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Abstract. We propose a semantically-secure public-key encryption
scheme whose security is polynomial-time equivalent to the hardness of
solving random instances of the subset sum problem. The subset sum as-
sumption required for the security of our scheme is weaker than that of
existing subset-sum based encryption schemes, namely the lattice-based
schemes of Ajtai and Dwork (STOC’97), Regev (STOC’03, STOC’05),
and Peikert (STOC’09). Additionally, our proof of security is simple and
direct. We also present a natural variant of our scheme that is secure
against key-leakage attacks, and an oblivious transfer protocol that is
secure against semi-honest adversaries.

1 Introduction

Since the early days of modern cryptography, the presumed intractability of the
subset sum problem has been considered an interesting alternative to hardness
assumptions based on factoring and the discrete logarithm problem. The appeal
of the subset sum problem stems from the fact that it is simple to describe,
and computing the subset sum function requires only a few addition operations.
Another attractive feature is that the subset sum problem seems to be rather
different in nature from number-theoretic problems. In fact, while there are
polynomial-time quantum algorithms that break virtually all number-theoretic
cryptographic assumptions [Sho97], there are currently no known quantum al-
gorithms that perform better than classical ones on the subset sum problem.

The subset sum problem, SS(n,M), is parameterized by two integers n and
M . An instance of SS(n,M) is created by picking a uniformly random vector
a ∈ ZnM , a uniformly random vector s ∈ {0, 1}n, and outputting a together with
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T = a · s mod M . The problem is to find s, given a and T . The hardness of
breaking SS(n,M) depends on the ratio between n and logM , which is usually
referred to as the density of the subset sum instance. When n/logM is less
than 1/n or larger than n/log2 n, the problem can be solved in polynomial time
[LO85,Fri86,FP05,Lyu05,Sha08]. However, when the density is constant or even
as small as O(1/log n), there are currently no algorithms that require less than
2Ω(n) time. It is also known that the subset sum problem can only get harder as
its density gets closer to one [IN96].

Starting with the Merkle-Hellman cryptosystem [MH78], there have been
many proposals for constructions of public-key encryption schemes that were
somewhat based on subset sum. Unfortunately, all of these proposals have subse-
quently been broken (see [Odl90] for a survey). While efforts to build subset-sum
based public-key encryption schemes were met with little success, Impagliazzo
and Naor were able to construct provably-secure primitives such as universal
one-way hash functions, pseudorandom generators and bit-commitment schemes,
based on the subset sum problem, that remain secure until this day [IN96]. The
main difference between the public-key constructions and the “minicrypt” con-
structions in [IN96] is that the latter could be proved secure based on random
instances of the standard subset sum problem, whereas the former modified the
subset sum instances in order to allow decryption. Unfortunately, these modifi-
cations always seemed to introduce fatal weaknesses.

A provably-secure cryptosystem based on subset sum was finally constructed
by Ajtai and Dwork [AD97], who showed that their scheme is as hard to break
as solving worst-case instances of a lattice problem called the “unique shortest
vector problem.” The reduction of subset sum to breaking their scheme is then
obtained via the classic reduction from random subset sum to the unique shortest
vector problem [LO85,Fri86]. While the Ajtai-Dwork and the subsequent lattice-
based cryptosystems [Reg03,Reg05,Pei09] are as hard to break as the average-
case subset sum problem, these schemes are based on subset sum in a somewhat
indirect way, and this causes their connection to the subset sum problem to not
be as tight as possible.

In this work, we present a cryptosystem whose security is equivalent to the
hardness of the SS(n, qn) problem, where q is a positive integer of magnitude
Õ(n). Compared to the lattice-based cryptosystems, the subset sum assumption
required for the security of our scheme is weaker, and the proof of security is
much simpler. We direct the reader to Section 1.2 for a more in-depth comparison
between our scheme and the lattice-based ones.

In addition to our semantically-secure public-key encryption scheme, we
present a semi-honest oblivious transfer protocol based on the same hardness
assumption. We also show that a natural variant of our encryption scheme is
resilient to key-leakage attacks (as formalized by Akavia et al. [AGV09]), but
under slightly stronger assumptions than our basic cryptosystem.



1.1 Our Contributions and Techniques

Semantically-secure public-key encryption. Our main contribution is a se-
mantically secure public-key encryption scheme whose security is based directly
on the hardness of the subset sum problem. The construction of our scheme is
similar in spirit to the cryptosystem of Alekhnovich based on the Learning Par-
ity with Noise (LPN) problem [Ale03], and that of Regev based on the Learning
With Errors (LWE) problem [Reg05]. Both of the aforementioned schemes are
built from the assumption that for a randomly chosen matrix A ∈ Zm×nq , a
random vector s ∈ Znq , and some “small” noise vector c ∈ Zmq , the distribution
(A,As + c) is computationally indistinguishable from the uniform distribution
over Zm×(n+1)

q . To construct our scheme, we show that the subset sum problem
can be made to look very similar to the LWE problem. Then the main ideas
(with a few technical differences) used in constructing cryptosystems based on
LWE [Reg05,GPV08,Pei09] can be transferred over to subset sum.

