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Abstract. We describe the first domain extender for ideal ciphers, i.e.
we show a construction that is indifferentiable from a 2n-bit ideal cipher,
given a n-bit ideal cipher. Our construction is based on a 3-round Feistel,
and is more efficient than first building a n-bit random oracle from a n-
bit ideal cipher (as in [9]) and then a 2n-bit ideal cipher from a n-bit
random oracle (as in [10], using a 6-round Feistel). We also show that
2 rounds are not enough for indifferentiability by exhibiting a simple
attack. We also consider our construction in the standard model: we
show that 2 rounds are enough to get a 2n-bit tweakable block-cipher
from a n-bit tweakable block-cipher and we show that with 3 rounds we
can get beyond the birthday security bound.
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1 Introduction

A block cipher is a primitive that encrypts a n-bit string using a k-bit key.
The standard security notion for block-ciphers is to be indistinguishable from a
random permutation, for a polynomially bounded adversary, when the key is gen-
erated at random in {0, 1}k. A block-cipher is said to be a strong pseudo-random
permutation (or chosen-ciphertext secure) when computational indistinguisha-
bility holds even when the adversary has access to the inverse permutation.

When dealing with block-ciphers, it is sometimes useful to work in an ide-
alized model of computation, in which a concrete block-cipher is replaced by a
publicly accessible random block-cipher (or ideal cipher); this is a block cipher
with a k-bit key and a n-bit input/output, that is chosen uniformly at random
among all block ciphers of this form; this is equivalent to having a family of
2k independent random permutations. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for any
given key; this is called the Ideal Cipher Model (ICM). Many schemes have
been proven secure in the ICM [5, 11, 13, 15, 19, 20, 27]; however, it is possible
to construct artificial schemes that are secure in the ICM but insecure for any
concrete block cipher (see [4]). Still, a proof in the ideal cipher model seems
useful because it shows that a scheme is secure against generic attacks, that do
not exploit specific weaknesses of the underlying block cipher.



It was shown in [9, 10] that the Ideal Cipher Model and the Random Oracle
Model are equivalent; the random oracle model is similar to the ICM in that
a concrete hash function is replaced by a publicly accessible random function
(the random oracle). The authors of [9] proved that a random oracle (taking
arbitrary long inputs) can be replaced by a block cipher-based construction, and
the resulting scheme will remain secure in the ideal cipher model. Conversely,
it was shown in [10] that an ideal cipher can be replaced by a 6-round Feistel
construction, and the resulting scheme will remain secure in the random oracle
model. Both directions were obtained using an extension of the classical notion
of indistinguishability, called indifferentiability, introduced by Maurer et al. in
[24].

Since a block cipher can only encrypt a string of fixed length, one must
consider the encryption of longer strings. A mode of operation of a block-cipher
is a method used to extend the domain of applicability from fixed length strings
to variable length strings. Many modes of operations have been defined that
provide both privacy and authenticity (such as OCB [28]). A mode of operation
can also be a permutation; in this case, one obtains an extended block cipher that
must satisfy the same property as the underlying block-cipher, i.e. it must be a
(strong) pseudo-random permutation. Many constructions of domain extender
for block-ciphers have been defined that satisfy this security notion, for example
PEP [6], XCB [14], HCTR [30], HCH [7] and TET [18].

However, it is easy to see that none of those constructions provide the in-
differentiability property that enables to get a 2n-bit ideal cipher from a n-bit
ideal cipher. This is because these constructions were proposed with privacy con-
cerns in mind (mainly for disk encryption purposes) and proven secure only in
the classical pseudo-random permutation model. Therefore, these constructions
cannot be used when security must hold under the random permutation model
(or ideal cipher model). Consider for example the public-key encryption scheme
described by Phan and Pointcheval in [27]. The scheme requires a public random
permutation with the same size as the RSA modulus, say 1024 bits. In order to
replace a 1024-bit random permutation by a construction based on a smaller
primitive (for example a 128-bit block cipher), indifferentiability with respect to
a 1024-bit random permutation is required. Given a 128-bit block-cipher, none
of the previous constructions can provide such property; therefore if one of these
constructions is plugged into the Phan and Pointcheval scheme, nothing can be
said about the security of the resulting scheme.

In this paper we construct the first domain extender for the ideal cipher;
that is we provide a construction of an ideal cipher with 2n-bit input from an
ideal cipher with n-bit input. Given an ideal cipher with n-bit input/output, one
could in principle use the construction in [9] to get a random oracle with n-bit
output, and then use the 6-round Feistel in [10] to obtain an ideal cipher with
2n-bit input/output, but that would be too inefficient. Moreover the security
bound in [10] is rather loose, which implies that the construction only works for



large values of n.1 In this paper we describe a more efficient construction, based
on a 3-round Feistel only, and with a better security bound; we view this as the
main result of the paper. More precisely, we show that the 3-round construction
in Figure 1 (left) is enough to get a 2n-bit random permutation from a n-bit
ideal cipher, and that its variant in Figure 1 (right) provides a 2n-bit ideal
cipher. We also show that 2 rounds are not enough by providing a simple attack.
Interestingly, in the so called honest-but-curious model of indifferentiability [12],
we show that 2 rounds are sufficient.

