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Abstract. Hierarchical secret sharing is among the most natural gen-
eralizations of threshold secret sharing, and it has attracted a lot of
attention from the invention of secret sharing until nowadays. Several
constructions of ideal hierarchical secret sharing schemes have been pro-
posed, but it was not known what access structures admit such a scheme.
We solve this problem by providing a natural definition for the family of
the hierarchical access structures and, more importantly, by presenting
a complete characterization of the ideal hierarchical access structures,
that is, the ones admitting an ideal secret sharing scheme. Our charac-
terization deals with the properties of the hierarchically minimal sets of
the access structure, which are the minimal qualified sets whose partic-
ipants are in the lowest possible levels in the hierarchy. By using our
characterization, it can be efficiently checked whether any given hierar-
chical access structure that is defined by its hierarchically minimal sets
is ideal. We use the well known connection between ideal secret sharing
and matroids and, in particular, the fact that every ideal access structure
is a matroid port. In addition, we use recent results on ideal multipar-
tite access structures and the connection between multipartite matroids
and integer polymatroids. We prove that every ideal hierarchical access
structure is the port of a representable matroid and, more specifically, we
prove that every ideal structure in this family admits ideal linear secret
sharing schemes over fields of all characteristics. In addition, methods
to construct such ideal schemes can be derived from the results in this
paper and the aforementioned ones on ideal multipartite secret sharing.
Finally, we use our results to find a new proof for the characterization of
the ideal weighted threshold access structures that is simpler than the
existing one.
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secret sharing, Weighted threshold secret sharing, Multipartite secret
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1 Introduction

A secret sharing scheme is a method to distribute shares of a secret value among
a set of participants. Only the qualified subsets of participants can recover the
secret value from their shares, while the unqualified subsets do not obtain any in-
formation about the secret value. The qualified subsets form the access structure
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of the scheme, which is a monotone increasing family of subsets of participants.
Only unconditionally secure perfect secret sharing schemes are considered in this
paper.

Secret sharing was independently introduced by Shamir [32] and Blakley [4] in
1979. They presented two different methods to construct secret sharing schemes
for threshold access structures, whose qualified subsets are those with at least
some given number of participants. These schemes are ideal , that is, the length
of every share is the same as the length of the secret, which is the best possible
situation [14].

There exist scenarios in which non-threshold secret sharing schemes are re-
quired because, for instance, some participants should be more powerful than
others. The first attempt to overcome the limitation of threshold access struc-
tures was made by Shamir in his seminal work [32] by proposing a simple modi-
fication of the threshold scheme. Namely, every participant receives as its share
a certain number of shares from a threshold scheme, according to its position in
the hierarchy. In this way a scheme for a weighted threshold access structure is
obtained. That is, every participant has a weight (a positive integer) and a set
is qualified if and only if its weight sum is at least a given threshold. This new
scheme is not ideal because the shares are in general larger than the secret.

Every access structure admits a secret sharing scheme [3, 13], but in general
the shares must be larger than the secret [7, 9]. Very little is known about the
optimal length of the shares in secret sharing schemes for general access struc-
tures, and there is a wide gap between the best known general lower and upper
bounds.

Because of the difficulty (presumably, impossibility) of finding efficient secret
sharing schemes for general access structures, the construction of ideal secret
sharing schemes for families of access structures with interesting properties for
the applications of secret sharing is worth considering. This line of work was
initiated by Simmons [33], who proposed two families of access structures, the
multilevel and the compartmented ones, and conjectured them to admit ideal
secret sharing schemes. The multilevel and compartmented access structures are
multipartite, which means that the participants are divided into several parts
(levels or compartments) and all participants in the same part play an equivalent
role in the structure. In addition, in a multilevel access structure, the participants
are hierarchically ordered, and the participants in higher levels are more powerful
than the ones in lower levels. Multipartite and, in particular, hierarchical secret
sharing are the most natural generalization of threshold secret sharing.

Brickell [5] proposed a general method, based on linear algebra, to con-
struct ideal secret sharing schemes for access structures that are not necessarily
threshold, and he applied it to the construction of particular ideal secret sharing
schemes proving the conjecture by Simmons. By using different kinds of polyno-
mial interpolation, Tassa [35], and Tassa and Dyn [36] proposed constructions
of ideal secret sharing schemes for several families of multipartite access struc-
tures, some of them with hierarchical properties. These constructions are based
on the general linear algebra method by Brickell [5], but they provide schemes for
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the multilevel and compartmented access structures that are simpler and more
efficient than the particular ones proposed in [5] for those structures. Other
constructions of ideal multipartite secret sharing schemes have been presented
in [11, 26].

In spite of all those constructions of ideal hierarchical secret sharing schemes,
it was not known what access structures admit such a scheme. This natural
question, which is solved in this paper, is related to the more general problem of
determining what access structures admit an ideal secret sharing scheme, that
is, the characterization of the ideal access structures. This is a very important
and long-standing open problem in secret sharing. Brickell and Davenport [6]
proved that every ideal secret sharing scheme defines a matroid. Actually, this
matroid is univocally determined by the access structure of the scheme. This
implies a necessary condition for an access structure to be ideal. Namely, every
ideal access structure is a matroid port . A sufficient condition is obtained from
the method to construct ideal secret sharing schemes by Brickell [5]: the ports of
representable matroids are ideal access structures. The results in [6] have been
generalized in [16] by proving that, if all shares in a secret sharing scheme are
shorter than 3/2 times the secret value, then its access structure is a matroid
port. At this point, the remaining open question about the characterization of
ideal access structures is determining the matroids that can be defined from ideal
secret sharing schemes. Some important results, ideas and techniques to solve
this question have been given by Matúš [20, 21].