Consider instances of the subset sum problem SS(n, qm) where q is some
small integer. If a is a vector in Znqm and s is a vector in {0, 1}n, then a·s mod qm,
written in base q, is equal to As + c mod q, where A ∈ Zm×nq is a matrix
whose i-th column corresponds to ai written in base q, and c is a vector in Zmq
that corresponds to the carries when performing “grade-school” addition. For
example, let q = 10, m = n = 3, a = (738, 916, 375), and s = (0, 1, 1). Then

a · s mod 103 = 916 + 375 mod 103 = 291,

which can be written as addition in base q as follows:7 9 3
3 1 7
8 6 5

0
1
1

+

0
1
0

 =

2
9
1


where all operations are performed over Zq.

The key observation is that the magnitude of the entries in the carries vector
[ 0 1 0 ]T is at most n − 1, and so if q � n, then As + c mod q ≈ As mod q.
In fact, the elements of the vector c are distributed normally around n/2 with
standard deviation

√
n. In the instantiation of our scheme described in Section 3,

we generate the elements in A from the range [− q−1
2 , q−1

2 ] and so the entries in
the carries vector are normally distributed around 0 with standard deviation

√
n.

Readers familiar with the cryptosystems based on LWE [Reg05,GPV08,Pei09]
should recognize the resemblance of the carry vector c to the noise vector in the
LWE-based schemes. The main difference is that in the latter the noise vector
is chosen independently at random, whereas in our scheme, the carries vector c
occurs “naturally” and is completely determined by the matrix A and the vector
s. The fact that the “noise” vector is not random is of no consequence to us,
since it was shown by Impagliazzo and Naor that distinguishing (a,a ·s mod qm)
from uniform is as hard as recovering s [IN96]. Thus the distribution (A,As +
c mod q), which is just the base q representation of the previous distribution, is
also computationally indistinguishable from uniform, based on the hardness of
subset sum. The following theorem summarizes our main result:



Theorem 1.1. For any integer q > 10n log2 n, there exists a semantically secure
cryptosystem encrypting k bits whose security is polynomial-time equivalent to
the hardness of solving the SS(n, qn+k) problem.

Leakage-resilient public-key encryption. We show that a natural variant of
our encryption scheme is resilient to any non-adaptive leakage of L(1−o(1)) bits
of its secret key, where L is the length of the secret key (see Appendix A.2 for
the formal definition of non-adaptive key-leakage attacks). In this paper we deal
with the non-adaptive setting of key leakage, and note that this notion of leakage
is still very meaningful as it captures many realistic attacks in which the leakage
does not depend on the parameters of the encryption scheme. For example,
it captures the cold boot attacks of Halderman et al. [HSH+08], in which the
leakage depends only on the properties of the hardware devices that are used for
storing the secret key. We note that although Naor and Segev [NS09] presented
a generic and rather simple construction that protects any public-key encryption
scheme from non-adaptive leakage attacks, we show that for our specific scheme
an even simpler modification suffices.

Oblivious transfer. We use our original encryption scheme to construct an
oblivious transfer (OT) protocol that provides security for the receiver against
a cheating sender and security for the sender against an honest-but-curious re-
ceiver. Our protocol is an instance of a natural construction used by Gertner
et al. [GKM+00], based on ideas of Even et al. [EGL82,EGL85], to show that
public-key encryption with a certain property implies two-message semi-honest
OT. The property is roughly that public keys can be sampled “separately of
private keys,” while preserving the semantic security of the encryption. Pseu-
dorandomness of subset sum implies that our encryption scheme satisfies this
property.

1.2 Comparisons with Lattice-Based Schemes

To the best of our knowledge, the only other cryptosystems based on subset
sum are those that are based on the worst-case hardness of the approximate
unique shortest vector problem (uSVPγ) [AD97,Reg03,Reg05,Pei09]. The cryp-
tosystems of Regev [Reg03] and Peikert [Pei09] are both based on the hardness
of uSVPn1.5 (the latter is based on uSVP via a reduction in [LM09]). What this
means is that an algorithm that breaks these cryptosystems can be used to find
the shortest vector in any lattice whose shortest vector is a factor of n1.5 shorter
than the next shortest vector that is not a multiple of it.

A reduction from the random subset sum problem to uSVPγ was given
in [LO85,Fri86]. The exact parameter γ depends on the density of the subset
sum instance. The smaller the density, the larger the γ can be, and the easier
the uSVPγ problem becomes. The reduction from an instance of SS(n,M) to
uSVPγ is as follows:

Given an instance of SS(n,M) consisting of a vector a ∈ ZnM and an element
T ∈ ZM , we define the lattice L as

L = {x ∈ Zn+1 : [a|| − T ] · x mod M = 0}.



Notice that the vector x = [s||1] is in L for the s for which a · s mod M = T ,
so the `2 norm of the shortest vector is approximately

√
n. The next shortest

non-parallel vector is the vector that meets the Minkowski bound of
√
n+ 1 ·

det(L)
1

n+1 ≈
√
nM1/n, which is a factor M1/n larger than the shortest vector.

Therefore solving uSVPn1.5 allows us to solve instances of SS(n,M) where M ≈
n1.5n.

The cryptosystem that we construct in this paper is based on the hardness of
SS(n,M) where M ≈ nn. In order to have a lattice scheme based on the same
subset sum assumption, it would need to be based on uSVPn. The construction
of such a scheme is currently not known and would be considered a breakthrough.

We want to point out that we are not claiming that just because our scheme
is based on a weaker instance of subset sum, it is somehow more secure than
the lattice-based schemes. All we are claiming is that the connection of our
scheme to the subset sum problem is better. In terms of security, the lattice-based
schemes based on LWE [Reg05,Pei09] and our scheme are actually very similar
because the LWE and subset sum problems can both be viewed as average-
case instances of the “bounded distance decoding” problem, with essentially the
same parameters but different distributions. Unfortunately, we do not know of
any tight reduction between the two distributions, so there is no clear theoretical
connection between LWE and subset sum.

