
On Related-Secret Pseudorandomness

David Goldenberg1 and Moses Liskov1

The College of William and Mary {dcgold, mliskov}@cs.wm.edu ?

Abstract. Related-key attacks are attacks against constructions which
use a secret key (such as a blockcipher) in which an attacker attempts to
exploit known or chosen relationships among keys to circumvent security
properties. Security against related-key attacks has been a subject of
study in numerous recent cryptographic papers. However, most of these
results are attacks on specific constructions, while there has been little
positive progress on constructing related-key secure primitives.
In this paper, we attempt to address the question of whether related-key
secure blockciphers can be built from traditional cryptographic prim-
itives. We develop a theoretical framework of “related-secret secure”
cryptographic primitives, a class of primitives which includes related-key
secure blockciphers and PRFs. We show that while a single related-secret
pseduorandom bit is sufficient and necessary to create related-key secure
blockciphers, hard-core bits with typical proofs are not related-secret
psuedorandom. Since the pseudorandomness of hard-core bits is the es-
sential technique known to make pseudorandomness from assumptions of
simple hardness, this presents a very strong barrier to the development
of provably related-key secure blockciphers based on standard hardness
assumptions.

1 Introduction

Related-key attacks are attacks against constructions using a secret key (such
as a blockcipher) in which an attacker attempts to exploit known or chosen
relationships among keys to circumvent security properties. Several related-key
attacks on primitives have been developed [1–3], including attacks on AES [4–7].
While the realism of an adversary’s ability to directly influence a secret key is
questionable, the issue of related-key security has implications beyond such a
setting. For instance, weakness in a blockcipher’s key scheduling algorithm may
result in known likely relationships amongst round keys, which could lead to
an attack against the cipher [8]. As another example, blockcipher based hash
functions are only proven secure in the ideal cipher model [9]; in this strong
model, related-key security is implied [8]. Thus, the use of a real blockcipher for
hashing that is not related-key secure is theoretically questionable: in many such
constructions, the adversary’s ability to choose the message to be hashed implies
an ability to launch related-key attacks on the underlying cipher. Indeed, a recent
paper by Biryukov et al has made substantial progress on attacking AES-256 in
? Supported by NSF grant CNS-0845662.

Davies-Meyer mode via a strong related-key attack on AES [7]. Finally, there are
settings in which related-key security has been put to good use: several papers
make use of schemes with one-time related-key security properties in order to
make fuzzy extractors robust against adversarial modification [10–12].

Positive results concerning related-key security are few. Bellare and Kohno [8]
develop a theoretical framework for defining related-key security, show that some
notions of related-key security are inherently impossible, and prove that an ideal
cipher is related-key secure for a general class of relations. Lucks [13] shows how
to achieve “partial” related-key security (meaning, that only part of the key
can be varied), and also gave two proposed constructions of related-key secure
pseudorandomness from novel, very strong number theoretic assumptions.

Defining related-secret security. Bellare and Kohno define related-key se-
curity as follows. If FK(x) is a pseudorandom function (or permutation) then it is
related-key secure if an adversary cannot distinguish between (1) an oracle that,
on input x and a perturbation δ, returns Fδ(K)(x) and (2) an oracle that imple-
ments a random function (or permutation) on x independently for each distinct
δ. In order to study the relationship between such strong primitives and sim-
pler ones, we broaden the concept of related-key attacks to “related-secret” at-
tacks, which extends Bellare and Kohno’s notion of related-key security to allow
adversarially-specified perturbations on any inputs unknown to the adversary,
whether or not these inputs are considered “keys”. Simpler related-secret secure
primitives are good candidates for intermediate steps between basic primitives
and related-key security. We give definitions for many different related-secret
secure primitives such as related-secret secure one way functions/permutations,
hardcore bits, pseudorandom generators, pseudorandom functions, and pseudo-
random permutations.1

Our results. We attempt to mirror the development of pseudorandom per-
mutations from one-way functions or permutations in the related-secret setting,
without assuming (as Lucks does [13]) that any part of any secret cannot be
modified by the adversary. Because of this strong requirement, in most cases, we
expect that strong related-secret secure primitives will require simple related-
secret secure building blocks.

Most steps in the strengthening of basic primitives into pseudorandom per-
mutations can be translated to the related-secret setting. We show related-secret
security for any homomorphic one-way function, for instance, modular expo-
nentiation (under the discrete log assumption). The idea is that homomorphic
perturbations can be calculated without knowing the secret. We also show that
the critical step is to obtain related-secret pseudorandomness: we show that
even a 1-bit related-secret pseudorandom generator is sufficient to build related-
secret pseudorandom permutations. Moreover, we show that these “pseudoran-
dom bits” are necessary for related-key blockciphers.

1 Our definitions of RK-PRF’s and RK-PRP’s are the same as [8].

In the standard model, a hard-core bit fills this role simply: a hard-core bit
is hard to learn, and thus, hard to distinguish from a random bit [14, 15]. How-
ever, in the related-secret setting things are different, because of the ability of a
related-secret attacker to obtain multiple related values. So we distinguish be-
tween a related-secret hard-core bit (in which no bits are shown to the adversary,
and one must be learned), and a pseudorandom bit (in which all the bits are
shown to the adversary, who must distinguish them from random).

Here, we give a negative result: any “strong” hard-core bit (that is, a hard-
core bit with a reduction from learning the bit to inverting the associated func-
tion) is not a related-secret pseudorandom bit. More specifically, we give a trans-
formation from the reduction between the hard-core bit finder and the function
inverter, to an attack against the same hard-core bit as a pseudorandom bit in
the related-secret model. This transformation assumes that the reduction is a
“black-token” reduction, in other words, that it simply manipulates the function
output with known tools while being blind of the actual value of the function
output. The notion of a black-token algorithm is akin to the concept of algebraic
reductions and generic ring algorithms [16–19], except that we do not require
the same level of algebraic structure.

This leads us to the conclusion that if related-secret pseudorandomness (in-
cluding related-key blockciphers) are possible, they must be proven either based
on other related-secret pseudorandomness assumptions2, or a dramatically new
way of creating pseudorandomness from hardness must be developed.

