
Delayed-Key Message Authentication for

Streams

Marc Fischlin and Anja Lehmann

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. We consider message authentication codes for streams where
the key becomes known only at the end of the stream. This usually
happens in key-exchange protocols like SSL and TLS where the exchange
phase concludes by sending a MAC for the previous transcript and the
newly derived key. SSL and TLS provide tailor-made solutions for this
problem (modifying HMAC to insert the key only at the end, as in SSL,
or using upstream hashing as in TLS). Here we take a formal approach
to this problem of delayed-key MACs and provide solutions which are
“as secure as schemes where the key would be available right away” but
still allow to compute the MACs online even if the key becomes known
only later.

1 Introduction

With the final step in key exchange protocols the parties usually authenticate
the previous communication. This is typically achieved by exchanging message
authentication codes Mac(K, transcript) computed over the transcript of the com-
munication. Examples include the final message in the handshake protocol of SSL
and TLS [17], as well as many other key exchange protocols [4,13,14,8].

The intriguing observation here is that the key for the MAC computations
becomes only known after the transcript is provided. We call this delayed-key
authentication. For such schemes, even MACs which potentially allow to authen-
ticate streams may need to store the entire transcript before the MAC can be
derived. One well-known example is HMAC where the (inner) key is prepended
to the message before hashing, H(Kout, H(Kin,m)). In this case the key must be
available before processing the message in order to take advantage of the iterated
hash function structure.

For computational efficiency and, especially, for storage reasons it is often
desirable to compute the MAC iteratively, though. This has been acknowledged
by popular protocols like SSL, which uses a variant of HMAC where the key
is appended to the message instead, and TLS which first hashes the transcript
iteratively and then runs the MAC on the hash value only. Similarly, for the
key exchange protocols for machine readable travel documents (MRTD) by the
German government [5] the final MAC computation omits large parts of the
transcript and only inputs the messages of the final rounds. This allows the
resource-bounded passport to free memory immediately. The protocol is under
standardization for ISO/IEC JTC1/SC17.



The SSL and TLS solution to the problem both rely on the collision resistance
of the underlying hash function for HMAC.1 For TLS collision resistance suffices
to show security (assuming HMAC is secure), but introduces another require-
ment on the hash function. Recall that HMAC (resp. its theoretical counterpart
NMAC) can be shown to be secure if the compression function is pseudorandom
[1] or non-malleable [7]. For SSL it is still unclear how the security of the modified
HMAC relates to the security of the original HMAC. As for the MRTD protocol
for German passports, in most key exchange protocols it is recommended to in-
clude the whole transcript (yet, we are not aware of any concrete attack if only
parts of the transcript enter the computation).

An additional constraint originates from the implementation of the MAC
algorithm. Key-exchange protocols are often used as building blocks in more
complex cryptographic protocols which, in turn, also use the same MAC algo-
rithm for subsequent authentication (e.g., the record protocol in TLS/SSL). To
be applicable to resource-bounded devices a delayed-key MAC should therefore
draw on the same implementation as the regular MAC. This is particularly true
if the implementation has been designed to resist side-channel attacks. Hence,
instead of designing delayed-key MACs from scratch, a “lightweight” transfor-
mation given an arbitrary MAC algorithm is preferable.

Our Results. We initiate a study of solutions for the delayed-key MAC problem.
There are two reasonable scenarios, originating from the key-exchange applica-
tion: The most relevant case in practice is the one-sided case where one party
is resource-bounded while the other party is more powerful, e.g., a TLS/SSL
secured connection between a mobile device and a server, or an authentication
procedure between a smart card and a card reader. Then, ideally, the constraint
device should benefit from solutions with low storage, whereas we can still as-
sume that the server is able to store the entire transcript. If both parties have
storage limitations, e.g., two mobile devices communicating with each other,
then we are interested in two-sided solutions. Since the one-sided case allows
for the weaker devices in terms of resource constraints, the necessity of storage-
optimized protocols in this scenario is usually higher than in the two-sided case.

Thus, we focus on the one-sided case for which we present efficient solutions
which are all based on the same seemingly obvious principle: to compute a MAC
the sending party first picks an ephemeral key L and computes the MAC for
this key and the data stream. Then, in addition to the MAC under this key, the
party also transmits an “encryption” (or a “pointer”) P allowing the other party
to recover the ephemeral key L from P and the meanwhile available long-term
key K.2 Note that since verification is usually done by re-computing a MAC the
idea also applies to the verification of the other’s party MAC, i.e., one of the

1 The weaker requirement of preimage resistance does not suffice, because the tran-
script that gets authenticated, is partially determined by both the sender and the
receiver of the MAC.

2 This approach is more general than it may seem at first glance: One can think of
the MAC computation for key L as a (probabilistic) processing of the message and
the final computation of the pointer (from K, L and the value from the first stage)



parties in a key-exchange protocol can both compute its own MAC and verify
the other party’s MAC with low storage requirements.

From an efficiency and implementation viewpoint the instantiations of this
principle should interfere as little as possible with the underlying protocol such
that we get a universal solution. Note that this general approach already allows
to obtain a delayed-key solution starting from a regular MAC, such that both
variants can be used conveniently even on severely constraint devices. In terms of
security we require the solution to be as secure as the original scheme. The latter
condition at foremost demands that the instantiation inherits the unforgeability
property of the original MAC. But since the long-term key K is subsequently
used in protocols (like encryption with the derived keys from the master secret
in SSL and TLS), unforgeability alone is not sufficient.

We also demand that the modified scheme only leaks “as much about the
key K as the original scheme would” and call this notion leakage-invariance. The
idea behind this notion is that, in the original key-exchange protocol, the MAC
for K leaks some information about the key itself, and that the subsequent usage
of the key (derivation, direct encryption etc.) should be still be secure. Following
the idea of semantically secure encryption [10] we require that a solution for the
delayed-key problem allows to compute at most the information about K that
one could derive from a Mac(K, ⋅) oracle (used in the original protocol).