In practice, though, there may be some advantages of our scheme over the
lattice-based ones. The secret key in our scheme is an n-bit vector s ∈ {0, 1}n,
whereas the secret keys in lattice-based schemes are on the order of n log n bits.
Also, the public key in our scheme is a matrix A ∈ Zn×nq , whereas lattice-based
schemes use an n×n log n matrix. The reason for the savings of a factor of log n
in the size of both the secret and public keys in our scheme has to do with the
fact that the distribution (A,As + c) is indistinguishable from random, where
s ∈ {0, 1}n, based on the subset sum assumption. But in order to get a proof
of security based on lattices, the vector s has to be chosen uniformly from Znq
(see [ACPS09] for a slight improvement), and is thus log n times longer. One can
thus view our proof of security based on subset sum as justification that having
s come from a smaller set and having the “noise” be a deterministic function of
A and s, is still secure.

1.3 Open Problems

Our construction of the subset sum cryptosystem involves transforming the sub-
set sum problem into something that very much resembles the LWE problem. It
would be interesting to see whether the same type of idea could be used to trans-
form other problems into LWE-type problems upon which semantically-secure
cryptosystems can be built.

Another open problem concerns weakening the computational assumption
underlying the multi-bit version of our scheme. While our one-bit cryptosystem is
based on the hardness of solving instances of SS(n, qn) for some q = Õ(n), when
simultaneously encrypting k bits using the same randomness our cryptosystem
becomes equivalent to the easier SS(n, qn+k) problem (clearly, it is possible to



encrypt k bits bit-by-bit, but this is less efficient). This is somewhat peculiar
since one can simultaneously encrypt polynomially-many bits using the LWE
cryptosystem without making the underlying assumption stronger [PVW08],
while simultaneously encrypting Ω(n2) bits in our scheme is completely insecure
(since the SS(n, qn

2
) problem can be solved in polynomial time [LO85,Fri86]).

We believe that this weakness in the subset sum construction is due to the fact
that the noise in the LWE schemes is generated independently, whereas in our
scheme, the “noise” is just the carry bits. It is an interesting open problem to
see whether one can modify our scheme so that its security does not depend on
the number of bits being simultaneously encrypted using the same randomness.

Another interesting open problem concerns security against leakage attacks.
First, we were not able to prove the security of our scheme against adaptive
key-leakage attacks, in which the leakage can be chosen as a function of the
public key as well. Although our scheme is somewhat similar to that of Akavia
et al. [AGV09], it seems that their approach for proving security against adaptive
attacks does not immediately apply to our setting. Second, our leakage-resilient
scheme relies on a slightly stronger assumption than our basic scheme, and it
will be interesting to minimize the required computational assumption.

Finally, we leave it as an open problem to construct a CCA-secure scheme in
the standard model based directly on subset sum. While there are CCA-secure
encryption schemes based on lattice problems (and thus on subset sum as well)
[PW08,Pei09], it would be interesting to build one directly based on subset sum
that will hopefully require weaker assumptions than the lattice based ones.

2 Preliminaries

2.1 The Subset Sum Problem

The subset sum problem with parameters n and qm, where n and m are integers
and q is a positive integer such that 2n < qm, is defined as follows: Given n
numbers a1, . . . , an ∈ Zqm and a target T ∈ Zqm , find a subset S ⊆ {1, . . . , n}
such that

∑
i∈S ai = T mod qm. This can be viewed as the problem of inverting

the function fa : {0, 1}n → Zqm defined as

fa(s1, . . . , sn) =
n∑
i=1

siai mod qm ,

where a = (a1, . . . , an) ∈ Znqm is its index (i.e., this is a collection of functions,
where a function is sampled by choosing its index a uniformly at random).

We denote by SS(n, qm) the subset sum problem with parameters n and
qm. Using the above notion, the hardness of the subset sum problem is the
assumption that {fa}a∈Zn

qm
is a collection of one-way functions. We now state

two properties of the subset sum problem that were proved by Impagliazzo and
Naor [IN96] and are used in analyzing the security of our constructions. The first
property is that subset sum instances with larger moduli are not harder than



subset sum instances with smaller moduli. The second property is that if the
subset sum is a one-way function, then it is also a pseudorandom generator. In
the following two statements, we fix n, m and q as above.

Lemma 2.1 ([IN96]). For any integers i and j such that i < j, if qm+i > 2n,
then the hardness of SS(n, qm+j) implies the hardness of SS(n, qm+i).

Lemma 2.2 ([IN96]). The hardness of SS(n, qm) implies that the distributions
(a, fa(s)) and (a, t) are computationally indistinguishable, where a ∈ Znqm , s ∈
{0, 1}n, and t ∈ Zqm are chosen independently and uniformly at random.4

2.2 Notation

We represent vectors by bold-case letters and all vectors will be assumed to
be column vectors. Unless stated otherwise, all scalar and vector operations are
performed modulo q. For simplicity, we will assume that q is odd, but our results
follow for all q with minimal changes. We represent elements in Zq by integers in
the range [−(q − 1)/2, (q − 1)/2]. For an element e ∈ Zq, its length, denoted by
|e| is the absolute value of its representative in the range [−(q− 1)/2, (q− 1)/2].
For a vector e = (e1, . . . , em) ∈ Zmq , we define ‖e‖∞ = max1≤i≤m |ei|.