In addition to the search of general results, several authors studied this open
problem for particular families of access structures. Some of them deal with fam-
ilies of multipartite access structures. Beimel, Tassa and Weinreb [1] presented
a characterization of the ideal weighted threshold access structures that gener-
alizes the partial results in [22, 29]. Another important result about weighted
threshold access structures have been obtained recently by Beimel and Wein-
reb [2]. They prove that all such access structures admit secret sharing schemes
in which the size of the shares is quasi-polynomial in the number of users. A com-
plete characterization of the ideal bipartite access structures was given in [29],
and related results were given independently in [25, 27]. Partial results on the
characterization of the ideal tripartite access structures appeared in [8, 11], and
this question was solved in [10]. In every one of these families, all matroid ports
are ports of representable matroids, and hence, all ideal access structures are
vector space access structures, that is, they admit an ideal linear secret sharing
scheme constructed by the method proposed by Brickell [5].

The characterization of the ideal tripartite access structures in [10] was ob-
tained actually from the much more general results about ideal multipartite
access structures in that paper. Pointing out the close connection between mul-
tipartite matroids and integer polymatroids, specially the characterization of
this combinatorial object given by Herzog and Hibi [12], and the use for the
first time in secret sharing of these concepts are among the main contributions
in [10]. The basic definitions and facts about integer polymatroids and the main
results in [10] are recalled in Section 4.
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This paper deals with the two lines of work in secret sharing that have been
discussed previously: first, the construction of ideal secret sharing schemes for
useful classes of access structures, in particular the ones with hierarchical prop-
erties, and second, the characterization of ideal access structures. In this paper
we solve a question that is interesting for both lines of research. Namely, what
hierarchical access structures admit an ideal secret sharing scheme?

First of all, we formalize the concept of hierarchical access structure by in-
troducing in Section 3 a natural definition for it. Basically, if a participant in a
qualified subset is substituted by a hierarchically superior participant, the new
subset must be still qualified. An access structure is hierarchical if, for any two
given participants, one of them is hierarchically superior to the other. According
to this definition, the family of the hierarchical access structures contains the
multilevel access structures [5, 33], the hierarchical threshold access structures
studied by Tassa [35] and by Tassa and Dyn [36], and also the weighted thresh-
old access structures that were first considered by Shamir [32] and studied in [1,
2, 22, 29]. Duality and minors of access structures are fundamental concepts in
secret sharing, as they are in matroid theory. Several important classes of access
structures are closed by duality and minors, as for instance, matroid ports or
K -vector space access structures. Similarly to multipartite and weighted thresh-
old access structures, the family of the hierarchical access structures is closed by
duality and minors. This is discussed in Section 3.

Our main result is Theorem 16, which provides a complete characterization
of the ideal hierarchical access structures. In particular, we prove that all hier-
archical matroid ports are ports of representable matroids. By combining this
with the results in [16], we obtain the following theorem.

Theorem 1. Let Γ be a hierarchical access structure. The following properties
are equivalent:

1. Γ admits a vector space secret sharing scheme over every large enough finite
field.

2. Γ is ideal.
3. Γ admits a secret sharing scheme in which the length of every share is less

than 3/2 times the length of the secret value.
4. Γ is a matroid port.

This generalizes the analogous statement that holds for weighted threshold
access structures as a consequence of the results in [1, 16]. Actually, as an appli-
cation of our results, we present in Section 8 a new proof of the characterization
of the ideal weighted threshold access structures that simplifies the complicated
proof given by Beimel, Tassa and Weinreb [1].

Our starting point is the observation that every hierarchical access struc-
ture is determined by its hierarchically minimal sets, which are the minimal
qualified sets that become unqualified if any participant is replaced by another
one in a lower level in the hierarchy. Our results strongly rely on the connec-
tion between matroids and ideal secret sharing schemes discovered by Brickell
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and Davenport [6]. Moreover, since hierarchical access structures are in partic-
ular multipartite, the results and techniques in [10] about the characterization
of ideal multipartite access structures, which are recalled in Section 4, are ex-
tremely useful. In particular, integer polymatroids play a fundamental role. An-
other important tool is the geometric representation introduced in [10, 29] for
multipartite access structures, which is adapted in Section 3 to the hierarchi-
cal case by introducing the hierarchically minimal points (or h-minimal points
for short) that represent the hierarchically minimal sets. Our characterization
of the ideal hierarchical access structures is given in terms of some properties
of the h-minimal points that can be efficiently checked. By using our results,
given a hierarchical access structure that is described by its h-minimal points,
one can efficiently determine whether it is ideal or not. If the access structure is
described by its minimal qualified subsets, it is easy to determine the h-minimal
points. If the access structure is described in another way, one has to find the
h-minimal points, but this can be done efficiently most of the times. This is the
case, for instance, of weighted threshold access structures that are determined
by the weights and the threshold. Moreover, by combining the results in this
paper with the ones on ideal multipartite secret sharing in [10], a method to
construct an ideal linear secret sharing scheme for every given ideal hierarchical
access structure can be obtained. A more detailed study of this method and the
analysis of its efficiency is deferred to future work.

2 Ideal Secret Sharing Schemes and Matroids

We recall in this section some facts about the connection between ideal secret
sharing schemes and matroids that is derived from the results by Brickell [5] and
by Brickell and Davenport [6]. See [16], for instance, for more information on
these topics.

We begin by presenting the method by Brickell [5] to construct ideal secret
sharing schemes as described by Massey [18, 19] in terms of linear codes. Let
C be an [n + 1, k]-linear code over a finite field K and let M be a generator
matrix of C, that is, a k × (n + 1) matrix over K whose rows span C. Such
a code defines an ideal secret sharing scheme on a set P = {p1, . . . , pn} of
participants. Specifically, every random choice of a codeword (s0, s1, . . . , sn) ∈ C
corresponds to a distribution of shares for the secret value s0 ∈ K, in which
si ∈ K is the share of the participant pi. Such an ideal scheme is called a K-
vector space secret sharing scheme and its access structures is called a K-vector
space access structure. It is easy to check that a set A ⊆ P is in the access
structure Γ of this scheme if and only if the column of M with index 0 is a
linear combination of the columns whose indices correspond to the players in A.
Therefore, if Q = P ∪ {p0} andM is the representable matroid with ground set
Q and rank function r that is defined by the columns of the matrix M , then
Γ = Γp0(M) = {A ⊆ P : r(A ∪ {p0}) = r(A)}. That is, Γ is the port of the
matroid M at the point p0. Consequently, a sufficient condition for an access
structure to be ideal is obtained. Namely, the ports of representable matroids
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are ideal access structures. Actually, they coincide with the vector space access
structures.

