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Abstract. A family of trapdoor functions is one-way under correlated
inputs if no efficient adversary can invert it even when given the value of
the function on multiple correlated inputs. This powerful primitive was
introduced at TCC 2009 by Rosen and Segev, who use it in an elegant
black box construction of a chosen ciphertext secure public key encryp-
tion. In this work we continue the study of security under correlated
inputs, and prove that there is no black box construction of correlation
secure injective trapdoor functions from classic trapdoor permutations,
even if the latter is assumed to be one-way for inputs from high entropy,
rather than uniform distributions. Our negative result holds for all in-
put distributions where each xi is determined by the remaining n − 1
coordinates. The techniques we employ for proving lower bounds about
trapdoor permutations are new and quite general, and we believe that
they will find other applications in the area of black-box separations.

1 Introduction

In this paper we study the following question: can classic trapdoor permutations
be used to construct trapdoor functions that remain one way even when the
adversary is given Fpub1

(x1), . . . , Fpubn(xn) for independently chosen keys pubi,
but where the inputs xi are correlated. In [17] Rosen and Segev introduce this
problem, and highlight its importance by using such “correlation secure” injec-
tive trapdoor functions in a black box construction of chosen ciphertext secure
public key encryption. Although this important type of public key encryption
can be constructed from classic trapdoor permutations (see e.g., the seminal
work of Dolev et al [8,9]), the constructions that achieve this goal make use of
non-black-box techniques, which tend to be quite inefficient. In recent years there
has been renewed effort to obtain constructions that use simpler primitives in a
black box manner, yet so far no such constructions have been based on either
semantically secure public key encryption, or even trapdoor permutations.

More generally, trapdoor permutations are a powerful public key primitive
that is sufficient for many difficult applications in cryptography. Yet certain
? Supported by the Natural Sciences and Engineering Research Council of Canada.



tasks, such as Identity Based Encryption [4,5], have so far resisted attempts
to be solved using this tool. Indeed, the limits of what can be constructed from
trapdoor permutations are not well understood. In this paper we show that trap-
door permutations do not permit a black box construction of correlation secure
injective trapdoor functions, even if the inputs are chosen from a distribution
with very little correlation.

On a parallel line of research, our work is a step in the study of resettable se-
curity, a notion introduced by Canetti et al [6] in the context of Zero-Knowledge
Proofs, and recently extended to general secure computation by Goyal and Sa-
hai [14]. Informally, in resettable security the adversary is allowed to restart his
security experiment while forcing the target primitive to reuse some of its previ-
ous randomness. The study of correlation security can be seen as another form
of resettability: the adversary is allowed to selectively restart the experiment
by preserving the random input to the functions, but forcing the regeneration
of the function keys. In light of the positive results on resettability it is quite
interesting that trapdoor permutations cannot be easily made resettably secure.
Hence, our result can be seen as a step towards identifying which functionalities
can be made resettably secure, and what is the required amount of interaction
for achieving that level of security.

We now describe our problem and results in more detail, followed by an
overview of related work, and an exposition of our technical approach.

Black-Box Cryptography. A common approach for constructing cryptographic
primitives is to base them on some other, simpler, primitives that are believed
to be secure. A construction of primitive A from primitive B is black box if
the algorithms of A use the algorithms of B as oracles. A security reduction
from A to B is black-box if there exists an adversary S such that for every
adversary T that breaks B, S breaks A. Furthermore, S uses T as an oracle.
In recent years, several breakthrough papers provide non-black-box solutions to
some cryptographic tasks. Nevertheless, black-box constructions remain the most
common approach. In this paper, all our results concern black-box constructions
with a black-box security reduction. Such constructions are called “Fully Black-
Box” in the taxonomy of Reingold et al [16].