We discuss four solutions which are secure according to our notion (and which
come with different efficiency/security trade-offs). Roughly, these are:

Encrypt-then-MAC: We assume that the underlying (deterministic) MAC is
a pseudorandom function (which is a widely used assumption about HMAC)
and then compute the MAC � ← Mac(L,m, ℓ) for the ephemeral key and
then encrypt L under K and MAC this data, P = (c, t) = (Mac(K, 0∣∣ℓ) ⊕
L,Mac(K, 1∣∣ℓ∣∣c)) for a label ℓ which can either be the server or client con-
stant as in SSL or a random session identifier. The receiver can then recover
L from the encryption and verify the MAC �.

Pseudorandom Permutation: We again assume that the MAC is a pseudo-
random function and use a four-round Feistel structure to build a pseudoran-
dom permutation �(K, ⋅) out of it. Then � ← Mac(L,m) and P = �−1(K, L)
such that the receiver can re-obtain L = �(K,P) and verify the MAC �. The
communication overhead here is smaller than in the previous case but the
construction requires more MAC computations.

Encrypt-only: For the pseudorandomMAC we simply let P = (ℓ,Mac(K, ℓ)⊕L)
for random label ℓ. In this case the security condition is that an adversary
attacking this modified scheme can only make a limited number of verifi-
cation requests (which corresponds to the common case that in two-party
key-exchange protocols for each exchanged key K the server and the client
compute and verify only one MAC each). Also, we can only show that the
adversary is unable to recover the entire key K from the modified scheme (in

as an “enveloping” transformation involving the key. It comprises for example the
SSL/TLS solutions (with empty L). We finally remark that sending L in clear usually
violates the secure deployment of such MACs in key agreement protocols.



contrast to any information about the key, as in the previous cases). This is
sufficient to provide security if the key is afterwards hashed (assuming that
the hash functions is a good randomness extractor or even behaves like a
random oracle).

XOR: In the most simple case we let P = K⊕L be the one-time pad encryption
of L under K. Assuming that MAC remains pseudorandom under related-
key attacks [3] this is again an unforgeable, leakage-invariant MAC (if the
adversary task is to recover the whole key K). The leakage-invariance also
relies on the assumption that the adversary can only make a limited number
of verification queries, and gets to see at most one MAC. The latter is justified
in schemes where only one of the party sends a MAC or where one party
immediately aborts without sending its MAC if the received MAC is invalid.

As mentioned before all proposed solutions above support the one-sided case
where one of the parties can store the message easily. In contrast, the TLS/SSL
solutions also work in the two-sided case of two resource-constraint parties, but
both rely on the collision-resistance of the underlying hash function whereas
our solutions can in principle be implemented based on one-way functions. We
therefore address the question whether or not collision-resistance is necessary for
the two-sided case or not, and show that one-way functions suffice. However, as
our solution make use of digital signatures it is mainly a proof of concept and it
remains an interesting open problem to find more efficient constructions for this
case.

Related Results. To the best of our knowledge the delayed-key problem has not
undergone a comprehensive formal treatment so far. The solution in TLS can
be shown to be secure according to our model, but relies on collision-resistance.
As attacks have shown, however, this appears to be a stronger assumption than
pseudorandomness, especially in light of the deployed hash functions MD5 and
SHA-1 in TLS (see also the discussion in [1]). We note that relaxing the re-
quirement of collision-resistance is also a goal in other areas like hash-and-sign
schemes [12].

Closest to our setting here comes the scenario of broadcast authentication of
streams via the TESLA protocol [16]. There, the two parties share a one-way
chain of keys and authenticate each packet in time t with the t-th key of the chain.
Hence, TESLA also deals with authentication of streams and supports limited
buffering, but in contrast to our setting TESLA covers immediate authentication
of packets, requiring synchronization between the parties, and assumes shared
keys right away (whereas our key is delayed).

Analogously to TESLA, all other works on stream authentication refer to
immediate verification of each packet, e.g. [11].

In a recent work, Garay et al. [9] also address the problem of MAC precom-
putations. However, they consider MACs in the context of hardware security and
show how to perform most of a MAC computation offline, before the message is
available.



2 Preliminaries

In this section we introduce the basic notions for message authentication codes.
In the key exchange application the two parties at the end usually compute the
MAC for the same message m but include their identity in the message. For
instance, SSL includes the server and client constant in the computation of the
finished message. Alternatively, the label can also be a random value chosen by
the party computing the MAC. In any case we assume that the label is known at
the outset of the MAC computation. We thus introduce labels in the model such
that each message m is escorted by a label ℓ ∈ {0, 1}n and the authentication
code covers both parts. We note that, for regular MACs, this is rather a syntactic
modification and becomes important only for the case of delayed-key MACs.

Definition 1. A message authentication code scheme MAC = (KGen,Mac,Vf)
(with labels) is a triple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and re-
turns a key k.

Authentication. The authentication algorithm � ← Mac(k,m, ℓ) takes as in-
put the key k, a message m from a space ℳn and a label ℓ ∈ {0, 1}n and
returns a tag � in a range ℛn.

Verification. Vf(k,m, ℓ, �) returns a bit.

It is assumed that the scheme is complete, i.e., for all k ← KGen(1n), any
(m, ℓ) ∈ℳn, and any � ← Mac(k,m, ℓ) we have Vf(k,m, ℓ, �) = 1.

A MAC is called deterministic if algorithm Mac is deterministic. Unforge-
ability of MACs demands that it is infeasible to produce a valid tag for a new
message:

Definition 2. A message authentication code MAC = (KGen,Mac,Vf) (with la-
bels) is called unforgeable under chosen message attacks if for any efficient algo-
rithm A the probability that the experiment ForgeMAC

A evaluates to 1 is negligible
(as a function of n), where

Experiment ForgeMAC

A (n)
k ← KGen(1n)
(m∗, ℓ∗, �∗)← AMAC(k,⋅,⋅),Vf(k,⋅,⋅,⋅)(1n)
Return 1 iff

Vf(k,m∗, ℓ∗, �∗) = 1 and A has never queried Mac(k, ⋅, ⋅) about (m∗, ℓ∗).

