let m = 2 ln(4)/α. We next argue that if m examples are drawn i.i.d. ac-
cording to a distribution D on [T ], and the examples are labeled consistently
according to some cj ∈ POINT d, then Pr[errorD(cj , c) > α/2] ≤ 1/4. If the
examples are labeled consistently according to some cj 6= 0, then c 6= cj only if
(j, 1) is not in the sample and in this case c = 0. If Prx∼D[x = j] ≤ α/2 and (j, 1)
is not in the sample, then c = 0 and errorD(cj ,0) ≤ α/2. If Prx∼D[x = j] ≤ α/2
and (j, 1) is in the sample, then c = cj and errorD(cj , c) = 0. Otherwise if
Prx∼D[x = j] > α/2, the probability that all m examples are not (j, 1) is at
most (1− α/2)m = ((1− α/2)2/α)ln 4 ≤ 1/4.

To see that A1 PAC learns POINT d (with accuracy α and confidence 1/4)
note that

E
h
[error
D

(c, h)] = E
h
E

x∼D
[|h(x)− c(x)|] = E

x∼D
E
h
[|h(x)− c(x)|] =

α

8
,

and hence, using Markov’s Inequality, Prh[errorD(c, h) > α/2] ≤ 1/4. Combining
this with Pr[errorD(cj , c) > α/2] ≤ 1/4 and errorD(cj , h) ≤ errorD(cj , c) +
errorD(c, h), implies that Pr[errorD(cj , h) > α] ≤ 1/2.

Algorithm A2. We now modify learner A1 to get a private learner A2 (a similar
idea was used in [10] for learning parity functions). Given labeled examples
(x1, y1), . . . , (xm′ , ym′), algorithm A2 performs the following:

1. With probability α/8, return ⊥.

2. Construct a set S ⊆ [m′] by picking each element of [m′] with probability
p = α/4. Run the non-private learner A1 on the examples indexed by S.

We first show that, given m′ = 8m/α labeled examples, A2 PAC learns
POINT d with confidence Θ(1). Note that, by Chernoff bound, Pr[|S| ≤ m] ≤
exp(−m/4) = Oα(1). Therefore, we get that A2 PAC learns POINT d with accu-
racy parameter α′ = α and confidence parameter β′ = 1/2+α/8+exp(−m/4) =
Θ(1). We now show that A2 is ε∗-differentially private with bounded ε∗.

Claim. Algorithm A2 is ε∗-differentially private, where ε∗ = ln(4).
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Proof. Let D,D′ be two neighboring databases, and assume that they differ on
the ith entry. First let us analyze the probability of A2 outputting ⊥:

Pr[A2(D) =⊥]
Pr[A2(D′) =⊥]

=
p · Pr[A2(D) =⊥ | i ∈ S] + (1− p) · Pr[A2(D) =⊥ | i /∈ S]
p · Pr[A2(D′) =⊥ | i ∈ S] + (1− p) · Pr[A2(D′) =⊥ | i /∈ S]

≤ p · 1 + (1− p) · Pr[A2(D) =⊥ | i /∈ S]
p · 0 + (1− p) · Pr[A2(D′) =⊥ | i /∈ S]

=
p

(1− p) · Pr[A2(D′) =⊥ | i /∈ S]
+ 1 ≤ 8p

α(1− p)
+ 1,

where the last equality follows noting that if i /∈ S then A2 is equally likely to
output ⊥ on D and D′, and the last inequality follows as ⊥ is returned with
probability α/8 in Step 1 of Algorithm A2.

For the more interesting case, where A2 outputs a hypothesis h, we get:

Pr[A2(D) = h]
Pr[A2(D′) = h]

=
p · Pr[A2(D) = h | i ∈ S] + (1− p) · Pr[A2(D) = h | i /∈ S]
p · Pr[A2(D′) = h | i ∈ S] + (1− p) · Pr[A2(D′) = h | i /∈ S]

≤ p · Pr[A2(D) = h | i ∈ S] + (1− p) · Pr[A2(D) = h | i /∈ S]
p · 0 + (1− p) · Pr[A2(D′) = h | i /∈ S]

=
p

1− p
· Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

+ 1,

where the last equality uses the fact that if i /∈ S then A2 is equally likely to
output h on D and D′. To conclude our proof, we need to bound the ratio of
Pr[A2(D) = h | i ∈ S] to Pr[A2(D) = h | i /∈ S].

Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

=

∑
R⊆[m′]\{i} Pr[A2(D) = h | S = R ∪ {i}] · Pr[A2 selects R from [m′] \ {i}]∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R] · Pr[A2 selects R from [m′] \ {i}]

≤ max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h | S = R]

.

Now, having or not having access to (xi, yi) can only affect the choice of h(xi),
and since, A1 flips the output with probability α/8, we get

max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h |S = R]

≤ 1− α/8
α/8

≤ 8
α

.

Putting everything together, we get

Pr[A2(D) = h]
Pr[A2(D′) = h]

≤ 8p

α(1− p)
+ 1 =

8
(4− α)

+ 1 < 3 + 1 = eε∗ .

ut
We can reduce ε∗ to any desired ε using the following simple lemma (implicit

in [10], see proof in [1]):
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Lemma 2. Let A be an ε∗-differentially private algorithm. Construct an algo-
rithm B that on input a database D = (d1, . . . , dn) constructs a new database
Ds whose ith entry is di with probability f(ε, ε∗) = (exp(ε) − 1)/(exp(ε∗) +
exp(ε)− exp(ε− ε∗)− 1) and ⊥ otherwise, and then runs A on Ds. Then, B is
ε-differentially private.

It is clearly possible to incorporate the sampling in the lemma directly in
Step 2 of A2 (note that for small ε, f(ε, ε∗) ≈ ε/(exp(ε∗) − 1)). We get that
the number of labeled examples required to get a private learner with confi-
dence parameter Θ(1) is Oα,ε(1). The confidence parameter of the learner can
be boosted privately from Θ(1) to any value β > 0 as explained in [10]. In doing
this boosting, the number of labeled examples required for the learner increases
by a factor of O(log(1/β)). Therefore, we get that a sample size that is poly-
nomial in 1/ε, 1/α, and log(1/β) is sufficient to learn POINT d improperly with
privacy parameter ε, accuracy parameter α, and confidence parameter β.

Making the Learner Efficient. Recall that the outcome of A1 (hence A2) is an
exponentially long description of a hypothesis. We now complete our construc-
tion by compressing this description using a pseudorandom function. We use a
slightly non-standard definition of (non-uniform) pseudorandom functions from
binary strings of size d to bits; these pseudorandom functions can be easily
constructed given regular pseudorandom functions.

Definition 8. Let F = {Fd}d∈N be a function ensemble, where for every d, Fd

is a set of functions from {0, 1}d to {0, 1}. We say that the function ensemble
F is q-biased pseudorandom if for every family of polynomial-size circuits with
oracle access {Cd}d∈N, every polynomial p(·), and all sufficiently large d’s,

|Pr[Cf
d (1d) = 1]− Pr[CHq

d

d (1d) = 1]| < 1
p(d)

,

where f is chosen at random from Fd and Hq
d : {0, 1}d → {0, 1} is a function

and the value Hq
d(x) for x ∈ {0, 1}d are selected i.i.d. to be 1 with probability q

and 0 otherwise. The probabilities are taken over the random choice of Hq
d , and

f .

For convenience, for d ∈ N, we consider Fd as a set of functions from
{1, . . . , T} to {0, 1}, where T = 2d. We set q = αβ/4 in the above definition.
Using an αβ/4-biased pseudorandom function ensemble F , we change Step 3 of
algorithm A1 as follows:

3’. If c = 0, let h be a random function from Fd. Otherwise (i.e., c = cj for some
j ∈ [T ]), let h be a random function from Fd subject to h(j) = 1. Return h.

Call the resulting modified algorithmA3. We next show thatA3 is a PAC learner.
Note that the exists a negligible function negl such that for large enough d,
|Pr[h(x) = 1|h(j) = 1]−αβ/4| ≤ negl(d) for every x ∈ {1, . . . , T} (as otherwise,
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we get a non-uniform distinguisher for the ensemble F ). Thus,

E
h∈Fd

[error
D

(c, h)] = E
h∈Fd

E
x∼D

[|h(x)− c(x)|]

≤ E
h∈Fd

E
x∼D

[h(x)] = E
x∼D

E
h∈Fd

[h(x)] ≤ αβ

4
+ negl(d).