Our Contributions. One-way trapdoor functions were introduced by Diffie and
Hellman in [7]. Informally, a family of functions is one-way if given a description
of randomly chosen function fpub of that family, and its image fpub(x) on a ran-
domly chosen input x, no efficient adversary can output x. A family of functions
is “trapdoor” if there is a key generation algorithm that outputs a pair of strings
(pub, pri) such that it is easy to invert Fpub(·) given pri. The notion of correlation
security, introduced by Rosen and Segev in [17], extends the above experiment
by giving the adversary

(
Fpub1

(x1), . . . , Fpubn(xn)
)

where the pubi are indepen-
dently generated public keys, and (xi)i∈[n] are sampled from some distribution
C. The family of functions is considered C-correlation secure if no efficient ad-
versary can invert the function on one of the coordinates. Of particular interest
are distributions where the entire tuple (xi) is reconstructible given some subset



of the coordinates. Correlation security under such distributions was shown in
[17] to be sufficient to obtain chosen ciphertext security. In this paper we prove
the following black-box separations:

– Let C1 be the uniform 2-repetition distribution: pairs of the form (x, x) where
x is chosen uniformly at random. We show that there does not exist a black
box construction of a C1-correlation secure family of injective trapdoor func-
tions from classic trapdoor permutations.

– We then extend the above result to all input distributions that are (n− 1)-
reconstructible. That is, distributions of the form (x1, . . . , xn) where each
xi is determined by (x1, . . . , xi−1, xi+1, . . . , xn). This includes distributions
with very weak correlation among the coordinates, such as (n − 1)-wise in-
dependent distributions that are reconstructible in the above sense.

The base primitive in our separation actually has much stronger security prop-
erties than mere one-wayness. Indeed, our proofs show that even if one assumes
a trapdoor permutation that is one-way for non-uniform (but high entropy) in-
puts then correlation security still cannot be achieved. Trapdoor permutations
that are one-way for high entropy inputs have been shown by Bellare et al [1]
to be sufficient to obtain deterministic public key encryption – a type of injec-
tive trapdoor functions, introduced by Bellare et al in [2], that hide almost all
information about their input.

Related Work. In [15] Impagliazzo and Rudich introduced an approach for prov-
ing black-box separation results. In that seminal paper they prove a separation
between one-way permutations and secure key-agreement. Since then a large
body of research has followed their basic methodology. We provide a survey
of the most relevant results, and recommend reading [16] for a more complete
overview.

In this paper we study limits of public key primitives. In [11] Gertner et
al show that public key encryption and Oblivious Transfer are incomparable
under black-box reductions. They also show that trapdoor permutations can-
not be constructed in a black-box way from public key encryption, and from
trapdoor functions (functions which are not necessarily permutations, but allow
sampling from the pre-image given trapdoor information). In [12] Gertner et al
show that there is no black-box reduction from poly-to-one trapdoor functions
to semantically secure public key encryption. Intuitively, [12] show that pub-
lic key encryption is weaker than trapdoor functions because the latter allows
the recovery of the complete input of the encryption algorithm, including the
randomness. In contrast, a public key decryption algorithm recovers only the
encrypted message, but not the randomness that was used by the encryptor.
In [10] Gennaro et al show limits on the efficiency of cryptographic primitives
constructed in a black-box way from basic tools such as one-way permutations,
and trapdoor permutations. In particular they show bounds on the number of
times that a trapdoor permutation needs to be invoked in order to construct
a semantically secure public key encryption. Their lower bound is a function
of the number of bits that the public key encryption scheme encrypts. Towards



obtaining their result, Gennaro et al define an oracle model which provides all al-
gorithms access to a random trapdoor permutation family. We adopt this model
partially in our work.

In [13] Gertner et al prove that chosen ciphertext secure public key encryption
cannot be constructed in a black-box way from semantically secure public key
encryption, provided that the decryption algorithm does not query the encryp-
tion oracle of the underlying primitive. In light of previous results that separate
trapdoor permutations from semantically secure public key encryption the [13]
result leaves open the possibility of achieving chosen ciphertext security using
trapdoor permutations. Interestingly, the decryption algorithm in the construc-
tion of [17] does query the “encryption” algorithm of the underlying trapdoor
function. In [5] Boneh et al show that Identity Based Encryption cannot be con-
structed in a black-box way from trapdoor permutations. In the context of the
transformation by Boneh et al [3] of any Identity Based Encryption to a chosen
ciphertext secure public key encryption, the work of [5] rules out one possible
method of getting CCA public key encryption from trapdoor permutations. Our
work rules out another such approach.