As a consequence the results by Brickell and Davenport [6], this sufficient
condition is not very far from being necessary. Specifically, they proved that
every ideal access structure is a matroid port.

With a slightly different definition, matroid ports were introduced in 1964
by Lehman [15] to solve the Shannon switching game, much before secret shar-
ing was invented by Shamir [32] and Blakley [4] in 1979. A forbidden minor
characterization of matroid ports was given by Seymour [31]. Even though the
results in [5, 6] deal with matroid ports, this terminology was not used in those
and many other subsequent works on secret sharing. The old results on ma-
troid ports in [15, 31] were rediscovered for secret sharing by Mart́ı-Farré and
Padró [16], who used them to generalize the result by Brickell and Davenport by
proving that, if all shares in a secret sharing scheme are shorter than 3/2 times
the secret, then its access structure is a matroid port.

3 Hierarchical Access Structures

We present here a natural definition for the family of the hierarchical access
structures, which embraces all possible situations in which there is a hierarchy on
the set of participants. For instance, the weighted threshold access structures and
the hierarchical threshold access structures [35] are contained in this new family.
Hierarchical access structures are in particular multipartite. Therefore, we can
take advantage of the results and techniques in [10] about the characterization of
ideal multipartite access structures. Moreover, the geometric representation for
multipartite access structures that was introduced in [10, 29] will be very useful
as well for our purposes. This representation is adapted here to hierarchical
access structures by introducing the hierarchically minimal points.

Let Γ be an access structure on a set P of participants. We say that the
participant p ∈ P is hierarchically superior to the participant q ∈ P , and we
write q � p, if A ∪ {p} ∈ Γ for every subset A ⊆ P r {p, q} with A ∪ {q} ∈ Γ .
An access structure is said to be hierarchical if all participants are hierarchically
related, that is, for every pair of participants p, q ∈ P , either q � p or p � q. If
p � q and q � p, we say that these two participants are hierarchically equivalent .
Clearly, this is an equivalence relation, and the hierarchical relation � induces
an order on the set of the equivalence classes. Observe that an access structure
is hierarchical if and only if this is a total order.

For a set P , a sequence Π = (P1, . . . , Pm) of subsets of P is called here a
partition of P if P = P1∪· · ·∪Pm and Pi∩Pj = ∅ whenever i 6= j. Observe that
some of the parts may be empty. An access structure Γ is said to be Π-partite
if every pair of participants in the same part Pi are hierarchically equivalent. A
different but equivalent definition for this concept is given in [10]. If m is the
number of parts in Π, such structures are called m-partite access structures. The
participants that are not in any minimal qualified subset are called redundant .
An m-partite access structure is said to be strictly m-partite if there are no
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redundant participants, all parts are nonempty, and participants in different
parts are not hierarchically equivalent.

A Π-partite access structure is said to be Π-hierarchical if q � p for every
pair of participants p ∈ Pi and q ∈ Pj with i < j. That is, the participants in
the first level are hierarchically superior to those in the second level and so on.
Obviously, an access structure is hierarchical if and only if it is Π-hierarchical
for some partition Π of the set of participants. The term m-hierarchical access
structure applies to every Π-hierarchical access structure with |Π| = m.

Some notation is needed to recall the geometric representation of multipartite
access structures introduced in [10, 29]. This notation will be used as well to
present in Section 4 the basic facts about integer polymatroids and, because
of that, all through the paper. Consider a finite set J . For every two points
u = (ui)i∈J and v = (vi)i∈J in ZJ , we write u ≤ v if ui ≤ vi for every i ∈ J .
The point w = u ∨ v is defined by wi = max{ui, vi} for every i ∈ J . The
modulus of a point u ∈ ZJ is |u| =

∑
i∈J ui. For every subset X ⊆ J , we notate

u(X) = (ui)i∈X ∈ ZX and |u(X)| =
∑

i∈X ui. We notate Z+ and Z− for the
sets of the non-negative and the non-positive integers, respectively.

For each partition Π = (P1, . . . , Pm) of the set P , we consider a mapping
Π : P(P ) → Zm

+ defined by Π(A) = (|A ∩ P1|, . . . , |A ∩ Pm|) ∈ Zm
+ . We write

p = Π(P ) = (|P1|, . . . , |Pm|) and P = Π(P(P )) = {u ∈ Zm
+ : u ≤ p}. For a

Π-partite access structure Γ ⊆ P(P ), consider Π(Γ ) = {Π(A) : A ∈ Γ} ⊆ P.
Observe that A ∈ Γ if and only if Π(A) ∈ Π(Γ ), so Γ is univocally represented
by the set of points Π(Γ ) ⊆ P. By an abuse of notation, we will use Γ to denote
both a Π-partite access structure on P and the corresponding set Π(Γ ) of points
in P.

Let Γ be a Π-partite access structure on P . If two points u, v ∈ P are
such that u ≤ v and u ∈ Γ , then v ∈ Γ . This is due to the fact that Γ is a
monotone increasing family of subsets. Therefore, Γ ⊆ P is determined by the
family minΓ ⊆ P of its minimal points. We are using here an abuse of notation
as well, because minΓ denotes also the family of minimal subsets of the access
structure Γ .

Let Γ be a Π-hierarchical access structure. If a set B ⊆ P is obtained from a
set A ⊆ P by replacing some participants by participants in superior levels and
u = Π(A) and v = Π(B), then

∑j
i=1 ui ≤

∑j
i=1 vi for every j = 1, . . . ,m. This

motivates the following order relation, which was introduced in [36, Definition
4.2], also in the framework of hierarchical secret sharing. We say that the point
v ∈ Zm

+ is hierarchically superior to the point u ∈ Zm
+ , and we write u � v, if∑j

i=1 ui ≤
∑j

i=1 vi for every j = 1, . . . ,m. The points in P that are minimal ac-
cording to this order are called the hierarchically minimal points (or h-minimal
points for short) of Γ , and the set of these points is denoted by hminΓ . The
hierarchically minimal sets of Γ are the sets A ⊆ P such that Π(A) is a hier-
archically minimal point. Clearly, if u, v ∈ P are such that u ∈ Γ and u � v,
then v ∈ Γ . This implies that every Π-hierarchical access structure is deter-
mined by the partition Π and its h-minimal points. Since u � v if u ≤ v, we
have that hminΓ ⊆ minΓ , and hence describing a hierarchical access structure
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by its h-minimal points is more compact than doing so by its minimal points.
Observe that a subset of participants is hierarchically minimal if and only if it
is a minimal qualified subset such that it is impossible to replace a participant
in it with another participant in an inferior level and still remain qualified.