Note that for deterministic MACs where, in addition, the verification algo-
rithm recomputes the tag and compares it to the given tag, the verification oracle
Vf(k, ⋅, ⋅, ⋅) can be omitted [2] while decreasing the adversary’s success probabil-
ity by at most the number of verification queries. This particularly holds for
HMAC.

For some of our security proofs it is necessary to assume that the MAC is a
pseudorandom function. We note again that HMAC (or, to be precise, NMAC)
has this property as long as the underlying compression function is pseudoran-
dom [1].



Definition 3. A message authentication code MAC is a pseudorandom function
if for any efficient distinguisher D the advantage

∣

∣

∣
Prob

[

DMac(k,⋅)(1n) = 1
]

− Prob
[

Df(⋅)(1n) = 1
]
∣

∣

∣

is negligible, where the probability in the first case is over D’s coin tosses and
the choice of k ← KGen(1n), and in the second case over D’s coin tosses and the
choice of the random function f :ℳn → ℛn.

3 Defining Delayed-Key MACs for Streams

As explained in the introduction in the setting of MACs for streams where the
key K is only available at the end of the communication, we augment the MAC
by a function Point which maps the ephemeral key L (used to derive the MAC
for the stream) via K to a pointer P, and such that the verifier can recover the
ephemeral key from this pointer and K by the “inverse” Point−1. We let Point

also depend on the MAC � computed with the ephemeral key to capture general
solutions as in TLS and since this information is available when computing the
pointer (see also the remark after the definition). If Point does not depend on �
we usually omit it from the algorithm’s input.

Definition 4. A delayed-key message authentication code scheme DKMAC =
(KGen, (Mac,Point),Vf) (with labels) is a tuple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and re-
turns a secret key K.

Authentication. Algorithm Mac on input an ephemeral key L, a message m
and a label ℓ returns a tag �, and algorithm Point for input two keys K and
L and the label ℓ returns a pointer P. An augmented tag for key K and (m, ℓ)
then consists of the pair (�,P)← (Mac(L,m, ℓ),Point(K, L, ℓ, �)) for random

L
$
← KGen(1n).

Verification. Vf(K,P,m, ℓ, �) returns a bit.

It is assumed that the scheme is complete, i.e., for any K ← KGen(1n), any
(m, ℓ) ∈ℳn×{0, 1}

n, any augmented tag (�,P)← (Mac(L,m, ℓ),Point(K, L, ℓ))
for L← KGen(1n) we have Vf(K,P,m, ℓ, �) = 1.

Both the SSL as well as the TLS solution can be mapped trivially to the
definition above. Namely, in both cases the ephemeral key L is the empty string
and the “MAC” � is merely the hash value of the message. The pointer P is then
the result of the actual MAC computations for K (i.e., HMAC with appended
key in SSL and HMAC for the hash value in TLS).

We remark that in key exchange protocols usually both parties send a MAC
of the transcript, possibly adding some distinct public identifiers. Our notion
of delayed-key MACs can be easily used to model the one-sided case with a
bounded client and a powerful server such that the client can compute its own



MAC and verify the server’s MAC with limited storage only (assuming that the
underlying MAC implements verification by recomputing the MAC and compar-
ing the outcome to the given tag): Namely, the client uses an ephemeral key L

to compute its own MAC, and another ephemeral key L′ to start computing the
server’s MAC for verification. At the end, the client transmits the pointers P

and P′ for the two MACs and the server derives L, L′ through K and verifies the
client MAC and computes and sends its own MAC. The client then only needs
to verify that this received MAC matches the previously computed value.

3.1 Security of Delayed-Key MACs

We adapt the security requirement of unforgeable MACs to our scenario of
delayed-key MACs, i.e., we grant the adversary access to an oracle OMAC(K, ⋅)
that is initialized with a secret key K and mimics the authentication process,
returning augmented tags. Thus, for every query the oracle first chooses a fresh
ephemeral key Li and then returns the augmented tag (�i,Pi)← (Mac(Li,mi, ℓi),
Point(K, Li, ℓi, �i, )). After learning several tags the adversary eventually halts
and outputs a tuple (P∗,m∗, ℓ∗, �∗). The adversary is successful if the output
verifies as true under key K and the oracle has never been invoked on (m∗, ℓ∗).

Definition 5. A delayed-key message authentication code DKMAC = (KGen,
(Mac,Point),Vf) (with labels) is called unforgeable under chosen message attacks
if for any efficient algorithm A the probability that the experiment ForgeDKMAC

A

evaluates to 1 is negligible (as a function of n), where

Experiment ForgeDKMAC

A (n)
K← KGen(1n)
(P∗,m∗, ℓ∗, �∗)← AOMAC(K,⋅)(1n)

where OMAC(K, ⋅) for every query (mi, ℓi) samples a fresh Li ← KGen

and returns (�i,Pi)← (Mac(Li,mi, ℓi, �i),Point(K, Li, ℓi))
Return 1 iff

Vf(K,P∗,m∗, ℓ∗, �∗) = 1
and A has never queried OMAC(K, ⋅) about (m

∗, ℓ∗).

When a MAC is used in a stand-alone fashion the security guarantee of
unforgeability usually suffices. However, when applied as a building block in
protocols like TLS or SSL the MAC is computed for a key which is subsequently
used to derive further keys or to encrypt data. Besides the regular unforgeability
requirement it is thus also necessary to ensure that any delayed-key MAC is “as
secure as applying the original MAC”. That is, the delayed-key MAC should
leak at most the information about the key K as the deployment of the original
MAC does.