Overview of Techniques. The basic approach of most black-box separation re-
sults can be described as follows. Given a target primitive A and a base primitive
B first define an “idealized” version of B. The idealized B is usually a distri-
bution on functions that satisfy B’s correctness requirements. Then, show that
an adversary that is given oracle access to the ideal B cannot break its secu-
rity, even if that adversary is computationally unbounded1. Then, describe an
adversary that, by making a small number of queries to the ideal B, breaks any
construction of A. Note that the fact that the adversaries are computationally
unbounded requires any non-trivial A to make essential use of the ideal B oracle
(otherwise that A is trivially broken). A common final step is to “project” the
result into the realm of polynomial time computation by adding a PSPACE
complete oracle. This oracle makes a polytime adversary effectively unbounded,
but it does not help break the ideal B. For more details about this general
approach we direct the reader to [15,16,18].

We use the work of [10] and [5] as a basis for defining our ideal trapdoor
permutation oracle. In their work, Gennaro et al define a distribution on triples
of functions (g, e, d) where g(·) is a random function that maps trapdoors to
public keys, e(pub, ·) is an independent random permutation for every public
key pub, and d(pri, ·) inverts the permutation e(pub, ·) if pri is a trapdoor for
pub. Although this model captures nicely the concept of an ideal trapdoor per-
mutation, we cannot adopt it directly. The problem is that the triple (g, e, d)
is in fact correlation secure: for each public key pub the permutation e(pub, ·)
is chosen independently at random. So, seeing e(pub1, x) and e(pub2, x) does
not provide any additional information about x over just seeing e(pub1, x). Our
solution is to introduce an additional oracle which we call Break so that given

1 Note that this necessarily implies that there is no polynomial time implementation
of the idealized B.



access to (g, e, d,Break) it is no longer possible to obtain correlation security, but
one-wayness is preserved with respect to independently random inputs. It is the
main technical contribution of this paper to find the delicate balance that leaves
the entire oracle just strong enough to preserve one-wayness, but weak enough
to obtain the negative result.

On a high level, the oracle Break can be described as follows: Break takes
as input a triple of circuits G,E,D which are a candidate correlation secure
trapdoor function. The other inputs are, two public keys PUB1 and PUB2, and
the values EPUB1(x) and EPUB2(x). The naive solution would be to return x.
However, this would easily allow an adversary to invert any function simply by
setting pub1 = pub2. Ideally we would like to restrict Break to return x only
when pub1 and pub2 are independently generated public keys of the provided
trapdoor permutation. This, however, seems hard to check. Indeed, how can we
verify that the public keys were properly generated? Moreover, even performing
a simpler test: that the public keys are valid (that is, they are outputs of the key
generation algorithm), may give too much power to the adversary. In particular,
an adversary trying to invert f(x), where f is any function, may design a trap-
door permutation scheme where pub1 is a valid public key if and only if the first
bit of x is 0. To prevent the adversary from performing the above attack, we
require her to provide a triple of functions O′ = (g′, e′, d′) that is defined on a
small part of the domain of (g, e, d) but such that relative to O′, pub1 and pub2

are valid public keys. The partial oracle O′ is then superimposed on O to obtain
a new complete oracle O′′ relative to which pub1 and pub2 are valid public keys.
The oracle Break then performs its computation relative to the new oracle O′′.

This modification successfully deals with the issue of the validity of public
keys, but we are still left with no way of knowing that the public keys were
generated independently. This causes a problem because an adversary trying to
break the random trapdoor permutation (g, e, d) may simply set pub1 to be the
public key that she is trying to break, and set pub2 = pub1. Thus, some kind
of additional check seems necessary, yet testing for independence of pub1 and
pub2 seems too much to hope for. As it turns out, we do not need the two public
keys to be completely independent. As illustrated by the above example, we
run into a problem when our Break oracle allows the adversary to use the same
public key of (g, e, d) in both public keys of (G,E,D). But, if we require that
the sets of public keys of (g, e, d) that are used to generate PUB1 and PUB2 are
disjoint, then it becomes difficult to invert y = e(pub, x). To do so the adversary
would have to find e(pub′, x) for some pub′ different from pub. However, this is
as hard as finding x since the permutations e(pub, ·) and e(pub′, ·) are random
and independent. We formalize the above ideas in Section 3.

2 Preliminaries

2.1 Notation

Denote by N the set of natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}.
For a set S we denote by x←R S the procedure of uniformly sampling an element



from S and assigning the value to x. We write x ∈R S to denote the fact that x
is a uniformly sampled element of S. Although the distinction between families
of functions and functions is very important, we occasionally write “trapdoor
permutation” and “trapdoor function” instead of “family of trapdoor permuta-
tions” and “family of trapdoor functions”. We do so to improve exposition, and
only when the meaning is clear from context.