We present next three examples of families of hierarchical access structures.
For all of them, we consider the same m-partition Π = (P1, . . . , Pm) of the set
p of participants.

Example 2. A weighted threshold access structure Γ is defined from a real weight
vector w = (w1, . . . , wm) ∈ Rm with w1 > w2 > · · · > wm > 0 and a positive
real threshold T > 0. Namely, Γ is the Π-partite access structure defined by
Γ = {u ∈ P : u1w1 + · · · + umwm ≥ T} ⊆ P. That is, every participant has a
weight and a set is qualified if and only if its weight sum is at least the threshold.
Clearly, such an access structure is Π-hierarchical.

Example 3. Brickell [5] showed how to construct ideal schemes for the multilevel
structures proposed by Simmons [33]. These access structures are of the form
Γ = {A ⊆ P : |A ∩ (∪i

j=1Pj)| ≥ ti for some i = 1, . . . ,m} for some monotone
increasing sequence of integers 0 < t1 < . . . < tm. Clearly, such an access
structure is Π-hierarchical and, if the number of participants in each level is
large enough, its h-minimal points are hminΓ = {t1e1, . . . , tmem}, where ei is
the i-th vector of the canonical basis of Rm.

Example 4. Another family of hierarchical threshold access structures was pro-
posed by Tassa [35]. Given integers 0 < t1 < . . . < tm, they are defined by
Γ = {A ⊆ P : |A ∩ (∪i

j=1Pj)| ≥ ti for every i = 1, . . . ,m}. Such an access
structure is Π-hierarchical and, if the number of participants in every level is
large enough, its only h-minimal point is (t1, t2 − t1, . . . , tm − tm−1).

Duality and minors are fundamental concepts in secret sharing, as they are
in matroid theory. Several important classes of access structures are closed by
duality and minors, as for instance, matroid ports or K -vector space access
structures. More information about these operations on access structures and
their relevance in secret sharing can be found in [16]. The dual of an access
structure Γ on a set P is the access structure on the same set defined by Γ ∗ =
{A ⊆ P : P r A /∈ Γ}. For a subset B ⊆ P , we define the access structures
Γ\B and Γ/B on the set P r B by Γ\B = {A ⊆ P r B : A ∈ Γ} and
Γ/B = {A ⊆ P rB : A ∪B ∈ Γ}. Every access structure that can be obtained
from Γ by repeatedly applying the operations \ and / is called a minor of Γ .
The proof of the following proposition is straightforward.

Proposition 5. The class of the hierarchical access structures is minor-closed
and duality-closed. The same applies to the class of the weighted threshold access
structures.

Let P ′ and P ′′ be two disjoint sets and let Γ ′ and Γ ′′ be access structures on
P ′ and P ′′, respectively. The composition of Γ ′ and Γ ′′ over p ∈ P ′ is denoted
by Γ ′[Γ ′′; p] and is defined as the access structure on the set of participants
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P = P ′ ∪ P ′′ r {p} that is formed by all subsets A ⊆ P such that A ∩ P ′ ∈ Γ ′
and all subsets A ⊆ P such that (A ∪ {p}) ∩ P ′ ∈ Γ ′ and A ∩ P ′′ ∈ Γ ′′. The
composition of matroid ports is a matroid port, and the same applies to K -vector
space access structures. A proof for these facts can be found in [17]. The access
structures that can be expressed as the composition of two access structures on
sets with at least two participants are called decomposable.

Suppose that Γ ′ is (P1, . . . , Pr)-partite and Γ ′′ is (Pr+1, . . . , Pr+s)-partite,
and take p ∈ Pr. Then the composition Γ ′[Γ ′′; p] is (P ′1, . . . , P

′
r+s)-partite with

P ′r = Pr r {p} and P ′i = Pi if i 6= r. If Γ ′ and Γ ′′ are hierarchical, then Γ ′[Γ ′′; p]
is also hierarchical. Observe that the composition is made over a participant in
the lowest level of Γ ′.

4 Multipartite Matroid Ports and Integer Polymatroids

The aim of this and the following sections is to present our main result, The-
orem 16, which is a complete characterization of the ideal hierarchical access
structures in terms of the properties of their h-minimal points. First we recall
here some facts about integer polymatroids and we show the connection between
these combinatorial objects and multipartite matroids and their ports. Since all
ideal access structures are matroid ports, we obtain in this way some necessary
conditions for a hierarchical access structure to be ideal in Section 5. Finally, in
Sections 6 and 7 we show that these necessary conditions are also sufficient.

Multipartite matroid ports are ports of multipartite matroids, and those ma-
troids are closely related to integer polymatroids. We recall here some definitions
and basic facts about integer polymatroids and multipartite matroids, the re-
lation between these two combinatorial objects, and their connections to the
characterization of multipartite access structures. We use in the following the
notation for integer vectors that was introduced in Section 3. More information
about these concepts can be found in [10, 12].