We therefore introduce the notion of leakage-invariance, basically saying that
MACs may leak information about the key, but this information does not de-
pend on the specific key value. In our setting this means that the leakage of the
ephemeral keys and of the long-term key for each MAC computation are iden-
tical (yet, since we augment the tag by the pointer we still need to ensure that



this extra information does not violate security). More formally, we compare the
success probability of an adversary A predicting some information f(K) about
key K after learning several tuples (Pi,mi, ℓi, �i) with the success probability of
an adversary ℬ given only access to the plain underlying authentication algo-
rithm Mac(K, ⋅, ⋅). For a leakage-invariant delayed-key MAC these probabilities
should be close.

Definition 6. A delayed-key DKMAC = (KGen, (Mac,Point),Vf) (with labels)
is called leakage-invariant if for any probabilistic polynomial-time algorithm A
there exists a probabilistic polynomial-time algorithm ℬ such that for any (prob-
abilistic) function f the difference

Prob
[

Expleak-inv

A,DKMAC(n) = 1
]

− Prob
[

Expleak-inv

ℬ,DKMAC(n) = 1
]

is negligible, where:

Experiment Expleak-inv

A,DKMAC(n)
K← KGen(1n)
a← AOMAC(K,⋅),Vf(K,⋅⋅⋅ )(1n)

where OMAC(K,mi) samples a key
Li ← KGen(1n) and returns (�i,Pi)
← (Mac(Li,mi, ℓi),Point(K, Li, ℓi, �i))

output 1 if and only if
a = f(K)

Experiment Expleak-inv

ℬ,DKMAC(n)
K← KGen(1n)
a← ℬMac(K,⋅,⋅),Vf(K,⋅,⋅)(1n)

output 1 if and only if
a = f(K)

If the function f is from a set ℱ of functions and A makes at most qMac queries
to oracle OMAC and at most qVf queries to oracle Vf, then we say that the MAC
is (qMac, qVf ,ℱ)-leakage-invariant. The scheme is called leakage-invariant for dis-
tinct labels if A only submits queries with distinct labels to oracle OMAC(K, ⋅, ⋅).
It is called leakage-invariant for random labels if the labels are chosen at random
by oracle OMAC (instead of being picked by the adversary).

We can even strengthen our definition by bounding the adversary ℬ to the
number of A’s queries, i.e., if A can derive some information f(K) in q =
(qMac, qVf) queries, then ℬ should be able to deduce f(K) in at most q queries
as well. We call such schemes strongly leakage-invariant. We do not impose such
a restriction per se, since there can be leakage-invariant solutions where ℬ can
safely make more queries (e.g., if MACs are pseudorandom, except that they
always leak the first three bits of the key).

Above we do not put any restriction on the function f , i.e., it could even be
not efficiently computable. For our more efficient solution we weaken the notion
above and demand that the adversary computes the identity function f(K) = K,
i.e., predicts the entire key. Formally, we then let ℱ = {ID}. If, as done in most
key exchange protocols, the key is subsequently piped through a hash function
modeled as a random oracle, then the adversary needs to query the random
oracle about the entire key (and thus needs to predict it). Else the adversary is
completely oblivious about the random hash value and the derived key. In other
words, in this scenario considering the identity function suffices.



We remark that we refrain from using Canetti’s universal composition (UC)
model [6] although we are interested in how the key is subsequently used. The
second experiment with adversary ℬ of our notion of leakage-invariance already
resembles the notion of an ideal functionality and the ideal-world scenario, and
the actual attack on the concrete scheme mimics the real-world setting. However,
the UC model introduces additional complications like session IDs and seems to
provide more than what is often needed in the applications we have in mind (i.e.,
one typically asks for more than that the adversary cannot recover the entire
key, even though this may be sufficient).

We finally note that the “TLS solution” to first compute H(m) and then
Mac(K, H(m), ℓ) is clearly strongly leakage-invariant if H is collision-resistant
(essentially because the ephemeral key L is empty, �i = H(mi) is publicly known
and the pointer P is the MAC for �i). In addition, it is also unforgeable, providing
a secure solution under the stronger assumption.

Leakage-Invariance vs. Unforgeability. In general, the notions of unforgeability
and leakage-invariance are somewhat incomparable, as we show by separating
examples in the full version of the paper. However, in the case that the leakage
invariance is limited to the function f = ID which is the prediction of the entire
key, an adversary against leakage-invariance trivially gives an adversary against
the unforgeability, as well.

4 One-Sided Delayed-Key MACs: The Unbounded Case

In this section we present our first construction of a delayed-key MAC, that
uses a pseudorandom MAC as building block. We show that this approach is
unforgeable and leakage-invariant if the underlying MAC is a pseudorandom
function. This is independent of any bound on the number of MAC or verification
queries and of any assumption about the function f . We present our second
construction for the unbounded case in the full version of the paper.

4.1 Pseudorandom Permutation

The idea of our construction DKMACPRP is to authenticate a message m for
a random key L and to derive the pointer P = Point(K, L) by applying the
inverse of a four-round Feistel permutation �−1(K, ⋅) on the ephemeral key L.
For the Feistel permutation we use Mac(K, ⟨i⟩2 ∣∣⋅) as round function, where
⟨i⟩2 denotes the fixed-length binary representation of the round number i =
0, 1, 2, 3 with two bits. To verify a given tuple (K,P, �,m) one first recovers L by
evaluating the permutation on P and then verifies if (L, �,m) validates as true.
The pseudorandomness of the MAC ensures that the pointer leaks no information
about the secret key, nor the ephemeral key.

The construction DKMACPRP is optimal in terms of output length (assuming
that keys are uniform bit strings and that at least ∣L∣ additional bits must be
communicated for L). Yet, it slightly increases the computational costs, as the



Mac algorithm is now also invoked four times to derive the pointer information
(but only on short strings). The construction also shows that neither randomized
encryption nor labels are necessary.