2.2 Probabilistic Lemmas

We will make use of the following simple fact:

Lemma 1. Let X1, . . . , Xn+1 be independent Bernoulli random variables, where
Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p for i = 1, . . . , n+ 1 and some p ∈ [0, 1].
Let E be the event that the first n variables are sampled at 1, but Xn+1 is sampled
at 0. Then, Pr[E ] ≤ 1

e·n . Note that the bound is independent of p.

2.3 Non-Uniform Trapdoor Permutations in the Presence of
Oracles

We prove our theorems in a non-uniform computational model. Thus, a collection
of Trapdoor Permutations is specified, for each value of the security parameterm,
by a triple of deterministic PT algorithms (G,E,D), and the following additional
parameters:

– λ(m) is the length parameter of the trapdoor permutation oracle (g, e, d)
that is used by (G,E,D).

– q = q(m) is the maximum number of oracle queries that any of the algorithms
make in a single execution. For convenience we assume that the algorithms
always make exactly q queries.

The functionality of each of the algorithms is as follows: G(·) takes as input
a trapdoor PRI ∈ {0, 1}m, and outputs a function public key PUB ∈ {0, 1}m.
EPUB(·) is a permutation on strings of length m. Finally, DPRI(·) computes the
inverse function of EG(PRI)(·).

We now define two security conditions: one-wayness, and correlation-security
(or one-wayness in the presence of correlated products). Let A be an algorithm
with access to the same oracle as (G,E,D). We define the advantage of A in the
one-wayness experiment with respect to an input distribution D over {0, 1}m as
follows:

δOW (A,D)
def
= Pr[A(PUB, EPUB(x)) = x; PUB← G(PRI)]

where PRI is chosen uniformly at random from {0, 1}m and x is sampled ac-

cording to D. For convenience, we denote δOW (A)
def
= δOW (A,Um), where Um

is the uniform distribution over {0, 1}m.



For a distribution C on ({0, 1}m)n for some n ∈ N, we define the advantage
of A in the C-correlation security experiment as follows:

δCS(A)
def
= Pr[A((PUBi, EPUBi(xi))i∈[n]) ∈ {xi}i∈[n] ; PUBi ← G(PRIi)]

where (xi)i∈[n] ∈R C, and PRIi for i ∈ [n] are chosen uniformly at random from
{0, 1}m. As a convention, we will frequently omit the lengths of strings when
discussing trapdoor permutations, when the length is clear from context.

We measure the complexity of algorithms in the oracle model only by the
number of oracle queries that they make. Using a standard technique of adding
a PSPACE oracle we obtain the fully black-box separation for probabilistic
polynomial time Turing Machines (see [16,18] for a detailed exposition of the
approach).

3 Our Oracles

We prove our theorem in a relativized model where all algorithms have access
to three random oracles (g, e, d) that roughly correspond to the algorithms G,
E, and D of a Trapdoor Permutation. For every λ ∈ N, the oracles (g, e, d)
are sampled uniformly at random from the set of all functions satisfying the
following conditions:

– g : {0, 1}λ → {0, 1}λ. We view g as taking a secret key pri as input and
outputting a public key.

– e : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input pub ∈ {0, 1}λ and
x ∈ {0, 1}λ outputs e(pub, x) ∈ {0, 1}λ. We require that for every pub ∈
{0, 1}λ the function e(pub, ·) be a permutation of {0, 1}λ.

– d : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input pri ∈ {0, 1}λ and
y ∈ {0, 1}λ outputs an x ∈ {0, 1}λ that is the (unique) pre-image of y under
the permutation defined by the function e(g(pri), ·).

Redundancy of d. The function d is completely determined by g, e. Thus,
when discussing a description of a trapdoor permutation oracle O = (g, e, d) we
will assume that d is deduced from g, e rather than being part of the description.

Partial Oracles. In our proofs we will occasionally need to refer to trapdoor
permutation oracles that are defined on a subset of the domain. We call a function
O′ = (g′, e′) which is defined on a subset of the domain of O, a valid partial oracle
if for every pub, e′(pub, ·) is 1-1. Again, d is not part of the description of O′.
Instead, it is determined from (g′, e′) as follows: for strings pri, and y, d(pri, y)
is defined and equal to x if and only if g′(pri) = pub and e′(pub, x) = y.