Our construction is similar to that of Luby-Rackoff [23]. However we stress
that the “indifferentiable construction” security notion is very different from the
classical indistinguishability notion. The well known Luby-Rackoff result that 4
rounds are enough to obtain a strong pseudo-random permutation from pseudo-
random functions [23], is proven under the classical indistinguishability notion.
Under this notion, the adversary has only access to the input/output of the
Luby-Rackoff construction, and tries to distinguish it from a random permu-
tation; in particular it does not have access to the input/output of the inner
pseudo-random functions. On the contrary, in our setting, the distinguisher can
make oracle calls to the inner block-ciphers Ei’s (see Fig. 1); the indifferentia-
bility notion enables to accommodate these additional oracle calls in a coherent
definition.

The indifferentiability security notion still requires a (small) ideal component.
We stress that it is unknown how to instantiate such ideal component (be it a
random oracle or an ideal cipher, as opposed to a PRF or a PRP) and that the
security guarantee does not hold anymore once that component is instantiated.
Moreover the recent related-key attacks on AES [2, 3] show that AES-192 and
AES-256 do not behave as ideal ciphers; as of 2009 it is unclear if we have a
candidate block-cipher with key-size larger than block-size that behaves like an
ideal cipher.

Finally, we also analyze our construction in the standard model. In this case,
we use a tweakable block-cipher as the underlying primitive. Tweakable block-
ciphers were introduced by Liskov, Rivest and Wagner in [22] and provide an
additional input - the tweak - that enables to get a family of independent block-
ciphers; efficient constructions of tweakable block-ciphers were described in [22],
given ordinary block-ciphers. In this paper we show that our construction with
2 rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweak-
able block-cipher. Moreover we show that with 3 rounds we achieve a security
guarantee beyond the birthday paradox.

1.1 Related Work

At FSE 2009, Minematsu [25] provided two constructions of a 2n-bit block-cipher
from an n-bit tweakable block-cipher :

1 The security bound in [10] for the 6-round Feistel random oracle based construction is
q16/2n, where q is the number of distinguisher’s queries. This implies that for q = 264,
one must take at least n = 1024, which corresponds to a 2048-bit permutation.
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Fig. 1. Construction of a 2n-bit permutation given a n-bit ideal cipher with n-bit key
(left). Construction of a 2n-bit ideal cipher with k-bit key, given a n-bit ideal cipher
with (n + k)-bit key (right).

1. A 3-round Feistel construction with universal hashing in the 1st round and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure pseudo-random permutation beyond the birthday bound.

2. A 4-round Feistel with universal hashing in the 1st and the 4th rounds and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure strong pseudo-random permutation beyond the birthday bound.

On the other hand, our construction in this paper is a 3-round Feistel, with
tweakable block ciphers in every round, and it gives a secure (tweakable) strong
pseudo-random permutation beyond the birthday bound. Therefore, the con-
struction in [25] is more efficient as only 2 calls are required to the underlying
tweakable block-cipher, instead of 3 calls in our construction (this is assuming
very fast universal hashing, e.g. [21]). However, we stress that the constructions
in [25] are secure only in the symmetric-key setting; it is easy to see that none of
the two constructions from [25] can achieve the indifferentiability property (the
attack is similar to the attack against 2-round Feistel described in Section 3).

2 Definitions

We first recall the notion of indifferentiability of random systems, introduced
by Maurer et al. in [24]. This is an extension of the classical notion of indistin-
guishability, where one or more oracles are publicly available, such as random
oracles or ideal ciphers.

As in [24], we define an ideal primitive as an algorithmic entity which receives
inputs from one of the parties and delivers its output immediately to the querying
party. In this paper, we consider ideal primitives such as random oracle, random
permutation and ideal cipher. A random oracle [1] is an ideal primitive which
provides a random output for each new query; identical input queries are given



the same answer. A random permutation is an ideal primitive that provides
oracle access to a random permutation P : {0, 1}n → {0, 1}n and to P−1. An
ideal cipher is a generalization of a random permutation that models a random
block cipher E : {0, 1}k × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}k defines an
independent random permutation Ek = E(k, ·) on {0, 1}n. The ideal primitive
also provides oracle access to E and E−1; that is, on query (0, k,m), the primitive
answers c = Ek(m), and on query (1, k, c), the primitive answers m such that
c = Ek(m). We stress that in the ideal cipher model, the adversary has oracle
access to a publicly available ideal cipher and must send both the key and the
plaintext in order to obtain the ciphertext; this is different from the standard
model in which the key is privately generated by the system.

The notion of indifferentiability [24] enables to show that an ideal primitive
P (for example, a random permutation) can be replaced by a construction C
that is based on some other ideal primitive E; for example, C can be the Feistel
construction illustrated in Fig. 1 (left).

Definition 1 ([24]). A Turing machine C with oracle access to an ideal prim-

itive E is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive P if

there exists a simulator S with oracle access to P and running in time at most

tS, such that for any distinguisher D running in time at most tD and making at

most q queries, it holds that:
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CE is simply said to be indifferentiable from P if ε is a negligible function of the

security parameter n, for polynomially bounded q, tD and tS.