For (keyed) pseudorandom round functions f1, f2, f3, f4 and input x0∣∣y0 (of
equal length parts x0, y0), let xi+1∣∣yi+1 = yi∣∣(xi ⊕ fi(yi)) for i = 0, 1, 2, 3. This
defines a permutation � (with the round functions and keys given implicitly)
mapping input x0∣∣y0 to output x4∣∣y4. For our solution here we assume for
simplicity that keys L are of even length, such that they can be written as L =
x0∣∣y0. Instead of using independent round functions we use quasi-independent
round functions fi = Mac(K, ⟨i⟩2 ∣∣⋅) by prepending the round number i in binary
(represented with the fixed length of two bits).

Construction 1. Let MAC = (KGen,Mac,Vf) be a (deterministic) message au-
thentication code. Define DKMACPRP = (KGenPRP, (Mac,Point)PRP,VfPRP) as
follows:

Key Generation KGenPRP. The key generation algorithm gets a security pa-
rameter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)PRP. The authentication procedure takes as input
a secret key K, a message m and first samples a fresh ephemeral key L ←
KGen(1n) by running the key generation of the underlying MAC scheme.
For key L and input message m it computes the tag � ← Mac(L,m) and the
pointer P ← Point(K, L), where Point computes P ← �−1(K, L) for a four-
round Feistel permutation � that uses Mac(K, ⟨i⟩2 ∣∣⋅) as the round functions
for i = 0, 1, 2, 3 and L as input. The output of (Mac,Point)PRP is the pair
(�,P).

Verification VfPRP. Upon input a secret key K, a pointer P, a message m and
a tag �, it first derives the ephemeral key L = Point−1(K,P) = �(K,P) and
outputs Vf(L,m, �).

Correctness of this MAC follows easily form the correctness of the underlying
MAC.

Lemma 1. If MAC = (KGen,Mac,Vf) is a pseudorandom message authenti-
cation code then the delayed-key message authentication scheme DKMACPRP =
(KGenPRP, (Mac,Point)PRP,VfPRP) in Construction 1 is unforgeable against cho-
sen message attacks.

As for concrete security, the advantage of any adversaryADKMAC making qMAC

queries of bit length at most l is bounded by qMAC times the advantage of an
adversaryAMAC against the pseudorandomness ofMAC that makes 4qMAC queries
of length at most max(n+2, l). Again, the running times of both algorithms are
comparable.

Proof. Assume towards contradiction that an adversary A making q queries
m1, . . . ,mq to the OMAC(K, ⋅) oracle outputs with non negligible probability a
tuple (P∗,m∗, �∗), s.t. Vf∗(K,P∗,m∗, �∗) but m∗ was never submitted to the
oracle. Then we can distinguish between two cases:



– P∗ ∕= P1, . . .Pq, i.e., the adversary has created a valid forgery for a fresh
pointer and thus for a fresh ephemeral key L∗ ∕= L1, . . . Lq, since the pointer
algorithm is a permutation. Denote the event by E1.

– P∗ = Pi for some i ∈ {1, . . . , q}, i.e., the pointer P∗ has already appeared
in one of the oracle replies. Thus, the adversary A has successfully forged a
MAC for a key L∗ after seeing at least one tag �i ← Mac(L∗,mi). We denote
this event by E2.

As one of the two cases has to occur if A is successful —which we denote as
the event Win— we have that Prob[Win] ≤ Prob[E1] + Prob[E2] (note that
events E1, E2 both require a success). We show in the full paper that in both
cases we can construct an adversary that breaks the underlying MAC scheme.

⊓⊔

Lemma 2. The delayed-key MAC scheme DKMACPRP in Construction 1 is
leakage-invariant.

Proof. To prove leakage-invariance we have to show that for every adversary
A with oracle access to OMAC(K, ⋅) and Vf(K, ⋅ ⋅ ⋅ ) that predicts with noticeable
probability some information f(K) about the key K, we can derive an adversary
ℬ that only has access to Mac(K, ⋅) and Vf(K, ⋅) but predicts f(K) with the same
advantage as A.

Assume that A is able to derive some non-trivial information about K after
sending q queries to its OMAC and Vf oracles, which implements the authenti-
cation process of our delayed-key MAC. Then we can construct an adversary ℬ
that successfully determines f(K) when sending 4q queries to its Mac(K, ⋅) and
Vf(K, ⋅ ⋅ ⋅ ) oracles. To this end, ℬ mimics the OMAC oracle by computing the tag
�i ← Mac(Li,mi) for any query mi and some self-chosen key Li and calculating
Pi with the help of its own oracle (and analogously for verification requests).
Thus, for each of A’s queries, ℬ has to invoke Mac(K, ⋅) four times to simulate
OMAC or Vf. If A outputs some information a, ℬ forwards it as its own output.
Since the simulation is perfect from A’s point of view the success probabilities
of ℬ and A are identical. ⊓⊔

The construction DKMACPRP is already optimal concerning the communica-
tion overhead (assuming, that at least ∣L∣ additional bits have to be communi-
cated) but increases the computational costs by four additional evaluations of the
underlying MAC. Our second construction of an unbounded delayed-key MAC,
which we discuss in detail in the full version, requires less Mac computations
(two instead of four) but comes with larger output lengths.

5 One-Sided Delayed-Key MACs: The Bounded Case

In this section we show that, by reducing the security requirements for unforge-
ability and leakage-invariance, we can construct key-delayed MACs that require
lessMac invocations than our previous constructions or are even optimal in both,



computational costs and output length. In other words, we can trade in secu-
rity for efficiency. First, we bound the adversaries against unforgeability and
leakage-invariance to make at most O(log(n)) many verification queries, which
allows to obtain a construction that requires only two MAC computations and
is almost optimal in terms of output length. We present the construction in the
full version of the paper, where we also show that the scheme is even strongly
leakage-invariant (meaning that ℬ does not make more queries than A), as long
as we only demand that A is unable to predict the entire key.