Conventions. Without loss of generality we assume that whenever an algo-
rithm makes an oracle query of the form d(pri, y), it first queries g(pri). This
assumption is useful for a cleaner presentation of our proofs.



The Oracle Break. In addition to the oracles O = (g, e, d), our adversary
will have access to an oracle Break that weakens the above random trapdoor
permutation. Before we can describe Break we must introduce some additional
notation.

3.1 Oracle Notation

Before proceeding with the description of the oracle Break, let us introduce
additional notation that we use when discussing various aspects of the trapdoor
permutation oracle.

Oracle algorithms. For a function O and algorithm A we denote by AO the
fact that A may make queries to O.

Functions as sets. It will occasionally be convenient to view the trapdoor per-
mutation oracle O = (g, e, d) as sets of input-output pairs. We will use square
brackets to denote the symbolic form of a mapping. For instance: to denote
that e(pub, x) = y we may write [e(pub, x) = y] ∈ O. We will occasionally use
a wild card form of this notation. For instance: we write [e(pub, ·) = y] ∈ O
to denote that there exists x such that [e(pub, x) = y] ∈ O.
When discussing queries we write [e(pub, x)] to denote a query to e(·, ·)
with inputs (pub, x). This is to differentiate the query from the actual value
e(pub, x) which is the image of (pub, x) under the function e. Given a query q
in symbolic form we writeO(q) to denote the mapping underO of that query.
For example: if q = [e(pub, x)] and e(pub, x) = y then O(q) = [e(pub, x) = y].

Adding answers. Given O and a set of queries Q we define O(Q) to be the
set of queries in Q with their answers according to O. Namely, O(Q) =
{[α = β]|α ∈ Q, O(α) = β}.

Public keys that are used in a query. Given a trapdoor permutation ora-
cle O = (g, e, d), and a set Q of (g, e, d) queries we define PKe(Q) to be the
set of all pub such that [e(pub, ·)] ∈ Q. Similarly, we define PKg(Q) to be
the set of all pub such that [g(·) = pub] ∈ O(Q).

Combining trapdoor permutation oracles. Let O1 = (g1, e1) and O2 =
(g2, e2) be two (possibly partial) trapdoor permutation oracles. We write
O1 �O2 to denote the oracle which answers according to O2 if possible, and
according to O1 otherwise. More precisely, (O1 � O2)(α) returns O2(α) if it
is defined, and O1(α) otherwise.
We also define a “corrected” version of the � operator. We write

O1 �c O2
def
= (g1 � g2, e1 �c e2)

The oracle e = e1�ce2 is defined as follows: let pub, x, y such that e2(pub, x) =
y. We set e(pub, x) = y. Furthermore, if there exists x′ 6= x such that
e1(pub, x′) = y then let y′ = e1(pub, x) (note that y′ may be equal to ⊥
if e1(pub, x) is not defined). We then also set e(pub, x′) = y′.
Note that the d part of the oracle O1 �cO2 is deduced from g and e. A useful
property of the �c operator is that for every two possibly partial oracles O1

and O2, the oracle O1 �cO2 has no collisions (i.e. it is a valid partial oracle),
and for every α such that O2(α) is defined, (O1 �c O2)(α) = O2(α).



3.2 The Oracle Break

As mentioned in the introduction, the random trapdoor permutations that the
oracles (g, e, d) represent are, in fact, correlation secure. This is so because each
permutation is random and independent from the other permutations. Thus,
we add a weakening oracle Break that allows our adversary to break correlation
security of any trapdoor function that makes use of (g, e, d), yet preserves the
one-wayness of (g, e, d). For a better exposition we present the oracle and the
proof for the case of Trapdoor Permutations. However, both easily extend to
handle injective trapdoor functions. The details are given in Section 6.

The functionality of Break is defined as follows:

Input. Break takes the following inputs:
1. A triple of oracle circuits (GO, EO, DO) that may contain (g, e, d) oracle

gates. The functions computed by G,E,D must constitute a valid family
of trapdoor permutations.