E1

E2

E3 E P S

D
0/1

Fig. 2. The indifferentiability notion.

The previous definition is illustrated in Figure 2, where C is our 3-round
construction of Figure 1 (left), E is an ideal cipher, P is a random permutation
and S is the simulator. In this paper, for a 3-round construction, we denote these



ideal ciphers by E1, E2, E3 (see Fig. 1). Equivalently, one can consider a single
ideal cipher E and encode in the first 2 key bits which round ideal cipher E1,
E2, or E3 is actually called. The distinguisher has either access to the system
formed by the construction C and the ideal cipher E, or to the system formed
by the random permutation P and a simulator S. In the first system (left),
the construction C computes its output by making calls to the ideal cipher E
(equivalently the 3 ideal ciphers E1, E2 and E3); the distinguisher can also make
calls to E directly. In the second system (right), the distinguisher can either
query the random permutation P , or the simulator that can make queries to P .
If the distinguisher first makes a call to the construction C, and then makes the
corresponding calls to ideal cipher E, he will get the same answer. This must
remain true when the distinguisher interacts with permutation P and simulator
S. The role of simulator S is then to simulate the ideal ciphers Ei’s so that 1) the
output of S should be indistinguishable from that of ideal ciphers Ei’s and 2)
the output of S should look “consistent” with what the distinguisher can obtain
independently from P . We note that in this model the simulator does not see
the distinguisher’s queries to P ; however, it can call P directly when needed for
the simulation.

It is shown in [24] that the indifferentiability notion is the “right” notion
for substituting one ideal primitive with a construction based on another ideal
primitive. That is, if CE is indifferentiable from an ideal primitive P, then CE

can replace P in any cryptosystem, and the resulting cryptosystem is at least as
secure in the E model as in the P model; see [24] or [9] for a proof.

3 An Attack against 2 Rounds

In this section we show that 2 rounds are not enough when the inner ideal ciphers
are publicly accessible, that is we exhibit a property for 2 rounds that does not
exist for a random permutation.
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Fig. 3. The 2-round Feistel construction Ψ2(L, R).

Formally, the 2 round construction is defined as follows (see Fig. 3). Let
E1 : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher, where c = E1(K,m) is the



n-bit ciphertext corresponding to n-bit key K and n-bit input message m; let
E2 be defined similarly. We define the permutation Ψ2 : {0, 1}2n → {0, 1}2n as:

Ψ2(L,R) :=
(

E1(R,L), E2(E1(R,L), R)
)

It is easy to see that this defines an invertible permutation over {0, 1}2n. Namely,
given a ciphertext (S, T ) the value R is recovered by “decrypting” T with block-
cipher E2 and key S, and the value L is recovered by “decrypting” S with
block-cipher E1 and key R.

The attack against permutation Ψ2 is straightforward; it is based on the
fact that the attacker can arbitrarily choose both R and S. More precisely, the
attacker selects R = 0n and S = 0n and queries L = E−1

1 (R,S) and T =
E2(S,R). This gives Ψ2(L,R) = (S, T ) as required. However, it is easy to see
that with a random permutation P and a polynomially bounded number of
queries, it is impossible to find L,R, S, T such that P (L‖R) = S‖T with both
R = 0n and S = 0n, except with negligible probability. Therefore, the 2-round
construction cannot replace a random permutation.

Theorem 1. The 2-round Feistel construction Ψ2 is not indifferentiable from a

random permutation.

In the full version of the paper [8] we also analyse existing constructions of
domain extender for block ciphers and show that they are not indifferentiable
from an ideal cipher; more precisely, we show that the CMC [16] and EME [17]
constructions are not indifferentiable from an ideal cipher. We stress that our
observations do not imply anything concerning their security in the standard
pseudo-random permutation model.

4 Indifferentiability of 3-round Feistel Construction

We now prove our first main result: the 3-round Feistel construction is indif-
ferentiable from a random permutation. To get an ideal cipher, it suffices to
prepend a key K to the 3 ideal ciphers E1, E2 and E3; one then gets a family of
independent random permutation, parametrised by K, i.e. an ideal cipher (see
Fig. 1 for an illustration).

Formally, the 3 round permutation Ψ3 : {0, 1}2n → {0, 1}2n is defined as
follows, given block ciphers E1, E2 and E3 with n-bit key (first variable) and
n-bit input/output (second variable):

X = E1(R,L)

S = E2(X,R)

T = E3(S,X)

Ψ3(L,R) := (S, T )



The 3 round block cipher Ψ ′
3 : {0, 1}k × {0, 1}2n → {0, 1}2n is defined as

follows, given block ciphers E1, E2 and E3 with (k + n)-bit key and n-bit in-
put/output:

X = E1(K‖R,L)

S = E2(K‖X,R)

T = E3(K‖S,X)

Ψ ′

3(K, (L,R)) := (S, T )

Theorem 2. The 3-round Feistel construction Ψ3 is (tD, tS , q, ε)-indifferentiable

from a random permutation, with tS = O(qn) and ε = 5q2/2n. The 3-round

block-cipher construction Ψ ′
3 is (tD, tS , q, ε)-indifferentiable from an ideal cipher,

with tS = O(qn) and ε = 5q2/2n.