By further restricting the adversary against the leakage-invariance to make
only a single authentication query, we obtain our most efficient solution that
requires no additional Mac computations and has optimal output length . Note
that the underlying MAC is then assumed to be secure against related-key at-
tacks.

As already mentioned in the introduction, limiting the number of verification
queries corresponds to the common approach that in key-exchange protocols,
both server and client verify only a single MAC each. Leakage-invariance for
only ℱ = {ID} is sufficient, if the key gets afterwards hashed by a hash function
that behaves like a random oracle.

5.1 XOR-Construction

In our most simple and efficient construction, we use the shared key K to directly
mask the ephemeral key. That is, by computing the one-time-pad encryption of
L under K, i.e., P = K⊕ L. Thus, for any authentication query, DKMAC⊕ makes
only a single Mac computation.

Definition 7. Let MAC = (KGen,Mac,Vf) be a message authentication code.
Define the delayed-key DKMAC⊕ = (KGen⊕, (Mac,Point)⊕,Vf⊕) as follows

Key Generation KGen⊕. The key generation algorithm gets a security param-
eter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)⊕. The authentication procedure takes as input a
shared secret key K, a message m and outputs � ← Mac(L,m) and pointer
P = K⊕ L for a randomly chosen L← KGen(1n).

Verification Vf⊕. Upon input a secret key K, a pointer P, a message m and a
tag � it outputs Vf(P⊕ K,m, �).

Correctness of DKMAC⊕ follows from the correctness of the underlying MAC.

In order to prove the unforgeability of our DKMAC⊕ construction, we require
a stronger assumption on the underlying MAC, namely that it is a related-key
secure pseudorandom function. The first formal security model for related key
attacks was introduced by Bellare and Kohno in [3]. Inter alia, they have shown
that PRFs that are provably secure against those attacks can be achieved when
the set of relations is restricted to some non-trivial class of key transformation
functions, denoted by �. The notion for �-related-key security then extends
the notion of standard PRF’s and grants the adversary access to a related-key



oracle that is either MacRK(⋅,k)(⋅) or fRK(⋅,k)(⋅). In both cases a key k is chosen at
random and in the random world, also a function f gets chosen randomly. Each
query of the adversary then consists of a key transformation function � : K → K
and an input value m. The query is answered by Mac(�(k),m) and f(�(k),m)
respectively.

Definition 8. Let � be a set of key transformation functions, and D an adver-
sary with access to related-key oracles that is allowed to send queries (�,m) ←
�×ℳ. A pseudorandom Mac is called secure against related-key attacks if for
any efficient algorithm D the advantage

∣

∣

∣
Prob

[

DMacRK(⋅,k)(⋅)(1n) = 1
]

− Prob
[

DfRK(⋅,k)(⋅)(1n) = 1
]∣

∣

∣

is negligible, where the probability in the first case is over D’s coin tosses and
the choice of k ← KGen(1n), and in the second case over D’s coin tosses, the
choice of the random function f : Kn ×ℳn → ℛn and random k ← Kn.

Note that related-key secure pseudorandom MACs are unforgeable with respect
to related-key attacks, too.

For our construction we need related-key security only for one class of trans-
formations, that is the function that adds a given value� ∈ {0, 1}n to the hidden
key K. Sticking to the notation of [3] we denote this function by XOR� : K → K
and the resulting class of functions by �⊕

n = {XOR� : � ∈ {0, 1}n}. Con-
structions for �⊕

n -related-key secure pseudorandom functions were proposed in
[15].

Lemma 3. If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code secure against related-key attacks for the relation �⊕

n , then the delayed-
key MAC scheme DKMAC⊕ = (KGen⊕, (Mac,Point)⊕,Vf⊕) in Construction 7
is unforgeable against chosen message attacks, if the adversary makes at most
O(log(n)) verification queries.

A closer look at the concrete security reveals that the advantage of any ad-
versary ADKMAC making qMAC, qVf queries each of length at most l, is bounded
by 2qVf times the advantage of an adversary AMAC against the related-key pseu-
dorandomness of MAC that makes qMAC queries of length at most l.

Proof. Assume towards contradiction that an adversary A after learning several
tags (�1,P1), . . . , (�,Pq) from its oracle OMAC(K, ⋅) is able to compute a forgery
(P∗,m∗, �∗) with m∗ ∕= m1 . . .mq. Then we can construct an adversary AMAC

breaking the related-key unforgeability of the underlying MAC.
Our adversaryAMAC has black-box access to a related-key oracleMacRK(⋅,L)(⋅)

and uses A to produce a forgery (�∗,m∗, �∗) for some key L ⊕ �∗. For the
sake of readability it is assumed, that the real key transformation XOR is al-
ready included in the oracle and the adversary has only to provide some value
� ∈ {0, 1}n.

When A sends the first authentication query m1, AMAC invokes its own or-
acle on (0n,m1) receiving �1 = Mac(L,m1) which he passes together with a



randomly chosen P back to A. The value P can also be seen as L ⊕ K for some
unknown K. Due to the pseudorandomness of Mac, the tag �1 does not leak any
information about the applied key L. Thus, from A’s point of view the value P is
indistinguishable from a real one-time-pad encryption of some secret key K. For
any further authentication query mi of A, our adversary chooses a random �i

and sends (�i,mi) to its own oracle. The adversary AMAC then responds with
the answer �i and a pointer Pi = P⊕�i.

When A wants to query its verification oracle, our adversary AMAC has to
guess the answer bit, otherwise it might send the message of the potential forgery
to his tagging oracle, thereby nullifying the message for its own output. Thus,
whenever A makes a verification query, AMAC halts A and then runs two instan-
tiations for the answer bit b = 0, resp. b = 1. Hence, for efficiency reasons we
allow A to make at most O(log(n)) queries to the verification oracle.