2 Definitions

If f : N→ R is a function, we say that f is negligible if ∀c, ∃n0 such that for all
n > n0, f(n) < 1

nc .
We use A to denote an adversary or algorithm. We denote the set of all

probabilistic polynomial time adversaries as PPT . If an adversary A takes an
oracle O we denote that as AO.

We denote a value x randomly sampled from a set X as x← X . For a function
f we denote Df as the domain of f and Rf as the range. We denote the j’th bit
of x as xj and the i’th through the j’th bit of x as xi,···,j . For two inputs x, r we
denote the inner product (

∑k
i=0 xiri) of x and r as 〈x, r〉. If x and r come from

a metric space M we denote the distance between x and r as ||x− r||.

Definition 1. A (k, ρ, p) list decodable code is a triple of algorithms C,C−1,R
where C : {0, 1}k → C ⊂ {0, 1}n, C−1 : C → {0, 1}k and R has the property
that if x ∈ {0, 1}k is the message, and y is the corrupted encoding of x, then
Pr[S ← RY : ∀x ∈ S, ||C(x)− y|| ≤ ρn] ≥ p as long as ||C(x)− y|| ≤ ρn where Y
is the oracle which on input i returns yi. and where |S| is polynomial in k. We
say a list decodable code allows for local decoding if R only queries Y a polynomial
number of times.
2 Such as the related-key pseudorandom constructions of Lucks [13], based on novel

assumptions effectively as strong as related-secret pseudorandomness

Definition 2. A list decodable code C,C−1,R is linear when C is a linear sub-
space of {0, 1}n.

2.1 Related-secret security

We consider primitives to be related-secret secure if they maintain their secu-
rity even under an adversary which can exploit known or chosen relationships
between related secret inputs. We specify the notion of interacting with the prim-
itives using secrets “related to” the secret input x ∈ D by allowing the adversary
to interact with the primitive under δ(x), where δ is a perturbation (function)
from D → D, which is specified by the adversary. For example, a block-cipher
is related-key secure if no distinguishing adversary exists, even when we allow
the adversary to make queries in which a particular transformation of the secret
key is specified. While we might hope to design related-secret primitives for any
possible set of perturbations, it has been shown in [8] that related-secret attacks
inherently exist when the set of perturbations is “invalid”, defined as follows [8]:

Definition 3 (Valid sets). We say a set of functions ∆ : D → D is valid if it
satisfies the following two properties:

– Output unpredictable: ∆ is output unpredictable if ∀S ⊂ ∆, ∀X ⊂ D, Pr[x←
D; {δ(x) : δ ∈ S}∩X 6= ∅] is negligible as long as |X| and |S| are polynomial
in log |D|.

– Collision resistant: ∆ is collision resistant if ∀S ⊂ ∆, Pr[x ← D; |{δ(x) :
δ ∈ S}| < |S|] is negligible when |S| is polynomial in log |D|.

Due to the power of the attack in [8], it is impossible to design cryptographic
primitives that remain secure under arbitrary perturbations. As such, we will
assume that ∆, the set of “allowable” perturbations, is a valid set. We also
require that ∆ has a minimal level of additional structure: we assume it is closed
under function composition and contains the identity perturbation δident ∈ ∆ :
δident(x) = x .3

We also say that ∆ is complete in that ∀x, y ∈ Df , ∃δ : δ(x) = y. We note
that related-key or related-secret security against an incomplete ∆ is a far easier
problem [13].

Two standard examples of ∆ classes that meet these criteria:

– ∆+ = {δc : x 7→ x+ c}
– ∆⊕ = {δc : x 7→ x⊕ c}

In both cases we identify the function δc with the value c. This sort of pertur-
bation class is the most relevant: in many published related-key attack results,
perturbations are from ∆⊕ (for example, [7]).

We start by stating the definitions of a related key secure pseudorandom per-
mutation and a related key secure pseudorandom function in the above notation.
The definitions are taken from [8].
3 For any ∆ not closed under composition, or not including the identity, we can expand

it to its closure under composition, and add the identity.

Definition 4 (Related key secure pseudorandom permutation (RK-
PRP)). An efficiently computable function E : {0, 1}p(k) × {0, 1}k → {0, 1}p(k)
where p is a polynomial is considered a related key secure pseudorandom permu-
tation under ∆ if E(·,K) is a permutation for all K ∈ {0, 1}k and if ∀A, ∃ν negli-
gible: ∀k |Pr[K ← {0, 1}k : AFE(·,K),K = 1]−Pr[K ← K : AFP(·,K),K = 1]| ≤ ν(k)
where k is the security parameter, P : {0, 1}p(k)×{0, 1}k → {0, 1}p(k) is a family
of random permutations indexed by its second parameter, and where Ff(·,K),K is
the oracle which on input x, δ ∈ ∆ returns f(x, δ(K)).

Definition 5 (Related key secure pseudorandom function (RK-PRF)).
An efficiently computable function R : {0, 1}p(k) × {0, 1}k → {0, 1}p′(k), where
p and p′ are polynomials, is considered to be a related-key secure pseudorandom
function under ∆ if ∀A, ∃ν negligible: ∀k |Pr[K ← {0, 1}k : AFR(·,K),K = 1] −
Pr[K ← {0, 1}k : AFF(·,K),K = 1]| ≤ ν(k) where k is the security parameter
and where F : {0, 1}p(k) × {0, 1}k → {0, 1}p′(k) is a family of random functions
indexed by its second parameter, and where Ff(·,K),K is the oracle which on input
x, δ ∈ ∆ returns f(x, δ(K)).

We can extend the notion of an RK-PRP / PRF to the notion of a related
secret pseudorandom generator (RS-PRG). Like an RK-PRP or RK-PRF, an
RS-PRG generates pseudorandomness even under an adversary who can affect
the “secret” input. However, an RS-PRG only has one input, the secret seed to
the generator.

Definition 6 (Related-secret secure pseudorandom generator (RS-
PRG)). Let Ff,x be the oracle which on input δ ∈ ∆ returns f(δ(x)). An effi-
ciently computable function g(x) which takes n bits to l(n) bits is a related-secret
secure pseudorandom generator under ∆ if ∀A ∈ PPT , ∃ν negligible: ∀k

Pr[x← {0, 1}k; AFg,x = 1]− Pr[x← {0, 1}k; AFO,x = 1] ≤ ν(k)

where O returns a random string from {0, 1}l(k) on input x.