2. Two strings PUB1,PUB2. We think of these strings as public keys that
were produced by G.

3. Two strings y1, y2. We think of these strings as the outputs of EPUB1(x)
and EPUB2(x) respectively on some input x.

4. Two partial oracles O′1 and O′2, and two strings PRI1 and PRI2.
Computation. The following computation is performed by the oracle:

1. Verify that for every pub ∈ PKg(O′1) ∩ PKg(O′2), there exists a pri
such that g(pri) = pub and [g(pri) = pub] ∈ O′1 ∪ O′2. Note that the
requirement here is that g(pri) = pub under the real oracle O. Therefore,
for every pub as above, we require that O′1 or O′2 provide us with a real
trapdoor for it.

2. Verify that (G,E,D) is a valid family of trapdoor permutations, and
for i ∈ {1, 2}, for every complete trapdoor permutation oracle O′′, if
O′i ⊆ O′′, then for every x ∈ {0, 1}m, it holds that DO

′′

PRIi
(EO

′′

PUBi
(x))

returns x.
3. Let O′′i = O �c O′i.
4. Run D

O′′1
PRI1

(y1) to obtain an output x. If x = ⊥, return ⊥.

5. For i ∈ {1, 2}, run EO
′′
i

PUBi
(x), and return ⊥ if one of the following events

occurs: (i) the output of EO
′′
i

PUBi
(x) is not equal to yi, or (ii) EO

′′
i

PUBi
(x)

asks a query α = [g(pri)] such that O(α) 6= O′′i (α). Finally, return x.
Complexity. Each query to Break is counted as 3q+ |O′1|+ |O′2| oracle queries.

This is to prevent an adversary from making a very large Break query that
gives away too much information about O. The breakdown of the above cost
is as follows: 3q comes from steps 4 and 5 where Break evaluates D once and
E twice. The count |O′1|+ |O′2| is due to steps 1, and 3. In step 1 Break has
to compare elements of the form [g(pri) = pub] ∈ O′1 ∪ O′2 to O. In step 3
Break has to know at most |O′1|+ |O′2| entries in O in order to perform the
�c operation.



This concludes the description of our oracles. In the following two sections
we prove the two main lemmas that are required for our theorem: that the
oracle Break preserves the one-wayness of O = (g, e, d), and that there exists an
adversary which uses Break that breaks the correlation security of every family
of injective trapdoor functions.

4 Breaking Security Under Correlated Inputs

In this section we describe an adversary that breaks the correlation-security of
any trapdoor permutation, while making only a polynomial number of queries
to the oracles (g, e, d,Break).

Let (G,E,D) be a collection of injective trapdoor functions with length pa-
rameter m, and maximal number of queries q. For simplicity, and due to lack of
space we describe an adversary that breaks only constructions (G,E,D) that do
not query Break, but only use (g, e, d). The extension of the adversary and the
oracle Break to handle injective trapdoor functions (as opposed to permutations)
that make use of Break is quite easy, and is described in Section 6.

4.1 Overview

We start with an informal description of our adversary. The adversary is initially
given two independently generated public keys PUB1 and PUB2. Recall that in
order to make use of the oracle Break the adversary has to come up with two
partial oracles O′1 and O′2 such that PUB1 and PUB2 are valid outputs of GO

′
1

and GO
′
2 respectively. Since our adversary is computationally unbounded, that

is, we count only the number of oracle queries that she makes, it is easy for
her to find two such partial oracles. However, there are two issues that arise:
(i) in order to pass check 1 of Break the adversary has to know the correct
trapdoor for each pub that is appears in the generation of both PUB1 and PUB2;
and (ii) if the actual oracle (g, e, d) is not used, it is quite possible that under
these partial oracles, y1 and y2 will not invert to x. Both issues are dealt with
simultaneously by performing a sampling procedure that discovers all the queries
that are frequently asked byG, and by EPUB1(x) and EPUB1(x) where x is chosen
randomly. The adversary then chooses O′1 and O′2 offline, without making any
further oracle queries, but in a manner that is consistent with the information
about (g, e, d) that was learned during the sampling procedure.

To see why the above procedure solves problem (i) recall that PUB1 and
PUB2 are generated independently. Therefore, with high probability any public
keys pub that are needed to generate both PUB1 and PUB2 are also needed to
generate many other PUB’s that G may output. This means that, with high
probability, the adversary will generate at least one such PUB, and discover the
correct trapdoor for pub in the process. Problem (ii) is solved due to the following
simple fact: O′1 and O′2 are defined on a polynomial number of points. For each
such point, if it is frequently accessed by one of EPUB1(x) or EPUB2(x) then the
adversary would have discovered the correct value for it during the sampling. If



the point is infrequently accessed, then with high probability it was not accessed
when y1 and y2 were computed. For a similar reason, the adversary’s query to
Break passes the second check of step 5.