The first inequality follows as for all x ∈ [T ], h(x) ≥ c(x) by our restriction on
the choice of h. Thus, by the same arguments as for A1, Algorithm A3 is a PAC
learner.

We next modify algorithm A2 by executing the learner A3 instead of the
learner A1. Call the resulting modified algorithm A4. To see that algorithm A4

preserves differential privacy it suffices to give a bound on Equation (2). By
comparing the case where S = R with S = R ∪ {i}, we get that the probability
for a hypothesis h can increase only if c = 0 when S = R, and c = cyi when
S = R ∪ {i}. Therefore,

max
R⊆[m′]\{i}

Pr[A4(D) = h | S = R ∪ {i}]
Pr[A4(D) = h |S = R]

≤ 1
(αβ/4)− negl(d)

≤ 1
(αβ/8)

=
8

αβ
.

Theorem 4. There exists an efficient improper private PAC learner for POINT d

that uses Oα,β,ε(1) labeled examples, where ε, α, and β are parameters of the pri-
vate learner.

3.3 Separation Between Efficient and Inefficient Proper Private
PAC Learning

In this section, we use the sample size lower bound for proper private learning
POINT d to obtain a separation between efficient and inefficient proper private
PAC learning. Let Ur represent a uniformly random string from {0, 1}r. Let
`(d) : N→ N be a function and G = {Gd}d∈N be a deterministic algorithm such
that on input from {0, 1}`(d) it returns an output from {0, 1}d. Informally, we say
that G is pseudorandom generator if on `(d) truly random bits it outputs d bits
that are indistinguishable from d random bits. Formally, for every probabilistic
polynomial time algorithm B there exists a negligible function negl(d) (i.e., a
function that is asymptotically smaller than 1/dc for all c > 0) such that

|Pr[B(Gd(U`(d))) = 1]− Pr[B(Ud) = 1]| ≤ negl(d).

Such exponential stretch pseudorandom generators G (i.e., with `(d) = ω(log d))
exist under various strong hardness assumptions.

Let POINT d = {c1, . . . , c2d}. Now to a polynomially bounded private learner,
cGd(U`(d)) would appear with high probability as a uniformly random concept
picked from POINT d. We will show by using ideas similar to the proof of
Theorem 3 that a polynomially bounded proper private learner would require
Ω((d + log(1/β))/ε) labeled examples to learn cGd(U`(d)). More precisely, define
concept class

P̂OINT d =
⋃

r∈{0,1}`(d)

{cGd(r)}.
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Assume that there is an efficient proper private learner A for P̂OINT d with
sample size m = o((d + log(1/β))/ε). We use A to construct a distinguisher
for the pseudorandom generator: Given j we construct the database D with
m entries (j, 1). If A(D) = cj , then the distinguisher returns 1, otherwise it
returns 0. If j = Gd(r) for some r, then, by the utility of the private learner,
A has to return cj on this database with probability at least 1 − β. Thus, the
distinguisher returns 1 with probability at least 1 − β when j is chosen from
Gd(U`(d)). Assume that for (say) 1/4 of the values j ∈ [2d] algorithm A, when
applied to the database with m entries (j, 1), returns cj with probability at least
1/3. Then, we get a contradiction following the same argument as in the proof
of Theorem 3 (as at least a fraction of 1/4 of the cj ’s must have probability at
least (1/3)(1−β) ·exp(−εm)). Thus, the distinguisher returns 1 with probability
at most 1/4 + 3/4 · 1/3 = 1/2 when j is chosen from Ud.

If the learner is not polynomially bounded, then it can use the algorithm
from Theorem 2 to privately learn P̂OINT d. Since, |P̂OINT d| = 2`(d), the private
learner from Theorem 2 uses O((`(d)+log(1/β))/(εα)) labeled examples. We get
the following separation between efficient and inefficient proper private learning:

Theorem 5. Let `(d) be any function that grows as ω(log d), and G be a be a
pseudorandom generator with stretch d − `(d). For the concept class P̂OINT d,
every polynomial-time proper private PAC learner with probability at least 1 −
negl(d) requires Ω((d + log(1/β))/ε) labeled examples, whereas there exists an
inefficient proper private PAC learner that can learn P̂OINT d using O((`(d) +
log(1/β))/(εα)) labeled examples.