Note that for plain-model PRGs, it is normally required that l(n) > n, as
the identity function is a PRG for l(n) = n, and because we anticipate using
PRGs repeatedly to obtain arbitrary amounts of randomness. Those reasons for
requring l(n) > n do not apply to the related-secret setting: (1) l(n) = n does
not imply a trivial function here, and (2) we anticipate using ordinary PRGs to
stretch randomness, and RS-PRGs to provide related-secret security.

We can extend the notion of related secret security to even simpler primitives
such as one way functions.

Definition 7 (Related-secret secure one way function family (RS-
OWFF)). An indexed family of functions {Fk}, where each function fs ∈ Fk
goes from Ds → Rs is considered a related secret secure one way function family
under ∆s if ∀A ∈ PPT , ∃ν : ∀k, Pr[fs ← {F}k;x ← Dfs ;x′ ← AFfs,x(fs) :
fs(x) = fs(x′)] ≤ ν(k) where ν is negligible and where Ffs,x on input δ ∈ ∆s

returns fs(δ(x)).

Definition 8 (Related-secret secure one way permutation family (RS-
OWPF)). A related-secret secure one-way permutation family is a related-secret
secure one-way function family in which each individual fs is a permutation.

2.2 Hard-core bits

The technique that has been used to create pseudorandomness from the existence
of hard problems has been the idea of the hard core bit.

Definition 9 (Hard-core bit). A function B(x): {0, 1}k → {0, 1} is consid-
ered hard-core for a function f if:
1. B(x) is polynomial time computable.
2. ∀A ∈ PPT , ∃ν negligible: ∀k, Pr[x ← {0, 1}k; b ← A(f(x)) : B(x) = b] ≤

1
2 + ν(k).

A hardcore bit B(x) for a function f can easily be shown to be pseudoran-
dom even given the value f(x). This does not imply however, that the pseu-
dorandomness of the bit is related to the hardness of any particular problem.
Consider f ′(x) = f(x2,···,k). It is clear that x1 is a hard-core bit for f however it
is hard-core due to information loss. As such, no matter what the properties of
the function f are, B(x) can never be recovered with probability bounded away
from 1

2 . 4

With this in mind, we define the notion of a strong hard-core bit, a bit whose
security is directly related to the one way security of the function f .

Definition 10 (Strong hard-core bit). A function B(x): {0, 1}k → {0, 1} is
considered a strong hard-core bit for a function f if for any A ∈ PPT such that
∃ non-negligible ε where ∀k Pr[x← {0, 1}k; b← A(f(x)) : b = B(x)] ≥ 1

2 + ε(k)
then ∃ A′ ∈ PPT and ε′ non-negligible such that ∀k, Pr[x ← {0, 1}k;x′ ←
A′(f(x)) : f(x) = f(x′)] ≥ ε′(k).

In addition we note that all known non-trivial hard-core bits are in fact strong
hard core bits, as their security is proven via a reduction between the ability to
predict B(x) and the one-way security of f .

We can extend these definitions to the ideas of a related-secret secure hard-
core bit and a related-secret secure strong hard-core bit:

Definition 11 (Related-secret secure hard core bit (RS-HCB)). A func-
tion B(x) is a related-secret secure hard core bit for a function f secure under ∆,
if ∀A ∈ PPT , ∃ν negligible: ∀k, Pr[x← {0, 1}k; b← AFf,x : b = B(x)] ≤ 1

2+ν(k)
where Ff,x returns f(δ(x)) on input δ.

Definition 12 (Related-secret secure strong hard core bit (RS-SHCB)).
A function B(x) is considered a related-secret secure strong hard core bit for a
function f secure under ∆, if ∀A ∈ PPT such that if ε(k) non-negligible: where
∀k Pr[x← {0, 1}k; b← AFf,x : b = B(x)] ≥ 1

2 + ε(k) ∃A′ and ε′(k) non-negligible
: Pr[x ← {0, 1}k;x′ ← A′Ff,x(f(x)) : f(x) = f(x′)] ≥ ε′(k) for non-negligible ε′

where Ff,x returns f(δ(x)) on input δ.
4 Note, however, that a permutation with a hard-core bit is necessarily one-way.

We finally introduce the idea of a related-secret secure pseudorandom bit or
RS-PRB. As noted before, normal hardcore bits are inherently pseudorandom.
As we will see in the next section however, when the adversary is allowed to see
f(δ(x)) and B(δ(x)) for adversarially chosen δ, B(δ(x)) is no longer necessarily
indistinguishable from random. With this in mind, we define the notion of a
related-secret secure pseudorandom bit as a bit which is pseudorandom even
when the adversary gets to see adaptively perturbed bits B(δ(x)).

Definition 13 (Related-secret secure pseudorandom bit (RS-PRB)).
A function B(x) is considered a related-secret secure pseudorandom bit for a
function f , under ∆, if ∀A ∈ PPT , ∃ν negligible: ∀k

Pr[x← {0, 1}k; AFf||B,x = 1]− Pr[x← {0, 1}k; AFf||R,x = 1] ≤ ν(k)

where Fg,x is an oracle that on input δ ∈ ∆, returns g(δ(x)), and where f ||g
denotes the function f ||g : x 7→ f(x)||g(x), and where R(x) is a random function
from {0, 1}k to {0, 1}.

2.3 Black token algorithms

In this paper we introduce the idea of a black token algorithm. Informally, an
algorithm is black token if it operates, or could equivalently operate, oblivious to
the value of its input, but rather uses a set of allowed operations to manipulate
that value.

Explicitly, in the black token model of computation, an algorithm ABT works
with two types of values: public values, which are known fully, and private values,
which ABT must work with while ignorant of the actual value. For every private
value x, ABT sees only a pseudonym for x, idx.

When ABT receives a private input, it is given only idx rather than the actual
value x; similarly, when ABT makes a private output, the output is taken to be
the value for which ABT specified the pseudonym. That is, if ABT outputs idy,
this is interpreted as outputting y. If ABT makes a private output of a pseudonym
that has not been determined externally to ABT , we interpret this as outputting
a special error symbol ⊥. The input and output wires of A (both its initial
inputs and final outputs, and its means of communicating with its oracles) are
each classified as either public or private and always treated in this manner. As
such, ABT cannot send a pseudonym down a public channel, or vice versa. Note
that A is not inherently given a way to get pseudonyms for values it knows (or
chooses) completely. All pseudonyms A receives, it receives from some outside
source (as input, or as the output from some oracle).