Proof. We only consider the 3-round permutation Ψ3; the extension to block-
cipher Ψ ′

3 is straightforward. We must construct a simulator S such that the two
systems formed by (Ψ3, E) and (P,S) are indistinguishable (see Fig. 2).

Our simulator maintains an history of already answered queries for E1, E2

and E3. Formally, when the simulator answers X for a E1(R,L) query, it stores
(1, R, L,X) in history; the simulator proceeds similarly for E2 and E3 queries.
We write that the simulator “simulates” E1(R,L) ← X when it first generates
a random X ∈ {0, 1}n \ B, where B is the set of already defined values for
E1(R, ·), and then stores (1, R, L,X) in history, meaning that E1(R,L) = X; we
use similar notations for E2 and E3. The distinguisher’s queries are answered as
follows by the simulator:

E1(R,L) query: E−1
1 (R,X) query

1. Simulate E1(R,L)← X 1. Simulate E−1
1 (R,X)← L

2. (S, T )← Adapt(L,R,X) 2. (S, T )← Adapt(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt(L,R,X):
1. Simulate E−1

1 (R,X)← L 1. S‖T ← P (L‖R)
2. (S, T )← Adapt(L,R,X) 2. Store E2(X,R) = S in history
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T ).

The procedure for answering the other queries is essentially symmetric; we
provide it for completeness:



E−1
3 (S, T ) query: E3(S,X) query

1. Simulate E−1
3 (S, T )← X 1. Simulate E3(S,X)← T

2. (L,R)← Adapt−1(S, T,X) 2. (L,R)← Adapt−1(S, T,X)
3. Return X 3. Return T

E−1
2 (X,S) query: Adapt−1(S, T,X):

1. Simulate E3(S,X)← T 1. L‖R← P−1(S‖T )

2. (L,R)← Adapt−1(S, T,X) 2. Store E2(X,R) = S in history.
3. Return R 3. Store E1(R,L) = X in history.

4. Return (L,R)

Finally, the simulator aborts if for some Ei and some key K, it has not
defined a permutation for Ei(K, ·); that is the simulator aborts if it has defined
Ei(K,X) = Ei(K,Y ) for some X 6= Y or it has defined E−1

i (K,X) = E−1
i (K,Y )

for some X 6= Y . This completes the description of the simulator.
As a consistency check, it is easy to see that if the distinguisher makes a

single query for P (L‖R) and then queries the simulator for X ← E1(R,L), S ←
E2(X,R) and T ← E3(S,X), then the distinguisher obtains S‖T = P (L‖R) as
required.

We now proceed to prove that the systems (Ψ3, E) and (P,S) are indis-
tinguishable. We consider a distinguisher D making at most q queries to the
system (Ψ3, E) or (P,S) and outputting a bit γ. We define a sequence Game0,
Game1, . . . of modified distinguisher games. In the first game the distinguisher
interacts with the system (Ψ3, E). We incrementally modify the system so that
in the last game the distinguisher interacts with the system (P,S), where S is
the previously defined simulator. We denote by Si the event that in game i the
distinguisher outputs γ = 1.

• Game0: the distinguisher interacts with Ψ3 and the ideal ciphers Ei.

• Game1: we modify the way Ei queries are answered, without actually changing
the value of the answer. We also maintain an history of already answered queries
for E1, E2 and E3. We proceed as follows:

E1(R,L) query: E−1
1 (R,X) query

1. Let X ← E1(R,L) 1. Let L← E−1
1 (R,X)

2. (S, T )← Adapt′(L,R,X) 2. (S, T )← Adapt′(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt′(L,R,X):
1. Let L← E−1

1 (R,X) 1. S‖T ← Ψ3(L‖R)
2. (S, T )← Adapt′(L,R,X) 2. Store E2(X,R) = S in history.
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T )

The queries to E−1
2 (X,S), E3(S,X) and E−1

3 (S, T ) are answered symmetri-
cally.

For example, when given a query to E1(R,L), we first query ideal cipher E1

for X ← E1(R,L); then instead of X being returned immediately as in Game0,
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we let S‖T = Ψ3(L‖R), which gives S = E2(X,R) and E3(S,X) = T ; we then
store (2,X,R, S) and (3, S,X, T ) in history. Therefore, the value that get stored
in history is exactly the same as the value from ideal ciphers E2 and E3; the
only difference is that this value was obtained indirectly by querying Ψ3 instead
of directly by querying E2 and E3. It is easy to see that this holds for any query
made by the distinguisher, who receives exactly the same answers in Game0 and
Game1; this implies:

Pr[S1] = Pr[S0]

As illustrated in Fig. 4, we have actually constructed a simple simulator S ′ that
makes queries to a subsystem T that comprises the construction Ψ3 and the
ideal ciphers E1, E2 and E3. The difference between S ′ in Game1 and the main
simulator S defined previously is that 1) S ′ calls ideal cipher E1(R,L) instead
of simulating it and 2) S ′ makes calls to Ψ3(L‖R) instead of P (L‖R).