We now present some notation that is convenient for describing the subset
sum function. For a matrix A ∈ Zm×nq and a vector s ∈ {0, 1}n, we define A� s
as the vector tT = (t0, . . . , tm−1) such that |ti| ≤ (q − 1)/2 for every 1 ≤ i ≤ m,
and

m−1∑
i=0

tiq
i ≡

n−1∑
j=0

sj

m−1∑
i=0

Ai,jq
i

 mod qm .

In other words, we interpret the n columns of A as elements in Zqm represented
in base q, and sum all the elements in the columns j where sj = 1. The result is
an element in Zqm , which we write in base q using coefficients between −(q−1)/2
and (q − 1)/2. We then write the coefficients of the base q representation as an
m-dimensional vector t. It will sometimes be more convenient to consider the
subset sum of the numbers represented by the rows of A, and to this effect we
naturally define rT �A =

(
AT � r

)T .

3 The Encryption Scheme

In this section we present our main contribution: a public-key encryption scheme
that is based directly on the hardness of the subset sum problem. Given a security
parameter n, we set q(n) to be some number greater than 10n log2 n, let k ∈ N
be the number of bits we want to encrypt, and define the following encryption
scheme:
4 Impagliazzo and Naor [IN96] only prove their result for q’s that are prime or a power

of 2, but their results extend to all q.



– Key generation: On input 1n sample A′ ∈ Zn×nq and s1, . . . , sk ∈ {0, 1}n
independently and uniformly at random. For every 1 ≤ i ≤ k let ti = A′�si,
and let A = [A′||t1|| · · · ||tk]. Output pk = A and sk = (s1, . . . , sk).

– Encryption: On input a message z ∈ {0, 1}k, sample r ∈ {0, 1}n uniformly
at random, and output the ciphertext uT = rT �A + ( q−1

2 )[0n||zT ].
– Decryption: On input a ciphertext uT = [vT ||w1|| · · · ||wk] where v ∈ Znq

and w1, . . . , wk ∈ Zq, for every 1 ≤ i ≤ k compute yi = vT si − wi. If
|yi| < q/4 then set zi = 0 and otherwise set zi = 1. Output zT = (z1, . . . , zk).

The intuition for the semantic security of the scheme is fairly simple. Because
the vectors ti are subset sums of the numbers represented by the columns of A′,
the public key A is computationally indistinguishable from random. Therefore,
to an observer, the vector rT �A, which is a subset sum of numbers represented
by the rows of A, is again computationally indistinguishable from uniform. The
formal proof is in Section 3.1.

The intuition for decryption is based on the fact that A′ � si ≈ A′si and
rT �A ≈ rTA. For simplicity, assume that A′ � si = A′si and rT �A = rTA.
Then it is not hard to see that

|vT si − wi| =
∣∣∣∣(rTA′)si −

(
rT (A′si) +

q − 1
2

zi

)∣∣∣∣ =
q − 1

2
zi ,

and we recover zi. Because the subset sum function does not quite correspond
to a vector/matrix multiplication, decryption will recover q−1

2 zi + error. What
we will need to show is that this error term is small enough so that we can still
tell whether zi was 0 or 1. The proof is in Section 3.2.

3.1 Proof of Security

Our scheme enjoys a rather simple and direct proof of security. The proof consists
of two applications of the pseudorandomness of the subset sum function, which
by Lemma 2.2 is implied by the hardness of the subset sum problem. Informally,
the first application allows us to replace the values A′ � s1, . . . ,A′ � sk in the
public key with k vectors that are sampled independently and uniformly at
random. Then, the second application allows us to replace the value rT �A in
the challenge ciphertext with an independently and uniformly chosen vector. In
this case, the challenge ciphertext is statistically independent of the encrypted
message and the security of the scheme follows. More formally, the following
theorem establishes the security of the scheme:

Theorem 3.1. Assuming the hardness of the SS(n, qn+k) problem, where n is
the security parameter and k is the plaintext length, the above public-key encryp-
tion scheme is semantically secure.

Proof. We show that for any two messages m0,m1 ∈ {0, 1}k, the ensembles
(pk, Epk(m0)) and (pk, Epk(m1)) are computationally indistinguishable. In fact,
we prove an even stronger statement, namely that (A, rT�A) is computationally



indistinguishable from (M,v), where M ∈ Zn×(n+k)
q and v ∈ Zn+k

q are sampled
independently and uniformly at random. This, in turn, implies that for every
b ∈ {0, 1}, the distribution (pk, Epk(mb)) is computationally indistinguishable
from a distribution that perfectly hides the message mb. Therefore, any prob-
abilistic polynomial-time adversary attacking the scheme will have a negligible
cpa-advantage.

The hardness of the SS(n, qn) problem, Lemmas 2.1 and 2.2, and a stan-
dard hybrid argument imply that the distributions (A′,A′ � s1, . . . ,A′ � sk)
and (A′,b1, . . . ,bk), where b1, . . . ,bk ∈ Znq are sampled independently and
uniformly at random, are computationally indistinguishable. Letting M =
[A′||b1|| · · · ||bk], it then follows that the distributions (A, rT �A) and (M, rT �
M), are computationally indistinguishable. Now, the hardness of the SS(n, qn+k)
problem and Lemma 2.2 imply that the latter distribution is computationally
indistinguishable from (M,v), where v ∈ Zn+k

q is sampled uniformly at random,
independently of M. This concludes the proof of the theorem. ut

3.2 Proof of Correctness

We will use the following bound due to Hoeffding [Hoe63] throughout our proof.