If, at the end, each of the at most n instantiations of A holds with a forgery
(P∗

j ,m
∗
j , �

∗
j ), our adversary AMAC guesses an index j ∈ {1, . . . , n}. It then com-

putes �∗ = P∗
j ⊕ P and outputs (�∗,m∗

j , �
∗
j ) as its own forgery. Overall, AMAC

succeeds with probability 1/poly(n) times the success probability of A, which
contradicts the assumption that MAC is related-key unforgeable. ⊓⊔

Lemma 4. The delayed-key MAC scheme DKMAC⊕ in Construction 7 is (1,
O(log(n)), {ID})-leakage invariant.

Proof. If there exists an adversaryA that outputs with non-negligible probability
the complete secret key K after it received a tag (�,P)← ⟨Mac(L,m),K⊕ L⟩ for
some random L and chosen m, we can derive an adversary ℬ that is able to
extract K only from � ← Mac(K,m) for some chosen m as well.

The idea is that by determining K, also the key L can be obtained unam-
biguously. Thus, when we construct the adversary ℬ that uses A, its target key
K actually plays the role of L in the game of A. Thus, when ℬ receives the au-
thentication query m from A it triggers its oracle Mac(K, ⋅) on m and passes
the answer � together with a randomly chosen pointer P back to A. The pointer
value then corresponds to the one-time-pad encryption of K with some random,
secret key L.

For any verification query (Pi,mi, �i) of A, the adversary ℬ first checks
whether Pi = P. If so, it forwards the query to its Vf(K, ⋅) oracle, otherwise
it has to ”guess” the answer bit. To this end, ℬ runs two instantiations of A,
for each b = 0, 1. Since we allow A to make only at most O(log(n)) verification
queries, ℬ starts at most n instantiations.

Finally, each instantiation of A stops, outputting its guess aj that corre-
sponds to some Lj in ℬ’s game. To determine the right key, adversary ℬ com-
putes for each j = 1, 2, . . . , n the potential counterpart Kj = P⊕Lj and outputs
Kj where � = Mac(Kj ,m).

Due to the limitation of a single authentication query, our adversary ℬ is
able to simulate the oracle OMAC of A perfectly, such that ℬ succeeds with the
same probability as A. ⊓⊔



6 Two-Sided Delayed-Key MACs: A Feasibility Result

In this section we discuss that two-sided delayed-key MACs are realizable with-
out relying on collision-resistance. The idea —explained in the setting of key
exchange— is to use a signature scheme to authenticate each transmitted mes-
sage immediately (such that both parties basically only have to store keys for
the MAC), and to finally MAC the public key of the signature scheme.

Note that the existence of one-way functions is shown to be necessary and
sufficient for the existence of secure signature schemes in [18]. As we, in addi-
tion, only require unforgeability from the underlying MAC, the security of our
construction formally relies only on one-way functions. Yet, applying a signature
scheme for each message is very expensive, of course. Hence, this construction
should be seen as a feasibility result only. We leave it as an interesting open
problem to find an efficient construction for this scenario.

Note that in order to turn the idea above into a formal solution we need
to change the notion of unforgeability and leakage-invariant slightly. Namely,
we assume that the adversary A in both cases now can pass another parame-
ter keep or pointer (besides mi, ℓi) to oracle OMAC. For parameter keep the
oracle returns tags �i for the previously selected ephemeral key L and only if
queried for pointer it returns the pointer P and generates a new ephemeral
key. An adversary A against the unforgeability is then deemed successful if it
outputs a tuple (P∗, m̄∗, ℓ̄∗, �∗) with Vf(K,P∗, m̄∗, ℓ̄∗, �∗) = 1 and A has never
issued (m̄∗, ℓ̄∗) = ((m1

∗, ℓ1
∗), . . . , (mn

∗, ℓn
∗)) between two pointer queries to

OMAC(K, ⋅).

Sender S Receiver ℛ

a) before long-term key K is known:

(sk, pk)← SKGen(1n)

s1 ← SSign(sk, (1,m1))
m1, s1, pk

−−−−−−−−−−−−−−→ SVf(pk, (1,m1), s1)
?
= true

keep public key pk of S

s2 ← SSign(sk, (2,m2))
m2, s2

−−−−−−−−−−−−−−→ SVf(pk, (2,m2), s2)
?
= true

...
...

...

sn ← SSign(sk, (n,mn))
mn, sn

−−−−−−−−−−−−−−→ SVf(pk, (n,mn), sn)
?
= true

b) common K is established :

� ← Mac(K, pk, n)
�

−−−−−−−−−−−−−−→ Vf(K, (pk, n), �)
?
= true

output true iff all s1, . . . , sn
and � verified as true.

Fig. 1. DKMACtwo: Two-sided Delayed-Key MAC



The DKMACtwo Construction. Recall the notion of signature schemes: a sig-
nature scheme consists of three efficient algorithms (SKGen, SSign, SVf) where
SKGen on input 1n returns a key pair (sk, pk); algorithm SSign on input sk and a
message m ∈ {0, 1}∗ returns a signature s; and algorithm SVf for input pk,m, s
returns a decision bit. We assume completeness in the sense that any signature
generated via SSign is also accepted by SVf. Unforgeability of signature schemes
is defined analogously to unforgeability of MACs, but now the adversary gets as
input the public key pk instead of the security parameter 1n and has access to a
signing oracle SSign(sk, ⋅).

Our construction DKMACtwo (incorporated into a key exchange protocol)
is given in Figure 1. Note that the sender only needs to store the key pair
(sk, pk) and the receiver merely stores pk and a bit indicating any error in the
verifications so far. Formally, we can let Mac(L,m, ℓ) be the algorithm which for
L = (sk, pk)← SKGen(1n) outputs � = (pk, SSign(sk,m, ℓ)). The point algorithm
Point(K, L, ℓ) returns a MAC value P of pk under key K for an unforgeable MAC.
Then an adversary against the key exchange protocol can be easily cast in our
extended unforgeability and leakage-invariance model. This adversary callsOMAC

several times with (i,mi, ℓi) for parameter keep and subsequently eventually
calls the oracle about parameter pointer to retrieve the MAC of the public key
under K.