• Game2: we modify the way the permutation queries are answered. Instead of
using Ψ3 as in system T , we use the random permutation P in the new system
T ′ (see Fig. 4).

We must show that the distinguisher’s view has statistically close distribu-
tion in Game1 and Game2. For this, we consider the subsystem T with the 3-round
Feistel Ψ3 and the ideal ciphers Ei’s in Game1, and the subsystem T ′ with the ran-
dom permutation P and ideal ciphers Ei’s in Game2. We show that the output
of systems T and T ′ is statistically close; this in turn shows that the distin-
guisher’s view has statistically close distribution in Game1 and Game2. Note that
the indistinguishability of T and T ′ only holds for the particular set of queries
made by the distinguisher and the simulator; it could not hold for any possible
set of queries.

In the following, we assume that the distinguisher eventually makes a se-
quence of Ei queries corresponding to all previous Ψ3 queries that he has made.
More precisely, if the distinguisher has made a Ψ3(L,R) query, then eventually
the distinguisher makes the sequence of queries X ← E1(R,L), S ← E2(X,R)
and T ← E3(S,X) to the simulator; the same holds for Ψ−1

3 (S, T ) queries. This



is without loss of generality, because from any distinguisher D we can build a
distinguisher D′ with the same output that satisfies this property.

The outputs to Ei queries provided by subsystem T in Game1 and by sub-
system T ′ in Game2 are the same, since in both cases these queries are answered
by ideal ciphers Ei. Therefore, we must show that the output to P/P−1 queries
provided by T and T ′ have statistically close distribution, when the outputs to
Ei queries provided by T or T ′ are fixed.

We consider a forward permutation query L‖R made by either the distin-
guisher or the simulator S ′. If this L‖R query is made by the distinguisher,
since we have assumed that the distinguisher eventually makes the Ei queries
corresponding to all his permutation queries, this L‖R query will also be made
by the simulator S ′, by definition of S ′. Therefore we can consider L‖R queries
made by the simulator S ′ only.

We first consider the answer to S‖T = Ψ3(L‖R) in Game1. In this case the
answer S‖T is computed as follows:

X = E1(R,L)

S = E2(X,R)

T = E3(S,X)

By definition of the simulator S ′, when the simulator S ′ makes a query for
Ψ3(L‖R), it must have made an ideal cipher query to E1(R,L) before, or an
ideal cipher query to E−1

1 (R,X) before, with L = E−1
1 (R,X).

If the simulator S ′ has made an ideal cipher query for E1(R,L) to subsystem
T , then from the definition of the simulator a call to Adapt′(L,R,X) has oc-
curred, where X = E1(R,L); in this Adapt′ call the values E2(X,R) and E3(S, T )
are defined by the simulator; therefore the simulator does not make these queries
to sub-system T . This implies that the values of E2(X,R) and E3(S,X) are not
included in the subsystem T output; therefore these values are not fixed in the
probability distribution that we consider; only the value X = E1(R,L) is fixed.

Moreover, for fixed X,R the distribution of S = E2(X,R) is uniform in
{0, 1}n\B, where B is the set of already defines values for E2(X, ·). Since there are
at most q queries, the statistical distance between the distribution of E2(X,R)
and the uniform distribution in {0, 1}n is at most 2q/2n; the same holds for
the distribution of T = E3(S,X). Therefore, we obtain that for a fixed X, the
distribution of (S, T ) is statistically close to the uniform distribution in {0, 1}2n,
with statistical distance at most 4q/2n.

If the simulator has made an ideal cipher query for E−1
1 (R,X), then the same

analysis applies and we obtain that for a fixed L = E−1
1 (R,X) the distribution of

(S, T ) is statistically close to the uniform distribution in {0, 1}2n, with statistical
distance at most 4q/2n. Therefore we obtain that in Game1 the statistical distance
of S‖T = Ψ3(L‖R) with the uniform distribution is always at most 4q/2n.

In Game2, the output to permutation query L‖R is S‖T = P (L‖R); since
there are at most q queries to P/P−1, the statistical distance between P (L‖R)
and the uniform distribution in {0, 1}2n is at most 2q/22n.



Therefore the statistical distance between Ψ3(L,R) in Game1 and P (L‖R) in
Game2 is at most 4q/2n +2q/22n ≤ 5q/2n. The same argument applies to inverse
permutation queries. This holds for a single permutation query; since there are
at most q such queries, we obtain that the statistical distance between outputs
of systems T and T ′ to permutation queries and Ei queries, is at most 5q2/2n;
this implies:

|Pr[S2]− Pr[S1]| ≤
5q2

2n

• Game3: eventually the distinguisher interacts with system (P,S). The only
difference between the simulator S ′ in Game2 and the simulator S in Game3 is
that instead of querying ideal ciphers Ei in Game2, these ideal ciphers are simply
simulated in Game3, while the answer to permutation queries are exactly the
same. Therefore, the distinguisher’s view has the same distribution in Game2 and
Game3, which gives:

Pr[S2] = Pr[S3]

and finally:

|Pr[S3]− Pr[S0]| ≤
5q2

2n

which terminates the proof of Theorem 2. ⊓⊔

We note that the security bound in q2/2n for our 3-round ideal cipher based
construction is much better than the security bound in q16/2n obtained for the
6-round Feistel construction in [10] (based on random oracles).