If there is a class of allowable operations that are polynomially time com-
putable given the actual values of the pseudonyms, we allow A to perform these
functions by providing ABT with a “private operation oracle” P, which can be
used to perform such operations without revealing the actual values of the inputs
to A. P returns outputs which may be public or private.

If such a machine ABT exists in a black token model, we can create a black
token algorithm in the standard model by creating a machine T to act as a
tokenizer. T has oracle access to ABT , as well as any oracle ABT might possess.
As such, (TABT)O(x) is the machine that runs AO

BT where T translates things
to and from pseudonyms as appropriate as it gives input to A, passes messages
back and forth between A and O, and receives final output from A.

For example, B(x), defined to be the parity of x, is a strong hard-core bit
for RSA. The reduction from a hard-core bit finder to inverting RSA is blac-
token: the xe can be treated as a pseudonym, and the algorithm requires only the
ability to calculate (−x)e and (x · 2−1)e, both of which can be done via private
operations with private outputs. For details, see Theorem 11 in the appendix.

Effectively, the assumption that an algorithm is black-token is akin to as-
suming that the algorithm “knows” how to derive the ultimate output from
the input using the allowed private operations. This is a stronger assumption
than “knowledge of exponent assumptions,” which do not restrict the allowable
private operations, and it is a stronger than the claim that the algorithm is alge-
braic or a generic ring algorithm [16–19], which do restrict allowable operations
but do not explicitly require this sort of knowledge. As such, assuming that any
adversary is a black-token algorithm is an uncomfortably strong assumption.
However, unlike prior results that use assumptions of this type, we never assume
this of an adversary.

3 The importance of RS-PRBs

In this section we attempt to mirror the construction of a pseudorandom permu-
tation from simpler primitives in the related-secret security model. Since we ad-
dress related-secret security for complete perturbation sets ∆, we cannot expect
to build any related-secret secure constructions without an underlying compo-
nent with related-secret security. As such, we show that homomorphic one-way
functions or permutations are related-secret one-way under a ∆ compatible with
the homomorphism.

Theorem 1. Let f be one-way and homomorphic, so that there exist efficiently
computable binary operations � and ?, such that for all x, y, f(x� y) = f(x) ?
f(y). Then f is related-secret one-way under ∆�.

Proof. We use the homomorphic property of f to simulate related-secret queries
f(δc(x)) = f(c� x) by making queries f(c), f(x) and outputting f(c) ? f(x).

For instance, if f is defined as f(x) = gx mod p for prime p and where g
is a generator for Z∗p, then f is homomorphic where � is addition and ? is
multiplication. So if f is a one-way permutation, f is also a RS-OWP.

In the standard model, the next step would be to find hard-core bits of hard
functions. We give a general construction of related-secret strong hard-core bits.
Our construction will use similiar techniques to the ones found in [20].

Theorem 2. Let C,C−1,R be a (k, ρ, p) linear list decodable code over Fn2 . Define
B(x, r) as C(x)r, the rth bit of C(x). Let f be an RS-OWF secure under ∆⊕.
Define f ′(x, r) as f(x), r. B(x, r) is an RS-SHCB for f ′.

Proof. To prove that B(x, r) is an RS-SHCB for f ′ we will create a black-box
reduction MFf′,(x,r),A which will invert f(x) with non-negligible probability as
long as AFf′,(x,r) returns B(x, r) with probability non-negligibly better than 1/2.
We will build MFf′,(x,r) to use R to reconstruct x. As such, M needs to simulate
oracle access to Y for a corrupted codeword y such that ||C(x)− y|| ≤ ρn where
|C(x)| = n. M has access to an oracle A which returns B(x, r) = C(x)r with
probability 1

2 + ε for non-negligible ε. A difficulty in this proof is that 1− ρ, the
probability that R requires B(x, r) = C(x)r to be correct, will often be much
larger than 1

2 + ε, the probability that AFf′,(x,r) returns B(x, r) correctly. As
such, we cannot directly use the answers returned by A.

To amplify the success probability of A, M will use the fact that ∆ is closed
under composition. As such, M given Ff ′,(x,r) can simulate Ff ′,(δc(x),r) for random
δc as Ff ′,(δc(x),r)(δ, δc′) = Ff ′,(x,r)(δδc, δc′) When AFf′,(δc(x),r) returns its guess
at g at B(δc(x), r), M can compute B(x, r) = g ⊕ C(c)r which is correct as
long as g = B(δc(x), r) as the code is linear. For random δc ∈ ∆⊕ δc(x) is
random. This allows MFx,A to find many independent votes for B(x, r), where
each individual vote is correct with non-negligible probability. As such, M can
find C(x)r = B(x, r) with high enough probability to simulate Y and thus run
the reconstruction program R. When R returns S, M computes f(xi) ∀xi ∈ S
until he finds x∗ :, f(x∗) = f(x).

This can be seen as a generalization of the Goldreich-Levin bit to the related-
secret case, and expanded to capture the use of other list-decodable codes. As
most known list decodable codes are linear, this suggests that list decodable
codes in general imply a RS-HCB for any p secure under ∆⊕.5 In Appendix B
we prove a partial converse to this theorem, showing that certain well behaved
strong hard core bits can be used to create list decodable codes.

In the standard model, the next step towards a pseudorandom permutation
would be to show that hard-core bits are pseudorandom. Unfortunately, this
does not hold in general in the related-secret case. In particular, we have shown
the Goldreich-Levin hardcore bit 〈x, r〉 to be an RS-SHCB, but it is trivially
seen to not be a RS-PRB under ⊕ for f ′(x, r) = f(x)||r.

Theorem 3. The Goldreich Levin hardcore bit 〈x, r〉 for the function f ′(x, r) =
f(x), r is not an RS-PRB for f ′ under ∆⊕.

Proof. Just query the oracle under (δident, δc), (δident, δc′), and (δident, δc⊕c′)
receiving either b1 = 〈x, r⊕ c〉, b2 = 〈x, r⊕ c′〉 and b3 = 〈x, r⊕ c⊕ c′〉 or random
bits b1, b2, b3. Output 1 if b1⊕b2 = b3. If the bits are the inner products (outputs

5 Also note that if we have a linear list decodable code that takes words from Fk
q to

Fn
2 , this gives us an RS-SHCB for any RS-OWF secure under vector addition, where

the vectors are in Fk
q .

of B(x, r)) then this equation will hold with probability 1. If the bits are random,
the equation will hold with probability 1

2 .