Lemma 3.2 (Hoeffding Bound). Let X1, . . . , Xn be independent random vari-
ables in the range [a, b] and let X = X1 + . . .+Xn. Then

Pr[|X − E[X]| ≥ t] ≤ 2e−
“

2t2

n(a−b)2

”
.

The next lemma shows that the carries during the subset sum operation
rT �A are distributed with mean 0 and their absolute value is bounded (with
high probability) by

√
n log n. In addition, the carries are almost independent of

each other. The slight dependency comes from the fact that a carry element can
cause the following carry to increase by 1.

Lemma 3.3. For any n,m ∈ N and r ∈ {0, 1}n,

Pr
A

$←Zn×mq

[
‖rT �A− rTA‖∞ <

√
n log n

]
= 1− n−ω(1) .

Furthermore, the vector rT �A − rTA can be written as a sum of two vectors
x,y ∈ Zmq where all the coordinates of x are independently distributed with
mean 0, while all the coordinates of y have absolute value at most 1 (but could
be dependent among themselves).

Proof. Computing rT �A can be done via the following algorithm, where ai is
the i-th column of A:

c0 = 0
for i = 0 to m− 1

bi = (ci + rTai) mod q
ci+1 =

⌈
ci+rT ai

q

⌋
output bT = (b0, . . . , bm−1)



Notice that this algorithm is just performing addition in base q, where all the
coefficients are between −(q− 1)/2 and (q− 1)/2. The difference rT �A− rTA
is simply the “carries” ci. Note that the only dependency among the ci’s is that
ci+1 slightly depends on ci. We can rewrite the above algorithm by writing each
ci as xi + yi such that all the xi’s are independent among themselves, whereas
the yi’s could be dependent but are very small.

x0 = 0 ; y0 = 0
for i = 0 to m− 1

bi = (xi + yi + rTai) mod q
xi+1 =

⌈
rT ai
q

⌋
yi+1 =

⌈
xi+yi+rT ai

q

⌋
−
⌈

rT ai
q

⌋
output bT = (b0, . . . , bm−1)

Observe that in the second algorithm, the xi’s are completely independent
among themselves. We now bound the absolute value of the xi’s. Each vector
ai consists of numbers uniformly distributed between −(q − 1)/2 and (q − 1)/2.
Applying the Hoeffding bound (Lemma 3.2), we obtain that

Pr[|rTai| ≥ q
√
n log n] ≤ 2e−2 log2 n .

Therefore, with probability 1 − n−ω(1), |xi| ≤
√
n log n for all 0 ≤ i ≤ m − 1.

Also notice that by symmetry, E[xi] = 0. By induction, we will now show that
|yi| ≤ 1. This is true for y0, and assume it is true for yi. Then,

|yi+1| =
∣∣∣∣⌈xi + yi + rTai

q

⌋
−
⌈

rTai
q

⌋∣∣∣∣ ≤ ∣∣∣∣⌈xi + yi
q

⌋
+ 1
∣∣∣∣ ≤ 1 ,

where the last inequality follows because |xi| ≤
√
n log n < q/2− 1 and |yi| ≤ 1,

and so
⌈
xi+yi
q

⌋
= 0. ut

Lemma 3.4. For any r, s ∈ {0, 1}n,

Pr
A

$←Zn×nq

[
‖(rT �A)s− rTAs‖∞ < n log2 n

]
= 1− n−ω(1) .

Proof. Using Lemma 3.3, we can rewrite rT �A as rTA + xT + yT where each
element of x is independently distributed around 0 with magnitude at most√
n log n, and each element of y has magnitude at most 1. Multiplying by s, we

obtain (rT �A)s− rTAs = xT s + yT s.
Because ‖y‖∞ ≤ 1, we have |yT s| ≤ n. By the Hoeffding bound (Lemma

3.2), we obtain that

Pr[|xT s| ≥ n log2 n] ≤ 2e−
log2 n

2 ,

and the lemma is proved. ut

Theorem 3.5. Decryption succeeds with probability 1− n−ω(1).



Proof. The encryption of a message z is the vector uT = rT �A+( q−1
2 )(0n||zT ).

To decrypt bit i, we write uT = [vT ||w1|| . . . ||wk] and compute vT si − wi.
Observe that vT is equal to rT � A′ + (0n−1||ν) and wi = rT ti + q−1

2 zi + η,
where ν, η are carries whose magnitudes are less than n (actually, we can show
that with high probability ν, η <

√
n log n, but the looser bound suffices here).

Therefore, if sn is the last element of si, then

vT si − wi = (rT �A′ + (0n−1||ν))si −
(

rT ti +
q − 1

2
zi + η

)
= (rT �A′)si + νsn −

(
rT (A′ � si) +

q − 1
2

zi + η

)
.