4.1 Practical Considerations

Extending the Key. So far, we showed how to construct an ideal cipher Ψ3

with 2n-bit message and k-bit key from three ideal ciphers E1, E2, E3 on n-bit
message and (n + k)-bit key. As already mentioned, we can actually implement
E1, E2, E3 from a single n-bit ideal cipher E whose key length is n + k + 2.

However, if only a block-cipher with n-bit key and n-bit message is available
(for example AES-128), we need a procedure to extend the key size. To handle
such cases, we notice that it suffices to first hash the key using a random oracle,
and the resulting block cipher remains indifferentiable from an ideal cipher.

Lemma 1. Assume E : {0, 1}k × {0, 1}n → {0, 1}n is an ideal cipher and

H : {0, 1}t → {0, 1}k is a random oracle. Define E′ : {0, 1}t × {0, 1}n → {0, 1}n

by E′(K ′,X) = E(H(K ′),X), E′−1(K ′, Y ) = E−1(H(K ′), Y ). Then E′ is

(tD, tS , q, ε)-indifferentiable from an ideal cipher, where tS = O(q(n + t)) and

ε = O(q2/2k).

Proof. See the full version of the paper [8].



Using this observation, given a single ideal cipher E on n-bit messages and
k-bit key and a random oracle H with output size k bits, we can first build
an ideal cipher E′ with n-bit message and (n + k′ + 2)-bit key, and then from
Theorem 2 we can obtain an ideal cipher Ψ3 on 2n-bit messages and k′-bit key.
It remains to remove the assumption of having random oracle H; this can easily
be accomplished by sacrificing 1 key bit from E, and then using one of the two
resulting (independent) ideal ciphers to efficiently implement H using any of the
methods from [9].

Going Beyond Double? Another natural question is to extend the domain of
the ideal cipher beyond doubling it. One way to accomplish this task is to apply
our 3-round construction recursively, each time doubling the domain. However,
in this case it is not hard to see that, to extend the domain by a factor of t, the
original block cipher E will have to be used O(tlog2

3) times.2 This makes the
resulting constructions somewhat impractical for large t.

In contrast, assume that we use the 2-step construction: first build a length-
preserving random oracle H on nt/2 bits (using [9]), and then use the 6-round
Feistel construction [10] to get a nt-bit permutation. To construct a random
oracle from nt/2-bit to nt/2-bit, only O(t) calls to the n-bit ideal cipher are
required (first hash from nt/2-bit to n-bit using [9], then expand back to nt/2-
bits using counter mode). Therefore the 2-step construction requires only O(t)
calls to E, instead of O(tlog2

3) when iterating our construction. This implies
that for large t, the 2-step construction is more efficient.

To give a practical example, let us consider the applications of [15, 27], where
one needs to apply a random permutation to the domain of an RSA modulus.
We take the length of modulus N to be 1024 bits and the underlying block-
cipher E to be n = 128 with 128-bit key (as in AES-128). One can see that to
obtain a 1024-bit permutation from E, only 48 calls to E are required for the
2-step construction, instead of 243 when iterating our construction. However for
1024-bit, the exact security of the 2-step construction is dominated by the term
O(q16/2512) from [10], which requires q ≪ 232, whereas the exact security of the
recursive construction is O(q2/2128), which requires q ≪ 264. Therefore, for a
1024-bit permutation our recursive construction still provides a better security
bound; however, for any size larger than 2048 bits, the two constructions have
the same q ≪ 264 bound 3.

To summarize, our construction is more efficient than the 2-step construction
when doubling only once (t = 2). However for a large expansion factor t the 2-
step construction is more efficient than the recursive method.

2 In essence, this is because we call E three times for each doubling. Actually, this is
not counting the calls to the independent variable length random oracle H to hash
down the key, as above. However, because the constructions of such an H in [9] are
so efficient, it is not hard to see that, even when implementing H using E itself, the
dominant term remains O(tlog2

3) (although the constant is slightly worse).
3 The length-preserving random oracle used in the 6-round Feistel has the birthday

bound of q2/2128



4.2 Indifferentiability for 2 Rounds in the Honest-but-curious
Model

In the full version of the paper we also consider the honest-but-curious model of
indifferentiability introduced by Dodis and Puniya [12], which is a variant of the
general indifferentiability model. We show that in the honest-but-curious model,
2 rounds as depicted in Fig 3 are actually sufficient to get indifferentiability.

5 Domain Extension of Tweakable Block Cipher

In this section, we also analyse our construction in the standard model, and we
use a tweakable block-cipher as the underlying primitive. The main result of this
section is that a 3-round Feistel enables to get a security guarantee beyond the
birthday paradox.