Thus we see a potential separation between the difficulty in predicting the
bit B(x) and the bit being pseudorandom in the related secret attack setting, a
separation that does not exist with regards to normal hardcore bits.

We go on to show that related-secret pseudorandom bits can be used to
construct related-key secure blockciphers. First, we show how to construct an
RS-PRG from an RS-PRB.

Theorem 4. Let f be a function from {0, 1}k to {0, 1}p(k), such that there is a
B that is a RS-PRB for f under ∆. Then there exists a g that is an RS-PRG
from k2 to k2 bits.

Proof. Since f has an RS-PRB, f must be an RS-OWF: if an adversary were
able to invert f with probability ε, we could attack the PRB by inverting f ,
and, if successful, checking the outputs of B. Since f is an RS-OWF, f must in
particular be a OWF.

Let g′(x) be a k-bit to k2 bit PRG; we know g′ exists because we have shown
that OWFs exist. Define g : {0, 1}k2 → {0, 1}k2

as follows. On input x, parse x
as k k-bit blocks x1, . . . , xk, compute y = B(x1)|| . . . ||B(xk), and output g′(y).

Then g is an RS-PRG for ∆k where (δ1, . . . , δk)(x1|| . . . ||xk) = (δ1(x1)|| . . .
|| δk(xk)).

This proof comes easily from the idea that yi = B(δi(xi)) is indistinguishable
from random for all δi selected by A, due to the fact that B() is an RS-PRB and
xi is random. As each xi is random and independent of any other xj , and each
δi is independent from the other δj , we can consider each bit B(δi(xi)) to be
indistinguishable from random, even given the other bits B(δ(xj)). The normal
PRG expands the pseudorandom string to the correct length, finishing the proof.

The proof of the following corollary is obvious from the proof of the previous
theorem.

Corollary 1. Let g() be a RS-PRG that takes n bits to p(n) bits. Then fx(δ) =
g(δ(x)) is a PRF from ∆→ {0, 1}p(n).

This proof illustrates an important trick, namely, that if related-key pseudo-
randomness is applied directly to a random secret, we can achieve security using
traditional techniques afterwards.

We now give two proofs, together showing that the existence of an RS-PRG
implies the existence of an RK-PRP and RK-PRF. The proofs illustrate an
easy way to gain related-key security from a related-secret secure pseudorandom
generator. We may use a related-secret pseudorandom generator to eliminate
any advantage an adversary may gain from a related-secret attack on a standard
construction. The adversary’s choice of δ has no effect as it gets translated to a
key that looks random and independent of other keys.

Theorem 5. If RS − PRGs exist under ∆, RK − PRF s exist under ∆.

Proof. Say g is an RS-PRG that takes k bits to l(k) bits. If g is an RS-PRG, g
must be a one-way function. If not, an adversary could distinguish the output of
g from random by inverting g and checking if the result is correct and consistent
with queries to g. From [21] and [22], we know that if one-way functions exist,
so do (standard) pseudorandom functions. Let f be a pseudorandom function
taking a p(k) bit input and an l(k)-bit seed to a p′(k)-bit output. Let f ′(x,K) =
f(x, g(K)). Then f ′ is a related-key secure pseudorandom function under ∆.

We prove this by a simple hybrid argument. If A can distinguish between
Ff ′,K and FF,K for random K, then either A can distinguish between Ff ′(·,K),K

and Ff ′′(·,K),K or between Ff ′′(·,K),K and FF(·,K),K , where f ′′(x,K) = f(x,R(K))
whereR is a random function from k bits to l(k) bits. If the former, then A breaks
the related-key security of g. If the latter, then A distinguishes between a random
function and f with many independent random seeds.

If |Pr[K ← {0, 1}k : AFf′(·,K),K = 1] − Pr[K ← {0, 1}k : AFf′′(·,K),K = 1]| is
non-negligible, then we can use A to break g. Given an oracle O, we run A in its
attack with oracle Ff′O,K

, where f ′O(x,K) = f(x,O(K)).
If |Pr[K ← {0, 1}k : AFf′′(·,K),K = 1] − Pr[AFF(·,K),K = 1]| ≥ ε(k) non-

negligible, then we can use A to break f . Simply put, FF(·,K),K differs from
Ff ′′(·,K),K only in that f ′′ runs f on a random seed for each distinct δ(K), while
F is a random function for each distinct δ(K). By a simple hybrid reduction, we
obtain a probability of at least ε(k)/T (A), where T (A) is the running time of A,
which is polynomial.

We state the next theorem, showing that RS-PRG’s imply RK-PRP’s, as
a corollary. We omit the proof, but it is essentially identical to the proof of
Theorem 5.

Corollary 2. Let E(x,K) be a pseudorandom permutation family taking a p(k)-
bit input and an l(k)-bit seed to a p(k)-bit output. Let g be a RS-PRG taking a
k-bit input to an l(k)-bit output. Then E(x, g(K)) is a RK-PRP.

Remark 1. A related-secret PRG effectively allows us to “harden” any secret-
key-based construction to be secure against related-key attacks, by using g(K)
in place of K.

This should apply to any construction X for which security implies security
when an attacker may query X with many independent random secret keys. For
such constructions (such as PRFs, as in the proof of 5), related-key security
follows because no adversary can distinguish between the modified construction
and querying the original consturction on many independent random secret keys,
one for each perturbation.

We have shown that RS-PRBs are sufficient to construct PK-PRPs. We end
this section by showing that RS-PRBs are “necessary” for the existence of related
key secure pseudorandom functions and permutations. We show that RK-PRP’s
imply RS-PRG’s, and RS-PRG’s imply a one way function f and an RS-PRB
B() for f .

Theorem 6. Let E(x,K) be an RK-PRP under ∆. Let g(x′) be the function
which parses x′ as (x,K) and outputs E(x,K),E(x + 1,K),E(x + 2,K). Then
for any valid set of perturbations ∆′ on {0, 1}p(k), g(x) is an RS-PRG under
∆′ ×∆.