We will now show that q−1
2 zi is the dominant term in the second equation. Thus,

if zi = 0, the result will be close to 0, and if zi = 1, the result will be close to
−(q − 1)/2. We will show this by bounding the magnitude of the other terms.

|(rT �A′)si + νsn − rT (A′ � si)− η|
≤
∣∣(rT �A′)si − rTA′si − rT (A′ � si) + rTA′si

∣∣+ |νsn|+ |η|
≤
∣∣(rT �A′)si − rTA′si

∣∣+
∣∣rT (A′ � si)− rTA′si

∣∣+ 2n

≤ n log2 n+ n log2 n+ 2n ,

where the last inequality follows from applying Lemma 3.4 twice to bound∣∣(rT �A′)si − rTA′si
∣∣ and

∣∣rT (A′ � si)− rTA′si
∣∣. So if zi = 0, we will have

|vT si − wi| ≤ 2n log2 n+ 2n < q/4

with probability 1− n−ω(1), and we will decrypt to 0. If zi = 1, we will decrypt
to 1 since

|vT si − wi| ≥ (q − 1)/2− 2n log2 n− 2n > q/4 . ut

4 Security Against Key-Leakage Attacks

In this section we prove that a natural variant of the scheme described in
Section 3 is resilient to any non-adaptive leakage of L(1 − o(1)) bits, where
L is the length of the secret key (see Appendix A.2 for the formal defini-
tion of non-adaptive key-leakage attacks). Given a security parameter n and
a leakage parameter λ = λ(n), set q = O

((
n+ λ

logn

)
n log2 n

)
, T =

√
q, and

m ≥ (dn log qe+ λ+ ω log n) / log T . Consider the following encryption scheme:

– Key generation: On input 1n sample A′ ∈ Zn×mq and s ∈ {−(T−1)/2, . . . ,
(T −1)/2}m uniformly and independently at random, and let A = [A′||A′s].
Output pk = A and sk = s.

– Encryption: On input a bit b, sample r ∈ {0, 1}n uniformly at random,
and output the ciphertext uT = rT �A + ( q−1

2 )[0m||b].



– Decryption: On input a ciphertext uT = [vT ||w] where v ∈ Zmq and w ∈
Zq, compute y = vT s− w. If |y| < q/4 then output 0. Otherwise, output 1.

The main idea underlying the scheme is that the min-entropy of the secret
key is m log T ≥ dn log qe+λ+ω log n, and thus even given any leakage of λ bits
it still has average min-entropy at least dn log qe + ω log n. Since the leakage is
independent of the public key, we can apply the leftover hash lemma and argue
that A = [A′||A′s] is statistically close to uniform, even given the leakage.

We note that in this scheme, unlike in the scheme presented in Section 3, we
use matrix-vector multiplication instead of the subset sum operation in forming
the public key. The proof of correctness in this case is similar to that presented
in Section 3. Specifically, a generalization of Lemma 3.4 shows that for every
r ∈ {0, 1}n and s ∈ {−(T − 1)/2, . . . , (T − 1)/2}m, with overwhelming prob-
ability over the choice of A $← Zn×mq it holds that ‖(rT � A)s − rTAs‖∞ <√
Tmn log2 n+Tm. As in the proof of Theorem 3.5, this implies that vT s−w =

γ + q−1
2 z, where |γ| ≤

√
Tmn log2 n + (T + 2)m. Therefore, we need to set q

to be an integer such that q/4 >
√
Tmn log2 n + (T + 2)m. By setting roughly

q =
(
n+ λ

logn

)
n log2 n (ignoring a small leading constant) and T =

√
q, we can

base the security of the scheme on the hardness of the SS(n, qm) problem, where

qm = q
n log q+λ+ω logn

log T = q2(n+λ+ω logn
log q ) =

((
n+

λ

log n

)
n log2 n

)2n

· 4λ+ω logn .

The following theorem establishes the security of the scheme:

Theorem 4.1. Assuming the hardness of the SS(n, qm+1) problem for q = q(n)
and m = m(n) as above, the scheme is semantically secure against non-adaptive
λ(n)-key-leakage attacks, where n is the security parameter.

Proof. We show that for any efficiently computable leakage function f map-
ping secret keys into {0, 1}λ, the ensembles (pk, Epk(0), f(sk)) and (pk, Epk(1),
f(sk)) are computationally indistinguishable. In fact, we prove a stronger state-
ment, namely that (A, rT �A, f(s)) is computationally indistinguishable from
(M,v, f(s)), where M ∈ Zn×(m+1)

q , v ∈ Zm+1
q are sampled independently, uni-

formly at random.
Lemma A.1 guarantees that the average min-entropy of s given f(s) is at

least m log T − λ ≥ n log q+ω log n. The leftover hash lemma (when adapted to
the notion of average min-entropy – see Lemma A.3) then implies that the statis-
tical distance between the distributions (A′,A′s, f(s)) and (A′, t, f(s)), where
t ∈ Znq is sampled uniformly at random, is negligible in n. Letting M = [A′||t]
and noting that applying a deterministic function cannot increase the statistical
distance between distributions, it follows that the statistical distance between
(A, rT �A, f(s)) and (M, rT �M, f(s)), where M ∈ Zn×(m+1)

q is sampled uni-
formly at random, is negligible. Now, the hardness of the SS(n, qm+1) problem
implies that the latter distribution is computationally indistinguishable from
(M,v, f(s)), where v ∈ Zm+1

q is sampled uniformly at random, independently
of M. This concludes the proof of the theorem. ut



5 Oblivious Transfer Protocol

In this section we present an oblivious transfer (OT) protocol based on sub-
set sum that provides security for the receiver against a cheating sender, and
security for the sender against an honest-but-curious receiver. (See Appendix
A.3 for the formal definition of OT.) Our protocol is an instance of a con-
struction proposed by Gertner et al. [GKM+00], based on protocols by Even et
al. [EGL82,EGL85], to show that a special property of public-key encryption is
sufficient for the construction of two-message semi-honest OT. Informally, the
property is that it is possible to efficiently sample a string pk with a distribution
indistinguishable from that of a properly generated public key, while preserv-
ing the semantic security of the encryption Epk. Our cryptosystem satisfies this
property, by pseudorandomness of subset sum. For the sake of self-containment,
however, we provide direct proofs of our OT protocol’s correctness and security.