Tweakable block-ciphers were introduced by Liskov, Rivest and Wagner in
[22] and provide an additional input - the tweak - that enables to get a family

of independent block-ciphers. Efficient constructions of tweakable block-ciphers
were described in [22], given ordinary block-ciphers.

Definition 2. A tweakable block-cipher is an efficiently computable function Ẽ :
{0, 1}k×{0, 1}ω×{0, 1}n → {0, 1}n that takes as input a key K ∈ {0, 1}k, a tweak

W ∈ {0, 1}ω and a message m ∈ {0, 1}n and returns a ciphertext c ∈ {0, 1}n. For

every K ∈ {0, 1}k and W ∈ {0, 1}ω, the function Ẽ(K,W, ·) is a permutation

over {0, 1}n.

The security notion for a tweakable block-cipher is a straightforward exten-
sion of the corresponding notion for block-ciphers. A classical block-cipher E
is a strong pseudo-random permutation if no adversary can distinguish E(K, ·)
from a random permutation, where A can make calls to both E and E−1, and
K ← {0, 1}k. For tweakable block-ciphers, the adversary can additionally choose
the tweak, and E(K, ·, ·) should be indistinguishable from a family of random
permutations, parametrised by W ∈ {0, 1}ω:

Definition 3. A tweakable block-cipher is said to be (t, q, ε)-secure if for any

adversary A running in time at most t and making at most q queries, the ad-

versary’s advantage in distinguishing Ẽ(K, ·, ·) with K ← {0, 1}k from a family

of independent random permutation Π̃(·, ·) is at most ε, where A can make calls

to both Ẽ and Ẽ−1.

We first show that 2 rounds are enough to get a 2n-bit tweakable block-
cipher from a n-bit tweakable block-cipher (see Fig. 5, left). Formally, our 2-
round domain extender for tweakable block-cipher works as follows. Let E1 and
E2 be two tweakable block-ciphers with the same signature:

Ẽi : {0, 1}k × {0, 1}ω × {0, 1}n → {0, 1}n
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Ẽ2K

L R

S

S T

W

W
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Fig. 5. The tweakable block ciphers Ψ̃2 (left) and Ψ̃3 (right), with key K and tweak W

The tweakable block cipher Ψ̃2 : {0, 1}k×{0, 1}ω−n×{0, 1}2n → {0, 1}2n is then
defined as follows; the difference with Fig. 3 is that the R and S inputs go to
the tweak (concatenated with the main tweak W ) instead of the key.

S = E1(K,W‖R,L)

T = E2(K,W‖S,R)

Ψ̃2(K,W, (L,R)) = (S, T )

Theorem 3. The tweakable block-cipher Ψ̃2 is a (t′, q, ε′)-secure tweakable block-

cipher, if Ẽ1 and Ẽ2 are both (t, q, ε)-secure tweakable block-ciphers, where ε′ =
2 · ε + q2/2n + q2/22n and t′ = t−O(qn).

Proof. See the full version of the paper [8].

Now we consider the 3 round tweakable block cipher Ψ̃3, defined in a similar
manner as Ψ̃2 (see Fig. 5 for an illustration). The 3-round construction enables
to go beyond the birthday security bound. Namely instead of having a bound
in q2/2n as in the 2-round construction, the bound for the 3-round construction
is now q2/22n, which shows that the construction remains secure until q < 2n

instead of q < 2n/2.

Theorem 4. The tweakable block-cipher Ψ̃3 is a (t′, q, ε′)-secure tweakable block-

cipher, if Ẽ1, Ẽ2 and Ẽ3 are all (t, q, ε)-secure tweakable block-ciphers, where

ε′ = 3 · ε + q2/22n and t′ = t−O(qn).

Proof. See the full version of the paper [8].

One drawback of our construction is that it shrinks the tweak size from ω
bits to ω − n bits. We show a simple construction that extends the tweak size,
using a keyed universal hash function; this construction can be of independent
interest.



Definition 4. A family H of functions with signature {0, 1}ω
′

→ {0, 1}ω is

said to be ε-almost universal if Prh[h(x) = h(y)] ≤ ε for all x 6= y, where the

probability is taken over h chosen uniformly at random from H.

Let Ẽ be a tweakable block-cipher with tweak in {0, 1}ω. Given a family H
of hash functions h with signature {0, 1}ω

′

→ {0, 1}ω and ω′ > ω, our tweakable
block-cipher Ẽ with extended tweak length ω′ is defined as:

Ẽ′((K,h),W ′,m) = Ẽ(K,h(W ′),m)

Theorem 5. The tweakable block cipher Ẽ′ is a (q, t′, ε′)-secure tweakable block

cipher if Ẽ is a (q, t, ε1)-secure tweakable block cipher and the hash function

family H is ε2-almost universal, with ε′ = ε1 + q2 · ε2 and t′ = t−O(q).

Proof. See the full version of the paper [8].

We note that many efficient constructions of universal hash function families
are known, with ε2 ≃ 2−ω. Therefore the new tweakable block-cipher can have
the same level of security as the original one, up to the birthday bound for the
tweak, i.e. for q ≤ 2ω/2.