Remark 3. In the non-private setting, there exists an efficient proper learner that
can learn the concept class P̂OINT d using O((log(1/α) + log(1/β))/α) labeled
examples (as VCDIM (P̂OINT d) = 1). In the non-private setting we also know
that even inefficient learners require Ω(log(1/β)/α) labeled examples [9, 13].
Therefore, for P̂OINT d the sample complexities of efficient non-private learners
and inefficient non-private learners are almost the same.

4 Lower Bounds for Non-Interactive Sanitization

We now prove a lower bound on the database size (or sample size) needed to
privately release an output that is useful for all concepts in a concept class. We
start by recalling a definition and a result of Blum et al. [3].

Let X = {Xd}d∈N be some discretized domain and consider a class of predi-
cates C over X. A database D contains points taken from Xd. A predicate query
Qc for c : Xd → {0, 1} in C is defined as

Qc(D) =
|{di ∈ D : c(di) = 1}|

|D| .

A sanitizer (or data release mechanism) is a differentially private algorithm A
that on input a database D outputs another database D̂ with entries taken from
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Xd. An algorithm A is (α, β)-useful for predicates in class C if with probability
at least 1− β for every c ∈ C, and every database D, for D̂ = A(D),

|Qc(D)−Qc(D̂)| < α.

Theorem 6 (Blum et al. [3]). For any class of predicates C, and any database
D ∈ Xm

d , such that

m ≥ O

(
log |Xd| ·VCDIM (C) log(1/α)

α3ε
+

log(1/β)
εα

)
,

there exists an (α, β)-useful mechanism A that preserves ε-differential privacy.
The algorithm might not be efficient.

We show that the dependency on log |Xd| in Theorem 6 is essential: there
exists a class of predicates C with VC-dimension O(1) that requires |D| =
Ωα,β,ε(log |Xd|). For our lower bound, the sanitized output D̂ could be any ar-
bitrary data structure (not necessarily a synthetic database). For simplicity,
however, here we focus on the case where the output is a synthetic database.
The proof of this lower bound uses ideas from Section 3.1.

Let T = 2d and Xd = [T ] be the domain. Consider the class POINT d (where
i ∈ [T ]). For every i ∈ [T ], construct a database Di ∈ Xm

d by setting (1− 3α)m
entries at 1 and the remaining 3αm entries at i (for i = 1 all entries of D1 are 1).
For i ∈ [T ]\{1} we say that a database D̂ is α-useful for Di if 2α < Qci(D̂) < 4α

and 1 − 4α < Qc1(D̂) < 1 − 2α. We say that D̂ is α-useful for D1 if 1 − α <

Qc1(D̂) ≤ 1. It follows that for i 6= j if D̂ is α-useful for Di then it is not α-useful
for Dj .

Let D̂i be the set of all databases that are α-useful for Di. Note that for
all i 6= 1, D1 and Di differ on 3αm entries, and by our previous observation,
D̂1∩D̂i = ∅. LetA be an (α, β)-useful private release mechanism for POINT d. For
all i, on input Di mechanism A should pick an output from D̂i with probability
at least 1− β. We get by the differential privacy of A that

Pr[A(D1) ∈ D̂i] ≥ exp(−3εαm) Pr[A(Di) ∈ D̂i] ≥ exp(−3εαm) · (1− β).

Hence,
Pr[A(D1) 6∈ D̂1] ≥ Pr[A(D1) ∈

⋃

i6=1

D̂i]

=
∑

i6=1

Pr[A(D1) ∈ D̂i] (sets D̂i are disjoint)

≥ (T − 1) exp(−3εαm) · (1− β).

On the other hand, since A is (α, β)-useful, Pr[A(D1) 6∈ D̂1] < β, and hence
we get that m = Ω((d + log(1/β))/(εα)).

Theorem 7. Every ε-differentially private non-interactive mechanism that is
(α, β)-useful for POINT d requires an input database of Ω((d+log(1/β))/(εα)) size.
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