Unforgeability and Leakage-Invariance of DKMACtwo. The DKMACtwo construc-
tion is unforgeable if the underlying signatures scheme is unforgeable against
chosen-message attacks and the underlying MAC is unforgeable as well. The
unforgeability of the MAC and the fact that collisions among independently
generated keys are unlikely implies that the adversary can only use a previously
chosen public key by OMAC (or else forges a MAC under K for a new key pk∗).
But then the adversary must forge a signature for a tuple (i∗,m∗, ℓ∗) which
has not been signed before under this public key. By the unforgeability of the
signature scheme this cannot happen with more than negligible probability.

Obviously, the scheme DKMACtwo is strongly leakage-invariant, as it uses the
secret long-term key K only for a single computation of the underlying MAC.

Online Verification with Immediate Abort. In the context of online verification
it might be desirable that the verifier can abort the authentication process as
soon as he receives the first invalid tag. To this end, we augment the usual
verification algorithm Vf of DKMAC’s such that it allows online processing:
Vf ′(K,P,m, ℓ, �, st) now also expects some state information st which can ei-
ther be keep or pointer. On input keep the algorithm Vf’ returns Vf(m, ℓ, �)
and for pointer it outputs Vf(K,P,m, ℓ, �). Thus, as long as the long-term key
K is unknown, the verifier runs Vf ′(⊥,⊥,mi, ℓi, �i, keep) and aborts when it re-
ceives 0, indicating an invalid tag. Obviously, our construction DKMACtwo allows
for online verification with immediate abort as the verifier can check, while being
in keep-mode, if SVf(pk, (i,mi), si) = true and abort the authentication as soon
as the first verification fails.



Acknowledgments

We thank Yevgeniy Dodis, Stefan Lucks and the anonymous reviewers for valu-
able comments. Both authors are supported by the Emmy Noether Program Fi
940/2-1 of the German Research Foundation (DFG).

References

1. Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision-
Resistance. Advances in Cryptology — Crypto 2006, Volume 4117 of Lecture
Notes in Computer Science, pages 602–619. Springer-Verlag, 2006.

2. Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verifica-
tion Queries in Message Authentication and Authenticated Encryption. Number
2004/309 in Cryptology eprint archive. eprint.iacr.org, 2004.

3. Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key At-
tacks: RKA-PRPs, RKA-PRFs, and Applications. Advances in Cryptology — Eu-
rocrypt 2003, Volume 2656 of Lecture Notes in Computer Science, pages 491–506.
Springer-Verlag, 2003.

4. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure against Dictionary Attacks. Advances in Cryptology — Eurocrypt
2000, Volume 1807 of Lecture Notes in Computer Science, pages 139–155. Springer-
Verlag, 2000.

5. Advanced Security Mechanism for Machine Readable Travel Documents Extended
Access Control (EAC). Technical Report (BSI-TR-03110) Version 2.0 Release Can-
didate, Bundesamt fuer Sicherheit in der Informationstechnik (BSI), 2008.

6. Ran Canetti. Universally Composable Security: A new Paradigm for Cryptographic
Protocols. Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS) 2001. IEEE Computer Society Press, for an updated version see
eprint.iacr.org, 2001.

7. Marc Fischlin. Security of NMAC and HMAC Based on Non-malleability. Topics in
Cryptology — Cryptographer’s Track, RSA Conference (CT-RSA) 2008, Volume
4964 of Lecture Notes in Computer Science, pages 138–154. Springer-Verlag, 2008.

8. Rosario Gennaro. Faster and Shorter Password-Authenticated Key Exchange. The-
ory of Cryptography Conference (TCC) 2008, Volume 4948 of Lecture Notes in
Computer Science, pages 589–606. Springer-Verlag, 2008.

9. Juan A. Garay, Vladimir Kolesnikov, and Rae McLellan. MAC Precomputation
with Applications to Secure Memory. Information Security Conference (ISC) 2009,
Volume 5735 of Lecture Notes in Computer Science. Springer-Verlag, 2009.

10. Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer
and System Science, 28(2):270–299, 1984.

11. Rosario Gennaro and Pankaj Rohatgi. How to Sign Digital Streams. Advances in
Cryptology — Crypto 1997, Volume 1294 of Lecture Notes in Computer Science,
pages 180–197. Springer-Verlag, 1997.

12. Shai Halevi and Hugo Krawczyk. Strengthening Digital Signatures Via Randomized
Hashing. Advances in Cryptology — Crypto 2006, Volume 4117, pages 41–59.
Springer-Verlag, 2006.

13. David Jablon. Strong password-only authenticated key exchange. ACM Computer
Communications Review, 26(5):5–26, 1996.



14. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-
Authenticated Key Exchange Using Human-Memorable Passwords. Advances in
Cryptology — Eurocrypt 2001, Volume 2045 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001.

15. Stefan Lucks. Ciphers Secure against Related-Key Attacks. Fast Software En-
cryption (FSE) 2004, Volume 3017 of Lecture Notes in Computer Science, pages
359–370. Springer-Verlag, 2004.

16. Adrian Perrig, Ran Canetti, Dawn Song, and J.D. Tygar. The TESLA Broadcast
Authentication Protocol. CryptoBytes, Volume 5, pages 2–13. RSA Security, 2002.

17. Eric Rescorla. SSL and TLS: designing and building secure systems. Addison-
Wesley, 2001.

18. John Rompel. One-Way Functions are Necessary and Sufficient for Secure Signa-
tures. Proceedings of the Annual Symposium on the Theory of Computing (STOC)
1990, pages 387–394. ACM Press, 1990.