Proof. The proof follows from the fact that g(x) is simulatable given access to
oracle access to E(x,K). As such, if an adversary A can distinguish between
g and random values, we can build an adversary A′ which picks a random x,
queries its E oracle on (δ1(x), δ2), (δ1(x+ 1), δ2), (δ1(x+ 2), δ2) when A queries
on δ12 = (δ1||δ2). If A’s oracle is the oracle to the pseudorandom permutation
then A simulates g, otherwise A′ simply returns a random value for each distinct
δ12(x,K). As such, A′ can use A to distinguish between the two cases.

We now demonstrate that RS-PRG’s give us a one way function f(x) and an
RS-PRB B(x) for that one way function B().

Theorem 7. Let g(x) be a k bit to l(k) > k bit RS-PRG. Let f(x) be the first
l(k)−1 bits of g(x) and let B(x) be the last bit of g(x). Then f(x) is an RS-OWF,
and B(x) is an RS-PRB for f .

Proof. If f is not an RS-OWF, then it is easy to show that g is not an RS-PRG.
If A attacks the one way security of f , A′ takes the δ queries made by A queries
it’s oracle, chops off the last bit of the result and returns it to A. If A returns a
value x, A′ can check the outputs of its oracle to see if they are equal to g(δ(x)).

The fact that B(x) is an RS-PRB for f() comes from the fact that g(x) =
f(x)||B(x) is an RS-PRG.

4 Difficulties in constructing an RS-PRB

In the previous section we demonstrated that related-secret pseudorandom bits
were both necessary and sufficient for the existence of provably secure related-key
pseudorandom permutations. While we discussed related-secret one-wayness and
constructed related-secret strong hard-core bits we were unable to give any con-
struction of an RS-PRB. In fact, the homomorphic properties of known hardcore
bits mean that they cannot be pseudorandom.

In this section we give a surprising result concerning possible constructions
of RS-PRB’s, in that we show that black token, black box strong hard-core bits
cannot be related-secret pseudorandom bits.

Definition 14. If M is a black-token algorithm, its private operation oracle P
is said to be perturbation-private if all operations performed by P with private
outputs are of the form (idf(x), δ) 7→ idf(δ(x)) for δ in a class ∆, for some f .

Theorem 8. Let B(x) be a strong hard-core bit for a one way function f that
has a black token, black-box reduction M where the private operation oracle P
is efficiently computable, and perturbation-private for a class ∆ that is closed
under composition. Then B(x) is not an RS-PRB under any ∆′ ⊃ ∆.

For example, the reduction that proves that parity is a hard-core bit for RSA
is a black-token, perturbation-private reduction, where the class ∆ = {δr : x 7→
x · r}.

Proof. If B(x) is a black token, black box SHCB for a one-way function f , then
there exists a black token algorithm M such that MP,A(idf(x)) finds x with non-
negligible probability as long as A(f(x)) outputs B(x) with probability 1/2 + ε
where ε is non-negligible.

We construct A′ to attack B as an RS-PRB under ∆′. We can view A′ as
having access to two oracles, O and Ff,x, where O either returns B(x) or a
random bit. First A′ queries Ff,x(δident) to obtain f(x), creates a token idf(x)

and then uses as idf(x) as input to M. A′ then runs M, acting as the tokenizer T.
A′ uses O to answer M’s queries to A, and uses Ff,x to answer M’s queries to P,
when necessary. When M returns x′, A′ checks if f(x′) = f(x); if so, it outputs
1, otherwise it outputs 0.

Since M is black token it can only obtain new pseudonyms from P. Since
∆ is closed under composition we can always associate every pseudonym idy
M has with a specific δ ∈ ∆ such that y = f(δ(x)). Since A′ keeps track of
this association, when M asks for A(idf(δ(x))), A′ can query O(δ) and return the
result as the answer. A′ answers queries to P of the form idf(δ(x)), δ

′ by querying
Ff,x(δ′ ◦ δ), and returning a pseudonym of the result. Other queries to P may be
possible, but always produce “public” results. For such queries, the answers are
computable given the actual values of all inputs. Thus, A′ need only translate
pseudonyms to real values and then perform the computation.

When O = B, A′ provides a faithful simulation of A and P. As such, the
probability that A′ will output 1 is non-negligible, since the probability that M
outputs the correct x is non-negligible (since B is always right, it has advan-
tage ε = 1/2). On the other hand, if O = Rx, the bits given to M are random.
If MP,A(f(x)) could output the correct value x with non-negligible probability
where A returns only random bits, then MP,S(idf(x)) can output x with non-
negligible probability where S just outputs random bits. As such M can be used
by itself to break the one-wayness of f(x). Thus, with all but negligible prob-
ability, if O = Rx, A′ will receive x′ which is not a preimage of f(x), and will
thus return 0. As such, A′ is a successful distinguisher.

Note that we make only the most general restriction on the types of accept-
able reduction in Theorem 8, the main limitation being that we require that M
only ask A for the hardcore bit of a δ(x) where we know the δ. All known exam-
ples of strong hard-core bits have reductions that can be seen as black-token and
perturbation-private. Note that the conditions of Theorem 8 only require such a
reduction for A that is correct with probability 1: a very useful observation, since
the probability-1 reductions are often far simpler. As an example, consider the
Goldreich-Levin hard-core bit, and its reduction assuming A is always correct:

Theorem 9. Let f(x) be a one way function. Let f ′(x, r) = f(x), r. Let B(x, r) =
〈x, r〉. B(x, r) is a black token SHCB for f ′ with {I} ×∆⊕

Proof. The machine M is simple to construct. M begins by receiving idf(x),r. M
makes use of P only to compute P (idf(x),r) = r and to compute P (idf(x),δ(r), δ

′) =
idf(x),δ′(δ(r)). It aims to query A on idf(x),ri for different ri until it can obtain
x via standard linear algebra. In order to do this, it learns r, and calculates
idf(x),ri by querying P on idf(x),r, δri⊕r.

This reduction can easily extend to an A whose success probability is less
than 1. The proof of Goldreich and Levin involves querying f(x), ri for many
random pairs of ri with specified differences. This allows for us to determine
〈x, ri〉 with high probability. Since the f(x) value is left untouched, the same
argument applies; the general reduction is also black token.