6 Conclusion

We have described the first domain extender for ideal ciphers, i.e. we have showed
a construction that is indifferentiable from a 2n-bit ideal cipher, given a n-bit
ideal cipher. Our construction is based on a 3-round Feistel, and is more efficient
and more secure than first building a n-bit random oracle from a n-bit ideal
cipher (as in [9]) and then a 2n-bit ideal cipher from a n-bit random oracle (as
in [10]). We have also shown that in the standard model, our construction with
2 rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweakable
block-cipher and that with 3 rounds we get a security guarantee beyond the
birthday paradox.

References

1. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, In Proceedings of the 1st ACM Conference on Computer and
Communications Security (1993), 62 -73.

2. A. Biryukov, D. Khovratovich, I. Nikolic, Distinguisher and Related-Key Attack
on the Full AES-256. Proceedings of CRYPTO 2009: 231-249

3. A. Biryukov and D. Khovratovich, Related-key Cryptanalysis of the Full AES-192
and AES-256. Proceedings of Asiacrypt 2009.

4. J. Black, The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function, Proceedings of FSE 2006: 328-340.

5. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block Cipher-Based
Hash-Function Constructions from PGV, in Advances in Cryptology - CRYPTO
2002, California, USA.



6. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweak-
able strong pseudo-random permutation. In Proceedings of FSE ’06, LNCS 4047,
pp. 293–309, 2006.

7. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme us-
ing the hash-encrypt-hash approach. In Proceedings of Indocrypt ’06, LNCS 4329,
pp. 287–302, 2006.

8. J.S. Coron, Y. Dodis, A. Mandal and Y. Seurin, A Domain Extender for the Ideal
Cipher. Full version of this paper. Cryptology ePrint Archive, Report 2009/356.
http://eprint.iacr.org/

9. J.S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damg̊ard Revisited:
How to Construct a Hash Function. Proceedings of CRYPTO 2005: 430-448.

10. J.S. Coron, J. Patarin and Y. Seurin, The Random Oracle Model and the Ideal
Cipher Model are Equivalent. Proceedings of CRYPTO 2008. Full version available
at Cryptology ePrint Archive, Report 2008/246, http://eprint.iacr.org/.

11. A. Desai, The security of all-or-nothing encryption: Protecting against exhaus-
tive key search, In Advances in Cryptology - Crypto’ 00 (2000), LNCS vol. 1880,
Springer-Verlag.

12. Y. Dodis and P. Puniya, On the Relation Between the Ideal Cipher and the Random
Oracle Models. Proceedings of TCC 2006: 184-206.

13. S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom
permutation, In Advances in Cryptology - ASIACRYPT’ 91 (1992), LNCS vol.
739, Springer-Verlag, pp. 210 -224.

14. S.R. Fluhrer and D.A. McGrew. The extended codebook (XCB) mode of operation.
Technical Report 2004/078, IACR eprint archive, 2004.

15. L. Granboulan, Short signature in the random oracle model. Proceedings of Asi-
acrypt 2002, LNCS 2501.

16. S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor,
Advances in Cryptology, CRYPTO ’03, 2007.

17. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In Proceedings of

CT-RSA 2004, LNCS 2964, pp. 292–304, 2004.
18. S. Halevi. Invertible Universal hashing and the TET Encryption Mode. In Pro-

ceedings of CRYPTO ’07, LNCS 4622, pp. 412–429, 2007.
19. J. Jonsson, An OAEP variant with a tight security proof, available at

http://eprint.iacr.org/2002/034/.
20. J. Kilian and P. Rogaway, How to protect DES against exhaustive key search (An

analysis of DESX), Journal of Cryptology 14, 1 (2001), 17 -35.
21. T. Krovetz, Message Authentication on 64-Bit Architectures. In: Biham, E.,

Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356. Springer, 2007.
22. M. Liskov, R. Rivest and D. Wagner, Tweakable Block Ciphers. Proceedings of

CRYPTO 2002, LNCS vol. 2442.
23. M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseu-

dorandom functions, SIAM Journal of Computing, 17(2):373-386, 1988.
24. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results

on Reductions, and Applications to the Random Oracle Methodology. Theory of
Cryptography - TCC 2004, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2951, pp. 21-39, Feb 2004.

25. K. Minematsu, Beyond-Birthday-Bound Security Based on Tweakable Block Ci-
pher. Proceedings of FSE 2009. Springer.

26. M. Naor and O. Reingold, On the construction of pseudorandom permutations:
Luby-Rackoff revisited, J. of Cryptology, 1999. Preliminary Version: STOC 1997.



27. D. H. Phan and D. Pointcheval. Chosen-Ciphertext Security without Redundancy.
Proceedings of Asiacrypt ’03, LNCS 2894.

28. P. Rogaway, M. Bellare and J. Black, OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Conference on Computer and Communi-
cation Security 2001: 196-205.

29. V. Shoup, Sequences of games: a tool for taming complexity in security proofs.
Available electronically at http://eprint.iacr.org/2004/332/.

30. P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length enciphering mode.
In Proceedings of CISC ’05, LNCS 3822, pp. 175–188, 2005.