Similarly to matroids, integer polymatroids can be defined in many different
but equivalent ways. We present next the three of those definitions that are
needed to present our results. The first one is in terms of an integer submodular
rank function. The second one considers an integer polymatroid as a set of integer
vectors with certain properties. Finally, the third one is given in terms of the
integer bases, which are the maximal elements in that set of integer vectors. The
equivalence between these definitions is a consequence of results on submodular
functions that are well known in the areas of combinatorial optimization and
discrete convex analysis (see, for instance, the works by Murota [23, 24]). A
full proof of this equivalence has been presented by Herzog and Hibi [12], who
used integer polymatroids in commutative algebra. The formalization of these
combinatorial concepts presented in [12] has been very useful for our purposes.
Actually, a new term (discrete polymatroid) was introduced in [12] to denote the
set of integer vectors defining an integer polymatroid. In our opinion, this new
term is not needed because these sets should be considered as an alternative
way to define integer polymatroids, and not as a new combinatorial object.
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Actually, they are formed by the integer points in the convex polytope associated
to the integer polymatroid. See [37], for instance, for more information about
polymatroids and their associated polytopes.

We notate P(J) for the power set of a set J . An integer polymatroid is an
ordered pair Z = (J, h), where J is a finite set, the ground set , and h, the rank
function, is a mapping h : P(J)→ Z satisfying the following properties

1. h(∅) = 0.
2. h is monotone increasing : if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ).
3. h is submodular : if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

An integer polymatroid with ground set J can be defined as well as a non-
empty finite set D ⊆ ZJ

+ of integer points satisfying the following properties.

1. If u ∈ D and v ∈ ZJ
+ is such that v ≤ u, then v ∈ D.

2. For every pair of points u, v ∈ D with |u| < |v|, there exists w ∈ D with
u < w ≤ u ∨ v.

The equivalence between these two definitions can be proved as follows. On
the one hand, one has to check that, given an integer polymatroid Z = (J, h),
such a set of integer points is univocally determined by the rank function by
D = D(Z) = {u ∈ ZJ

+ : |u(X)| ≤ h(X) for every X ⊆ J}. On the other hand,
it can be proved that, given a set D ⊆ ZJ

+ satisfying the properties above, there
is a unique integer polymatroid Z = (J, h) with D = D(Z), and its rank function
is defined by h(X) = max{|u(X)| : u ∈ D} for every X ⊆ J .

An integer basis of an integer polymatroid Z is a maximal element in D(Z),
that is, a point u ∈ D such that there does not exist any v ∈ D with u <
v. Since we are not going to consider here any other kind of bases of integer
polymatroids, from now on integer bases will be called simply bases. Similarly
to matroids, all bases have the same modulus, and integer polymatroids are
completely determined by their bases. Moreover, a nonempty set B ⊆ ZJ

+ is the
family of bases of an integer polymatroid with ground set J if and only if it
satisfies the following exchange condition.

– For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ J such that uj < vj

and u− ei + ej ∈ B, where ei ∈ ZJ is such that ei
k = 0 if i 6= k and ei

i = 1.

Because of that, this can be seen as another definition of integer polymatroid.
For an integer polymatroid Z = (J, h) and a subset X ⊆ J , we consider

the integer polymatroid Z(X) = (X,h′) defined by h′(Y ) = h(Y ) for every
Y ⊆ X. Since h′ is a restriction of h, both will be usually denoted by h. Clearly,
D(Z(X)) = {u(X) : u ∈ D(Z)} ⊆ ZX

+ . We consider as well the set of points
B(Z, X) ⊆ ZJ

+ such that u ∈ B(Z, X) if and only if u(X) is a basis of Z(X) and
ui = 0 for every i ∈ J rX.

For a partition Π = (Q1, . . . , Qm) of the ground set Q, a matroidM = (Q, r)
is said to be Π-partite if every permutation σ on Q such that σ(Qi) = Qi

for i = 1, . . . ,m is an automorphism of M. From now on, we notate Jm =
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{1, . . . ,m} and J ′m = {0, 1, . . . ,m} for every positive integer m. Then the func-
tion h : P(Jm) → Z defined by h(X) = r(

⋃
i∈X Qi) is the rank function of an

integer polymatroid Z(M) = (Jm, h). Reciprocally, for every integer polyma-
troid Z = (Jm, h) with h({i}) ≤ |Qi| for i ∈ Jm, there exists a unique Π-partite
matroid M with Z(M) = Z.

Consider a partition Π = (P1, . . . , Pm) of a set P and the partition Π0 =
({p0}, P1, . . . , Pm) of the set Q = P ∪ {p0}. A connected matroid port Γ =
Γp0(M) on P is Π-partite if and only if the matroidM is Π0-partite. Therefore,
multipartite matroids, and hence integer polymatroids, are fundamental in the
characterization of ideal multipartite access structures. These connections are in
the core of the results in [10]. In particular, we present next a characterization
of multipartite matroid ports in terms of integer polymatroids that was proved
in [10] and will be extremely useful for our purposes.

Consider a Π-partite matroid port Γ = Γp0(M) and the associated integer
polymatroid Z ′ = Z(M) = (J ′m, h). The Π-partite matroid port Γ is completely
determined by the partition Π and the integer polymatroid Z ′ and we write
Γ = Γ0(Z ′). As a consequence of this fact, the following characterization of
multipartite matroid ports is proved in [10].

Theorem 6 ([10]). Let Π = (P1, . . . , Pm) be a partition of a set P and let Γ be
an Π-partite access structure on P . Then Γ is a matroid port if and only if there
exists an integer polymatroid Z ′ = (J ′m, h) with h({0}) = 1 and h({i}) ≤ |Pi|
such that

minΓ = min {u ∈ B(Z, X) : X ⊆ Jm is such that h(X) = h(X ∪ {0})} ,

where Z = Z ′(Jm) = (Jm, h).

Since every ideal access structure is a matroid port, Theorem 6 provides
a necessary condition for a multipartite access structure to be ideal. Several
necessary conditions for a hierarchical access structure to be ideal will be deduced
from this result in Section 5.

On the other hand, sufficient conditions can be obtained from the fact that
the ports of linearly representable matroids are ideal access structures. We
present in Theorem 7 an interesting result from [10] connecting the linear rep-
resentations of multipartite matroids to the ones of integer polymatroids. This
result is used in Section 6 to find sufficient conditions for a hierarchical access
structure to be ideal.