5.1 OT Based on Subset Sum

Our oblivious transfer protocol is a simple application of our encryption scheme.
We denote by G, E and D, respectively, the key-generation, encryption and de-
cryption algorithms of the public-key encryption scheme described in Section 3.
The receiver with inputs 1n, b first sends a properly generated public key pkb
and a uniformly random fake public key pk1−b ∈ Zn×(n+k)

q . The sender with
inputs 1n, z0, z1 uses each key pki to encrypt its input zi and replies with the
ciphertexts uT0 ,u

T
1 . The receiver can then retrieve zb by decrypting uTb , using

the secret key corresponding to pkb. Details follow.

Let n, k ∈ N, b ∈ {0, 1}, and z0, z1 ∈ {0, 1}k

Receiver R(1n, b): (pkb, skb)
$← G(1n) ; pk1−b

$← Zn×(n+k)
q ; Send pk0, pk1

Sender S(1n, z0, z1): uT0 ← Epk0
(z0) ; uT1 ← Epk1

(z1) ; Send uT0 ,u
T
1

Receiver R: zb ← Dskb(u
T
b ) ; Return zb

5.2 Proofs of Correctness and Security

We now show that correctness follows from correctness of the cryptosystem.

Theorem 5.1. If the sender and receiver both follow the protocol, then the for-
mer outputs nothing and the latter outputs zb with probability 1− n−ω(1).

Proof. Since pkb is a properly generated public key corresponding to secret key
skb, uTb is a valid encryption of message zb under pkb, and the receiver computes
the decryption of uTb using skb, the proof follows from Theorem 3.5. ut

Security for the receiver is proved based on the pseudorandomness of subset
sum. A properly generated public key is indistinguishable from a uniformly ran-
dom element in Zn×(n+k)

q . Therefore, for any input bit, the receiver’s message
consists of two elements from computationally indistinguishable distributions.



It follows that the distribution of the receiver’s message when the input is 0
is computationally indistinguishable from the distribution when the input is 1.
The precise statement of this result is the following.

Theorem 5.2. Assuming the hardness of the SS(n, qn) problem, where n is the
security parameter, the above OT protocol is secure for the receiver.

Proof. Let R(1n, b) denote the message sent by the honest receiver with inputs
1n, b. We show that the ensembles R(1n, 0) and R(1n, 1) are computationally
indistinguishable.

As in the proof of Theorem 3.1, the hardness of the SS(n, qn) problem implies
that the distributions pk0 and pk1 are computationally indistinguishable. This
implies that ensembles R(1n, 0) and R(1n, 1) are indistinguishable as well. ut

The protocol is not secure against malicious receivers. Indeed, a malicious
receiver can properly generate two key pairs pk0, sk0 and pk1, sk1, and then use
the secret keys to decrypt both ciphertexts uT0 ,u

T
1 . The protocol is, however,

secure for the sender against honest-but-curious receivers, as we now show.

Theorem 5.3. Assuming the hardness of the SS(n, qn+k) problem, where n is
the security parameter and k is the length of the sender’s input messages, the
above OT protocol is secure for the sender against an honest-but-curious receiver.

Proof. Let R(1n, b) denote the message sent by the honest receiver with inputs
1n, b, and S(1n, z0, z1, R(1n, b)) denote the reply of the honest sender with in-
puts 1n, z0, z1. We show that the ensembles (S(1n, z0, z1, R(1n, 0)), R(1n, 0)) and
(S(1n, z0, 0k, R(1n, 0)), R(1n, 0)) are computationally indistinguishable, and the
ensembles (S(1n, z0, z1, R(1n, 1)), R(1n, 1)) and (S(1n, 0k, z1, R(1n, 1)), R(1n, 1))
are computationally indistinguishable.

In the proof of Theorem 3.1, we showed that for any m0,m1 ∈ {0, 1}k the en-
sembles (pk, Epk(m0)) and (pk, Epk(m1)) are computationally indistinguishable.
This is true when pk is a properly generated public key and also when pk is a
random element in Zn×(n+k)

q . Therefore, the ensembles (pk1−b, Epk1−b(z1−b)) and
(pk1−b, Epk1−b(0

k)) are computationally indistinguishable. Hence for b ∈ {0, 1}
the ensembles (S(1n, zb, z1−b, R(1n, b)), R(1n, b)) and (S(1n, zb, 0k, R(1n, b)),
R(1n, b)) are computationally indistinguishable. This completes the proof. ut
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A Cryptographic Definitions

Do to space constraints, the well-known definition of semantically-secure public-
key encryption is presented in the full version of our paper [LPS09].

A.1 Randomness Extraction

We say that two variables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variable X is H∞ (X) = − log(maxx Pr [X = x]).

Dodis et al. [DORS08] formalized the notion of average min-entropy that
captures the remaining unpredictability of a random variable X conditioned on
the value of a random variable Y , formally defined as follows:

H̃∞ (X|Y ) = − log
(
Ey←Y

[
2−H∞(X|Y=y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guess-
ing X, given knowledge of Y . The following bound on average min-entropy was
proved in [DORS08]:

Lemma A.1 ([DORS08]). If Y has 2r possible values and Z is any random
variable, then

H̃∞ (X|(Y, Z)) ≥ H∞ (X|Z)− r .