See Appendix A for discussion of some other hard-core bit reductions.
We have shown that black token strong hard-core bits cannot be related-

secret pseudorandom. We further show that all related-secret pseudroandom
bits are hard-core bits:

Theorem 10. If B is an RS-PRB for a function f under ∆ then B is a hard-
core bit for f .

Proof. Suppose there exists an A such that A(f(x)) returnsB(x) with probability
1/2 + ε. Then we can attack B as an RS-PRB by obtaining f(x) and O(x) and
checking whether O(x) = A(f(x)); if so, we return 1, otherwise, we return 0.
Then the difference in probabilities is ε, which for non-negligible ε is enough to
break B(x) as an RS-PRB.

5 Discussion

We know of only two ways to construct pseudorandom primitives: directly from
hard-core bits in the standard model, or from other standard-model pseudoran-
dom primitives. Our impossibility result shows that related-secret pseudoran-
domness based off of hard-core bits is unlikely. Nor is it plausible to construct a
related-secret pseudorandom bit directly from standard-model pseudorandom-
ness: all such primitives have a secret seed or key, and thus, in any construction,
the adversary (because of the completeness we require of ∆) must be able to
make queries that require modifications of those secrets. In other words, either
the construction will fail, or the pseudorandomness we are using must already
be related-secret secure.

Since any RS-PRB is inherently a hard-core bit, Theorem 8 leaves open two
potential ways in which an RS-PRB might yet be possible. The RS-PRB might
be a hard-core bit, but not a strong one, or it might be a strong hard-core bit but
not one with a reduction that is black-token and perturbation-private. Normally,
one proves that a bit is hard-core by providing a reduction to the hardness of
inverting the associated function: in other words, normally, hard-core bits are
always strong hard-core bits. This is natural, since the associated function must
be one-way in any case, and thus any proof not requiring extra assumptions
would reduce to its one-wayness.

If B is a strong hard-core bit, then its reduction must not meet the conditions
of Theorem 8. As we discussed, all known examples of strong hard-core bits have
black-token reductions of the type necessary for our impossibility proof. Note
also, that it is difficult to see what useful information M can receive by running
A on input that is not a valid f(δ(x)) value for some δ, or when δ is unknown
to M.

At a higher level, our restrictions on the type of reductions used in the proof
are reasonable ones. Since no assumptions can be made about observable prop-
erties of f(x), these values are mostly ignored in any proof involving generic
one-way functions or permutations. As such, any “private operations” in those
proofs are kept to a strict minimum because they must be efficiently computable
given only f(x). Also, in the case of bits that are generic - that is, secure for a
variety of functions - it is hard to imagine a proof of their security that is not
black-token and black-box. Finally note that the proof applies if there exists a
reduction of the specified type. As such, even if there is a very unusual reduction
that does not meet the conditions of Theorem 8, if other more usual reductions
exist, the theorem still applies.

The major open problem in related-secret security is whether or not related-
key secure blockciphers exist. We have shown that related-secret pseudorandom
bits are necessary and sufficient for higher forms of related-secret pseudorandom-
ness. However, related-secret pseudorandom bits cannot be constructed using
traditional techniques. This leaves a significant open problem: are related-secret
pseudorandom bits possible under only basic assumptions? Or alternatively, can
fundamentally new techniques be found to create related-secret pseudorandom
bits?

References

1. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-way, biham-
des, cast, des-x, newdes, rc2, and tea. In: ICICS ’97: Proceedings of the First
International Conference on Information and Communication Security, London,
UK, Springer-Verlag (1997) 233–246

2. Poorvi L. Vora, D.J.M.: Related-key linear cryptanalysis. In: 2006 IEEE Interna-
tional Symposium on Information Theory. (2006) 1609 – 1613

3. Mir, D.J., Vora, P.L.: Related-key statistical cryptanalysis. Cryptology ePrint
Archive, Report 2007/227 (2007) http://eprint.iacr.org/.

4. Gorski, M., Lucks, S.: New related-key boomerang attacks on AES. In Chowdhury,
D.R., Rijmen, V., Das, A., eds.: INDOCRYPT. Volume 5365 of Lecture Notes in
Computer Science., Springer (2008) 266–278

5. Biham, E.: New types of cryptanalytic attacks using related keys.
Journal of Cryptology 7(4) (Fall 1994) 229–246 Also available at:
citeseer.nj.nec.com/biham94new.html.

6. Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-key differential-linear attacks
on reduced aes-192. In: Progress in Cryptology - INDOCRYPT 2007. (2007)

7. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack on
the full AES-256. In Halevi, S., ed.: Advances in Cryptology – CRYPTO 2009. Vol-
ume 5677 of Lecture Notes in Computer Science., Springer-Verlag (August 2009)

8. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: PKA-
PRPs, RKA-PRFs, and Applications. In Biham, E., ed.: Advances in Cryptology
– EUROCRYPT ’03. Volume 2656 of LNCS. (2003) 491–506

9. Black, J., Cochran, M., Shrimpton, T.: On The Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. In: Advances in Cryptology – Eurocrypt 2005.
Volume 3494 of LNCS., Springer Verlag (May 2005) 526–541

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Advances in Cryptography - CRYPTO.
(2006) 232–250

11. Cramer, R., Dodis, Y., Fehr, S., Padro, C., Wichs, D.: Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In:
Advances in Cryptology - EUROCRYPT. (April 2008) 471–488

12. Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: SCN. (2008)
156–171

13. Lucks, S.: Ciphers secure against related-key attacks. In Roy, B.K., Meier, W.,
eds.: FSE. Volume 3017 of Lecture Notes in Computer Science., Springer (2004)
359–370

14. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In Reingold, O., ed.: TCC. Volume 5444 of
Lecture Notes in Computer Science., Springer (2009) 474–495

15. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
Seattle, Washington (15–17 May 1989) 25–32

16. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Advances in Cryptology - ASIACRYPT 2005. (2005) 1–20

17. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In:
Advances in Cryptology - EUROCRYPT 1998. (1998)

18. Aggarwal, D., Maurer, U.: Breaking rsa generically is equivalent to factoring.
Cryptology ePrint Archive, Report 2008/260 (2008) http://eprint.iacr.org/.