Let E be a vector space with finite dimension over a finite field K and, for
every i ∈ J , consider a vector subspace Vi ⊆ E. It is not difficult to check that
the mapping h : P(J)→ Z defined by h(X) = dim(

∑
i∈X Vi) is the rank function

of an integer polymatroid with ground set J . The integer polymatroids that can
be defined in this way are said to be K -linearly representable.

Theorem 7 ([10]). For every large enough field K , an m-partite matroidM is
K -linearly representable if and only if its associated integer polymatroid Z(M) =
(Jm, h) is K -linearly representable.



12 Oriol Farràs and Carles Padró

5 Hierarchical Matroid Ports

In this section, we use the connection between integer polymatroids and multi-
partite matroid ports that is discussed in Section 4 to find necessary conditions
for hierarchical access structures to be matroid ports. Of course, these will be
as well necessary conditions for hierarchical access structures to be ideal.

We present first a technical lemma that apply to every integer polymatroid.
Specifical results on integer polymatroids associated to hierarchical matroid
ports will be given afterwards. Due to space constraints, the proofs of most
of these results are omitted.

For every i, j ∈ Z we notate [i, j] = {i, i+ 1, . . . , j} if i < j, while [i, i] = {i}
and [i, j] = ∅ if i > j. Let Z = (Jm, h) be an integer polymatroid. For every
i ∈ Jm, consider the point yi(Z) ∈ Zm

+ defined by yi
j(Z) = h([j, i])−h([j+ 1, i]).

Observe that
∑i

j=s y
i
j(Z) = h([s, i]) for every s ∈ [1, i]. In addition, by the

submodularity of the rank function, yi
j(Z) ≥ yi+1

j (Z) if 1 ≤ j ≤ i < m.

Lemma 8. For every i = 1, . . . ,m, the point yi(Z) is the hierarchically min-
imum point of B(Z, [1, i]), that is, y ∈ B(Z, [1, i]) and y � x for every x ∈
B(Z, [1, i]).

For the remaining of this section, we assume that Γ is a Π-hierarchical ma-
troid port, where Π = (P1, . . . , Pm) is an m-partition of the set of participants
P . Recall that we notate P = Π(P(P )) ⊆ Zm

+ . In addition, we assume that
the access structure Γ is connected , that is, that every participant is in a mini-
mal qualified subset or, equivalently, for every i ∈ Jm, there is a minimal point
x ∈ minΓ such that xi > 0. Consider the integer polymatroid Z ′ = (J ′m, h) such
that Γ = Γ0(Z ′), and the integer polymatroid Z = Z ′(Jm) = (Jm, h). Since Γ is
connected, h({i}) > 0 for all i ∈ Jm, and hence yi

i(Z) > 0. For every x ∈ Zm
+ , we

notate supp(x) = {i ∈ Jm : xi 6= 0} ⊆ Jm and s(x) = max(supp(x)). Observe
that s(x) is the index of the most inferior hierarchical level represented in the
sets A ⊆ P with Π(A) = x.

Lemma 9. If x ∈ P is a minimal point of Γ , then x ∈ B(Z, [1, s(x)]).

Lemma 10. If x ∈ P is an h-minimal point of Γ , then x = ys(x)(Z).

Proof. From Lemma 9, x ∈ B(Z, [1, s(x)]) and, since B(Z, [1, s(x)]) ⊆ Γ by
Theorem 6, x is h-minimal in B(Z, [1, s(x)]). By Lemma 8, this implies that
x = ys(x)(Z). ut

At this point, we have identified the h-minimal points of the hierarchical
matroid port Γ . Namely, they are the h-minimal elements in {y1(Z), . . . , ym(Z)}.

Lemma 11. If x, y ∈ P are two different h-minimal points of Γ , then s(x) 6=
s(y). Moreover, if s(x) < s(y), then |x| < |y| and xj ≥ yj for all j = 1, . . . , s(x).
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Proof. Since s(yi(Z)) = i, it is clear that s(x) 6= s(y) if x 6= y. Suppose that
s(x) < s(y). Since |x| = h([1, s(x)]) and |y| = h([1, s(y)]), we have that |x| ≤ |y|.
Moreover, if |x| = |y|, then x ∈ B(Z, [1, s(y)]), and hence y � x, a contradiction.
Finally, xj = y

s(x)
j (Z) ≥ ys(y)

j (Z) = yj for all j = 1, . . . , s(x). ut

As a consequence of Lemma 11, the h-minimal points in a hierarchical ma-
troid port behave as in the hierarchical threshold access structure proposed by
Simmons [33] (Example 3). Namely, if A and B are both hierarchically minimal
qualified sets, but the least member of B is strictly inferior to the least member
of A, then B must be larger than A. The last necessary condition for a hierar-
chical access structure to be ideal is given in the following lemma, whose proof
is also omitted here.

Lemma 12. Let x, y ∈ P be two different h-minimal points of Γ with s(x) <
s(y) such that there is not any h-minimal point z with s(x) < s(z) < s(y). If
xi > yi for some i ∈ [1, s(x)− 1], then |Pj | = xj for all j ∈ [i+ 1, s(x)].

6 A Family of Ideal Hierarchical Access Structures

The results in Section 5 provide necessary conditions for a Π-hierarchical access
structure to be a matroid port, and hence to be ideal, in terms of the properties of
its h-minimal points. A sufficient condition is given in this section by constructing
a new family of hierarchical vector space secret sharing schemes. Specifically, we
present a family of linearly representable integer polymatroids and we prove
that the multipartite access structures that are obtained from them are actually
hierarchical. In addition, they are vector space access structures by Theorem 7.