A main tool in our constructions in this paper is a strong randomness ex-
tractor. The following definition naturally generalizes the standard definition of
a strong extractor to the setting of average min-entropy:

Definition A.2 ([DORS08]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
an average-case (k, ε)-strong extractor if for all random variables X and I such
that X ∈ {0, 1}n and H̃∞ (X|I) ≥ k it holds that

SD ((Ext(X,S), S, I), (Um, S, I)) ≤ ε ,

where S is uniform over {0, 1}d.

Dodis et al. proved the following lemma stating that any strong extractor is
in fact also an average-case strong extractor:

Lemma A.3 ([DORS08]). For any δ > 0, if Ext is a (worst-case) (m −
log(1/δ), ε)-strong extractor, then Ext is also an average-case (m, ε + δ)-strong
extractor.

A.2 Key-Leakage Attacks

We follow the framework introduced by Akavia et al. [AGV09] and recall their
notion of a key-leakage attack. Informally, an encryption scheme is secure against
key-leakage attacks if it is semantically secure even when the adversary obtains
sensitive leakage information. This is modeled by allowing the adversary to sub-
mit any function f and receive f(sk), where sk is the secret key, as long as the
output length of f is bounded by a predetermined parameter λ.

Akavia et al. defined two notions of key-leakage attacks: adaptive attacks
and non-adaptive attacks. In an adaptive key-leakage attack, the adversary is
allowed to choose the leakage function after seeing the public key, and in a non-
adaptive key-leakage attack the adversary has to choose the leakage function in
advance. In this paper we deal with the non-adaptive setting, and note that this
notion of leakage is still very meaningful as it captures many realistic attacks in
which the leakage does not depend on the parameters of the encryption scheme.
For example, it captures the cold boot attacks of Halderman et al. [HSH+08], in
which the leakage depends only on the properties of the hardware devices that
are used for storing the secret key.

Formally, for a public-key encryption scheme (G, E ,D) we denote by skn and
pkn the sets of secret keys and public keys that are produced by G(1n). That is,
G(1n) : {0, 1}∗ → skn × pkn for every n ∈ N. The following defines the notion of
a non-adaptive key-leakage attack:

Definition A.4 (non-adaptive key-leakage attacks). A public-key encryp-
tion scheme (G, E ,D) is semantically secure against non-adaptive λ(n)-key-
leakage attacks if for any collection F =

{
fn : skn → {0, 1}λ(n)

}
n∈N of efficiently

computable functions and any two messages m0 and m1, the distributions (pk,
Epk(m0), fn(sk)) and (pk, Epk(m1), fn(sk)) are computationally indistinguishable,
where (sk, pk) $← G(1n).



A.3 Oblivious Transfer

Oblivious transfer is a cryptographic primitive, introduced by Rabin [Rab81],
which has been shown to be sufficiently strong to enable any multiparty compu-
tation [Yao86,GMW87,Kil88]. There are several equivalent formulations of OT
in the literature. We use the version of Even, et al. [EGL85] known as 1-out-of-2
oblivious transfer, and refer to it as simply OT. Crépeau [Cré87] showed that
this variant is equivalent to the original definition of oblivious transfer.

A 1-out-of-2 oblivious transfer is a two-party protocol in which a sender has
two secret strings z0, z1 and a receiver has a secret bit b. At the end of the
interaction, the receiver learns zb but has no information about z1−b, and the
sender learns nothing about b. General OT guarantees security even in the face
of cheating parties who deviate from the prescribed protocol. Honest OT, on the
other hand, guarantees security only against honest-but-curious parties. These
are parties that follow the protocol, but keep a record of all intermediate results
and may perform any computation to extract additional information from this
record, once the protocol ends. Any honest OT protocol can be transformed
into a general OT protocol, using either black-box techniques [Hai08], or us-
ing zero-knowledge proofs to force parties to behave in an honest-but-curious
manner [Gol04]. The formal definition of OT follows.

Definition A.5. Oblivious Transfer (OT) is a two-party protocol involving
a sender S with inputs 1n and z0, z1 ∈ {0, 1}k, where k is a constant, and
a receiver R with inputs 1n and b ∈ {0, 1}. S and R are polynomial-time
randomized algorithms such that if both follow the protocol, then the former
outputs nothing and the latter outputs zb (with overwhelming probability). We
consider the following security requirements:

Security for the receiver: Let R(1n, b) denote the message sent by the honest
receiver with inputs 1n, b. Then the ensembles {R(1n, 0)}n∈N and {R(1n, 1)}n∈N
are computationally indistinguishable.

Security for the sender: Let S(1n, z0, z1,m) denote the message sent by the
honest sender with inputs 1n, z0, z1 when the (possibly cheating, polynomial time)
receiver’s message is m. Then for every z0, z1 ∈ {0, 1}k and every polynomial-
length message m ∈ {0, 1}∗, either the ensembles {S(1n, z0, z1,m),m}n∈N
and {S(1n, z0, 0k,m),m}n∈N or the ensembles {S(1n, z0, z1,m),m}n∈N and
{S(1n, 0k, z1,m),m}n∈N are computationally indistinguishable.

Security against honest-but-curious (a.k.a. “semi-honest”) receivers relaxes
the second condition above to consider only a receiver that faithfully follows the
protocol, but keeps a record of all intermediate results and may perform any
computation, after the protocol is completed, to extract additional information
from this record.