19. Maurer, U.: Abstract models of computation in cryptography. In Smart, N.,
ed.: Cryptography and Coding 2005. Volume 3796 of Lecture Notes in Computer
Science., Springer-Verlag (December 2005) 1–12

20. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Founda-
tions of Computer Science, Washington, DC, USA, IEEE Computer Society (2003)
146

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4) (October 1986) 792–807

22. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of pseudorandom
generator from any one-way function. SIAM Journal on Computing 28(4) (1999)
1364–1396

23. Goldwasser, S., Micali, S., Tong, P.: Why and how to establish a private code on
a public network. In: SFCS ’82: Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, Washington, DC, USA, IEEE Computer Society
(1982) 134–144

24. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13(4) (November 1984) 850–863

A Black token reductions for known hardcore bits

In this section we examine two other well-known hardcore bits, the hardcore
bits for RSA, discrete log, (the generic hardcore bit of Goldreich and Levin was
examined in the body of the paper). For each one we demonstrate that these
hardcore bits are black token hardcore bits that fit the requirements of Theo-
rem 8. Many of these proofs will simply be restatements of previous reductions,
or slightly modified versions to emphasize the fact that they are black token.
For each proof, we only formally show that the necessary reduction exists and
is black token for an adversary which always returns the correct hardcore bit
perfectly, however we also informally state how the proof is changed to adapt an
imperfect adversary and how this is also black token.

We next address the hardcore bit for the RSA function. The reduction is
taken from [23].

Theorem 11. Let RSAN,e be the RSA function, that is RSAN,e(x) = xe mod N .
Define B(x) as the parity of x. Then B(x) is a black token SHCB for RSAN,e

Proof. P allows two transformations, δ 1
2
(x) = x(2−1) mod N and δ−1(x) =

−x mod N . These can be viewed as two specific transformation among a more
general class of multiplicative transformations δr(x) = xr mod N . In general, to
calculate (rx)e given xe, we need only multiply xe by re.

M asks A for the parity (LSB) of idxe . If 0, then M runs P on (idxe , δ 1
2
) to

obtain id(x/2)e . If 1, then M runs P on (idxe , δ 1
2
◦ δ−1) to obtain id(−x/2)e .

Since −x has the opposite parity of x (since N is odd), we always divide an
even residue by 2, thus effectively shifting the unknown bits down by one. We
collect one bit of x at a time, keeping track of the number of times we have
applied δ−1, as these reverse our results.

For A with probability of success less than 1, the reduction is far more com-
plicated, but still can be viewed as a sequence of applications of multiplicative
transformations of x by manipulating xe.

We next address the hardcore bit for the discrete log function. The reduction
is taken from [24]

Theorem 12. Let fg,p be the modular exponentiation function, where g is a
generator of the group Z∗p. Let Bp(x) be the function that outputs 1 if x ≤ p−1

2 ,
0 otherwise. Bp(x) is a black-token SHCB for fg,p.

Proof. P computes several transformations, δ−1(x) = x−1, δ 1
2
(x) which returns

either x
2 or x

2 + p−1
2 , δ+ p−1

2
which returns x+ p−1

2 , and p(x), a predicate which
returns the least significant bit of x. These can all be seen as computable using
multiplicative and/or additive transformations on x, which are efficiently com-
putable. gδ+r(x) = gx+r = gxgr, and gδ∗r(x) = gxr = (gx)r. Take ∆ to be the
resulting class, closed under composition.

M proceeds as follows. It first obtains idy for y = gx mod p. It then queries
p(idy) and obtains a bit. If 1, M queries P on (idy, δ−1) obtaining a pseudonym

for y′ = gx−1. If 0,M considers y′ = y and idy = idy′ . M then makes a query to
P(idy′ , δ 1

2
) and P(·, δ+ p−1

2
), obtaining pseudonyms for the two square roots, gs

and gs+
p−1
2 where g2s = y′, in unknown order. M then sends both pseudonyms

to A which enables him to find the pseudonym for g
x′
2 where x′ = x or x− 1.

This allows M to obtain the least significant bit of x, then shift the bits of x
one to the right. By repeating this process we may obtain all the bits of x.

We note that dealing with imperfect A is done by simply computing multipli-
cation mod p by known quadratic residues. As such, the full proof still remains
black token.

A.1 Other hardcore bits

There are too many examples of hardcore bits to analyze all known proofs.
Hardcore bits for specific functions tend to work via homomorphic properties of
f(x); the RSA and discrete log examples show how these can be viewed as black
token. Generalized hardcore bits are extensions of Goldreich-Levin, and, as such,
ignore the value of f(x) completely. Note that virtually any algorithm can be
viewed as a black-token algorithm of this sort, for the appropriate class ∆. One
question may be whether ∆ is “valid,” but actually the answer is irrelevant: all
perturbatinos in the ∆ that arise are in fact secret perturbation we can calculate
efficiently.

B Black Token RS-SHCB’s to Codes

In this section we prove a corollary to Theorem 2, demonstrating that certain
well behaved strong hard core bits can be viewed as error correcting codes.

Theorem 13. Let B(x) be a black token RS-SHCB for a function f secure
under ∆ where ∆ is of finite size and where M only makes queries to P of the
form P(idf(δ(x)), δ

′). Establish an ordering on ∆, δ1, δ2, · · · δ|∆|. Define C(x)i as
B(δi(x)). Then we can create a C−1 and a R such that C,C−1,R is a (k, ρ, p) list
decodable code where 1− ρ = 1

2 + ε, where p is the success probability of M and
where l is the number of queries M makes to A.

Proof. The machine R will use the machine M so it needs to be able to simulate P,
Ff,x and A. The simulations of Ff,x and P will be relatively easy as their outputs
in the black token model are random pseudonyms idf(δ(x)). The simulation of A
is accomplished by using the oracle Y.

RY first creates a random value idf(x) as the “token” for f(x) (which it
does not know) and passes idf(x) to M. When M makes a query Ff,x(δ) or
P(idf(δ(x)), δ

′), R returns a randomly generated token which it associates with
idf(δ(x)) / idf(δ′δ(x)). When M makes a query A(idf(δi(x))), RY simulates A by
querying Y for B(δi(x)) = C(x)i, which is correct with probability 1

2 + ε. Since
M operates in the black token model, and receives only idf(x) as input, and only
queries P on idf(δ(x)), δ

′, R can simulate A perfectly and as such MA,Ff,x will
output x with probability p.