Consider a finite field K and a pair of integer vectors a = (a0, . . . , am) ∈
Zm+1

+ and b = (b0, . . . , bm) ∈ Zm+1
+ such that a0 = a1 = b0 = 1, and ai ≤ ai+1 ≤

bi ≤ bi+1 for every i = 0, . . .m−1. Take d = bm and consider a basis {e1, . . . , ed}
of Kd and, for every i = 1, . . . ,m, consider the subspace Vi = 〈eai , . . . , ebi〉 ⊆
Kd. Let Z ′ = Z ′(a,b) = (J ′m, h) be the integer polymatroid that is linearly
represented by the subspaces V0, V1, . . . , Vm. Observe that the rank function h
of Z ′ is such that h(A) = | ∪i∈A [ai, bi]| for all A ⊆ J ′m. In particular, h([j, i]) =
|[aj , bi]| = bi−aj + 1 whenever 0 ≤ j ≤ i ≤ m, and hence h({0}) = 1. Therefore,
for every set of players P and for every m-partition Π = (P1, . . . , Pm) of P
such that |Pi| ≥ h({i}) = bi − ai + 1, we can consider the Π-partite matroid
port Γ = Γ0(Z ′) that is determined as in Theorem 6. Since Z ′ is K-linearly
representable for every finite field K, we have from Theorem 7 that Γ is a K-
vector space access structure for every large enough finite field K.

Consider the integer polymatroid Z = Z(a,b) = Z ′(Jm) = (Jm, h) and, for
i = 1, . . . ,m, the points yi = yi(Z) ∈ Zm

+ . Observe that yi
j = h([j, i]) − h([j +

1, i]) = aj+1−aj if j < i while yi
i = bi−ai +1. Therefore, yi = (a2−a1, . . . , ai−

ai−1, bi−ai +1, 0, . . . , 0). A proof for the following lemma, which is the key result
in this section, will be given in the full version.

Lemma 13. The access structure Γ is Π-hierarchical.
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By taking into account Lemma 13 and the fact that the h-minimal points of
Γ are of the form yi(Z(a,b)), the next proposition can be proved. It provides a
sufficient condition for a hierarchical access structure to be ideal.

Proposition 14. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P . Let x1, . . . , xr ∈ Zm

+ be the h-minimal
points of Γ and consider si = s(xi) = max(supp(xi)). Suppose that the following
properties are satisfied.

1. If i < j, then si < sj and xi
k = xj

k for all k = 1, . . . , si − 1.
2. If sj−1 < i ≤ sj, then |Pi| ≥

∑sj

`=i x
j
`.

Then Γ is ideal and, moreover, it admits a K-vector space secret sharing scheme

for every finite field K with |K| >
(
|P |+ 1
|xr|

)
.

The bound on the size of the field is a consequence of the results in [10] (full
version) about the representability of multipartite matroids. Observe that, in
particular, all hierarchical access structures that have only one h-minimal point
are vector space access structures. Because of that, it can be proved by using
well known basic decomposition techniques (see [34], for instance) that every
hierarchical access structure admits a linear secret sharing scheme in which the
length of every share is at most m times the length of the secret, being m the
number of h-minimal points.

7 A Characterization of Ideal Hierarchical Access
Structures

By using the results in Sections 5 and 6, we present here a complete charac-
terization of ideal hierarchical access structures. Moreover, we prove that every
ideal hierarchical access structure is a K-vector space access structure for every
large enough finite field K. The next result is a consequence of Proposition 14
and the necessary conditions for a hierarchical access structure to be ideal given
in Section 5. It provides a characterization of hierarchical access structures in
which the number of participants in every hierarchical level is large enough in
relation to the h-minimal points. The proof of this result is omitted here.

Theorem 15. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P with hminΓ = {x1, . . . , xr}. For i =
1, . . . , r, consider si = s(xi) = max(supp(xi)) and suppose that |Psi

| > xi
si

.
Then Γ is ideal if and only if

1. si 6= sj if i 6= j, and
2. if si < sj, then xi

k = xj
k for all k = 1, . . . , si − 1.

Moreover, in this situation Γ is a K-vector space access structure for every finite

field K with |K| >
(
|P |+ 1
|xr|

)
.
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Finally, we present our complete characterization of ideal hierarchical access
structures in terms of the properties of the h-minimal points. Actually, we prove
that a hierarchical access structure is ideal if and only if it is a minor of an
access structure in the family that is presented in Section 6. Therefore every
ideal hierarchical access structure is a K-vector access structure for all large
enough finite fields K, and this proves Theorem 1. The proof of this result will
be presented in the full version.

Theorem 16. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P with minH Γ = {x1, . . . , xr}. For i =
1, . . . ,m, consider si = s(xi) = max(supp(xi)) and suppose that the h-minimal
points are ordered in such a way that si ≤ si+1. Then Γ is ideal if and only if

1. si < si+1 and |xi| < |xi+1| for all i = 1, . . . , r − 1, and
2. xi

j ≥ x
i+1
j if 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ si, and

3. if xi
j > xr

j for some 1 ≤ i < r and 1 ≤ j < si, then |Pk| = xi
k for all

k = j + 1, . . . , si.

We present in the following a few examples of applications of our character-
ization of the ideal hierarchical access structures.

Example 17. Consider a set P with a 4-partition Π = (P1, P2, P3, P4) with |Pi| =
4 for every i = 1, . . . , 4. Let Γ be the weighted threshold access structure defined
as in Example 2 by the weight vector w = (7, 5, 4, 3) and the threshold T = 13.
The h-minimal points of Γ are x1 = (2, 0, 0, 0), x2 = (0, 1, 2, 0), and x3 =
(0, 0, 1, 3). Since x2

2 > x3
2 and |P3| > x2

3, it follows from Theorem 16 that Γ is
not ideal.

Example 18. For a 4-partition Π = (P1, P2, P3, P4) of the set P of participants
and positive integers 0 < t1 < t2 < t3 < t4, consider the Π-hierarchical access
structure Γ that is formed by the sets with at least one participant from P1

that, in addition, have t1 participants in P1, or t2 participants in P1 ∪ P2, or
t3 participants in P1 ∪ P2 ∪ P3, or t4 participants in total. If the number of
participants in each part is large enough, then Γ is ideal by Theorem 16 because
its h-minimal points are (1, 0, 0, t4), (1, 0, t3, 0), (1, t2, 0, 0), and (t1, 0, 0, 0). In
any other case, Γ is a minor of a 4-hierarchical access structure having those
h-minimal points, and hence it is ideal as well.

Example 19. From the constructions by Brickell [5] and by Tassa [35], we know
that the access structures described in Examples 3 and 4 are ideal. Actually, this
fact is proved very easily from our results. The h-minimal points of the access
structures in Example 3 are hminΓ = {t1e1, . . . , tmem}, which clearly satisfy
the conditions in Theorem 16. Since the access structures in Example 4 have
only one h-minimal point, they are ideal as well.

Example 20. Tassa [35] proposed an open problem on hierarchical access struc-
tures that can be solved by using our results. For a partition Π = (P1, . . . , Pm)
of the set P of participants, a sequence of integers 0 < t1 < · · · < tm, and an
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integer ` ∈ Jm, consider the Π-hierarchical access structure Γ defined as follows:
A point u ∈ P is in Γ if and only if |{i ∈ Jm :

∑i
j=1 uj ≥ ki}| ≥ `. The open

problem proposed by Tassa [35] is to determine what access structures of this
form are ideal. Observe that the extreme cases ` = 1 and ` = m correspond
to the ideal hierarchical access structures in Examples 3 and 4, respectively. By
using the results in this paper it can be proved that, if Γ is connected, then it is
ideal if and only if ` = 1 or ` = m. This is proved by finding, for every connected
access structure of this form with 1 < ` < m, two different h-minimal points
x, y ∈ hminΓ with s(x) = s(y).

8 Ideal Weighted Threshold Access Structures

Beimel, Tassa and Weinreb [1] presented a characterization of the ideal weighted
threshold access structures. Their proof is long and complicated. By using our
characterization of ideal hierarchical access structures, we obtained a simpler
proof for the result in [1]. Due to space constraints, we can only present here a
sketch of it. The complete proof will be given in the full version of the paper.

As was noticed in [1], an ideal weighted threshold access structure can be
the composition smaller such ideal structures Because of that, we focus on the
indecomposable structures in this family.

First, we describe several families of ideal weighted threshold access struc-
tures such that, as is stated in Theorem 21, they contain all indecomposable
ideal weighted threshold access structures. The (t, n)-threshold access structures
form the first of those families. Of course, they are ideal weighted threshold
access structures. We consider as well three families of ideal bipartite hierar-
chical access structures, that is, ideal Π-hierarchical access structures for some
partition Π = (P1, P2) of the set of participants. The family B1 consists of
the access structures with hminΓ = {(x1, x2)}, where 0 < x1 < |P1| and
0 < x2 = |P2| − 1. The family B2 is formed by the access structures with
hmin(Γ ) = {(x1, 0), (0, x1 + 1)} for some integer x1 > 1. The family B3 contains
the access structures with hminΓ = {(y1 + y2 − 1, 0), (y1, y2)}, where y1 > 0,
y2 > 2, and |P2| ≤ y2 ≤ |P2|+ 1. In addition, we consider three families of ideal
tripartite hierarchical access structures. The family T1 consists of the structures
with hminΓ = {(x1, 0, 0), (0, y2, y3)}, where 0 < y2 < |P2| and 1 < y3 = |P3|−1,
and x1 = y2 + y3 − 1. We consider as well the family T2 of the structures such
that hminΓ = {(x1, 0, 0), (y1, y2, y3)} with 0 < y2 = |P2| and 1 < y3 = |P3| − 1,
and x1 = y1 + y2 + y3 − 1. Finally, the family T3 contains the access structures
with hminΓ = {(x1, x2, 0), (y1, y2, y3)}, where 0 < y1 < x1, and 1 < y3 = |P3|,
and 0 < x2 = y2 + 1 = |P2|, and x1 + x2 = y1 + y2 + y3 − 1. It can be proved
that all the members of these families are weighted threshold access structures.
At this point, we can state the characterization of the ideal weighted threshold
access structures.

Theorem 21. A weighted threshold access structure is ideal if and only if

1. it is a threshold access structure, or
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2. it is a bipartite access structure in one of the families B1, B2 or B3, or
3. it is a tripartite access structure in one of the families T1, T2 or T3, or
4. it is a composition of smaller ideal weighted threshold access structures.

We present next a sketch of our proof for this result. To begin with, sev-
eral technical results on the properties of h-minimal points in indecomposable
hierarchical access structures are needed. Then, several properties that must be
satisfied by every ideal indecomposable weighted threshold access structure Γ
are proved. First, if Γ is strictly bipartite, then it is in one of the families B1,
B2 or B3. Second, if Γ is strictly m-partite with m ≥ 3, then it has exactly
two h-minimal points. Third, if Γ is strictly tripartite, then it is in one of the
families T1, T2 or T3. Finally, it is proved that such an access structure cannot
be strictly m-partite with m > 3.

9 Acknowledgements

The authors thank Ronald Cramer and Enav Weinreb for useful discussions,
comments and suggestions. The authors thank as well the anonymous referees
for their careful revision of the paper and their valuable comments that greatly
improved the presentation of the paper.

References

1. A. Beimel, T. Tassa, E. Weinreb. Characterizing Ideal Weighted Threshold Secret
Sharing. SIAM J. Discrete Math. 22 (2008) 360–397.

2. A. Beimel, E. Weinreb. Monotone Circuits for Monotone Weighted Threshold Func-
tions. Information Processing Letters 97 (2006) 12–18.

3. J. Benaloh, J. Leichter. Generalized secret sharing and monotone functions. Ad-
vances in Cryptology, CRYPTO’88. Lecture Notes in Comput. Sci. 403 (1990)
27–35.

4. G.R. Blakley, Safeguarding cryptographic keys. AFIPS Conference Proceedings.
48 (1979) 313–317.

5. E.F. Brickell. Some ideal secret sharing schemes. J. Combin. Math. and Combin.
Comput. 9 (1989) 105–113.

6. E.F. Brickell, D.M. Davenport. On the classification of ideal secret sharing schemes.
J. Cryptology 4 (1991) 123–134.

7. R.M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro. On the size of shares of
secret sharing schemes. J. Cryptology 6 (1993) 157–168.

8. M.J. Collins. A Note on Ideal Tripartite Access Structures. Cryptology ePrint
Archive, Report 2002/193, http://eprint.iacr.org/2002/193.

9. L. Csirmaz. The size of a share must be large. J. Cryptology 10 (1997) 223–231.
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