If the adversary manages to make a query to Break that is not answered with
⊥ then with overwhelming probability the answer to that query is x, which is
the inverse of y1 and y2. We are now ready to describe the adversary completely
and analyze its performance.

4.2 The Adversary

For convenience, and without loss of generality, we assume q ≥ 2. For any ε > 0
we provide a PPT adversary A, and a constant c such that δCS(A) ≥ 1−ε and A
makes at most qc oracle queries. More precisely, given ε > 0 choose two integers
c1, c2 such that (i)

(
1− 1

qc1

)q
≥ 1− 1

qc1−1 , and (ii) ε ≥
(
qc1+1

eq
c1 + 1

qc1−1 + 4
eqc2

)
.

Our adversary proceeds in several steps:

1. The adversary is given PUB1, PUB2, y1, y2. It starts by initializing tables
L,L1, L2, which will be used to store points of O that the adversary discov-
ers. More precisely, these tables are partial oracles that are updated by the
adversary in the following steps, and always satisfy L,L1, L2 ⊆ O.

2. For 1 ≤ i ≤ q2c1 the adversary chooses PRIi ∈R {0, 1}n, and simulates
G(PRIi). For every query α asked by G during the simulation, the adversary
adds the entry (α,O(α)) to L.

3. For 1 ≤ i ≤ qc2 the adversary chooses xi ∈R {0, 1}m, and simulates EOPUB1
(xi)

and EOPUB2
(xi), recording all queries and answers in L1 and L2 respectively.

4. The adversary now selects partial oracles O′i, and strings PRI1, PRI2 for
i ∈ {1, 2} such that:
(a) |O′i| ≤ |L ∪ L1 ∪ L2|+ q.
(b) L1 ∪ L2 ∪ L ⊆ O′i, and GO

′
i(PRIi) = PUBi.

(c) For every pub ∈ PKg(O′1) ∩ PKg(O′2) there exists an pri such that
[g(pri) = pub] ∈ L ∪ L1 ∪ L2.

If no such partial oracles exist then the adversary gives up and terminates.
5. The adversary queries Break(G,E,D,PUB1,PUB2, y1, y2,O′1,O′2,PRI1,PRI2).

If Break returns ⊥ then the adversary fails (this can be modeled by the ad-
versary returning a random string x ∈ {0, 1}m). Otherwise, Break returns x,
which the adversary returns as well.

4.3 Analysis

This concludes the description of our adversary. We now turn to proving that our
adversary makes a successful query to Break which returns the correct inverse
x. In order to prove this we need to show that the following two statements are
true with high probability:

1. The adversary’s query passes all the checks of Break.



2. Under O′′i = O �c O′i it holds that EO
′′
1

PUB1
(x) = y1 and E

O′′1
PUB2

(x) = y2.

We start with the first statement. We will use the following random variables
in the statement of the lemma. Consider a run of our adversary in the correla-
tion security experiment. Let O,PRI′1,PRI′2 be the TDP oracle, and the private
keys respectively, that are selected by the challenger. Let QPUBi and Qx,i to be
the sets of queries asked during the computations GO(PRI′i), and EO(PUBi, x)
respectively. We define TPUBi = O(QPUBi) and Tx,i = O(Qx,i). For the first
statement above we are interested in the following event:

Event E. For every pub for which there exist pri1, pri2 such that [g(pri1) =
pub] ∈ TPUB1 and [g(pri2) = pub] ∈ TPUB2 there exists an pri such that
[g(pri) = pub] ∈ L.

Essentially, the event E states that our adversary has discovered a trapdoor for
every public key that was generated in the computation of both GO(PRI′1) and
GO(PRI′2). The following claim shows that this happens with high probability.
Intuitively, this is so because PRI′1 and PRI′2 are chosen independently at ran-
dom, and our adversary samples many such computations in step 2. Thus, if a
public key is likely to be generated by GO(PRI) for a random PRI, then our
adversary has already found it. If it is unlikely to be generated then it is unlikely
to appear in the computation for two independent PRI’s.

Claim. At step 5 of the adversary, the event E occurs with probability ≥ 1 −
qc1+1

eq
c1 + 1

qc1−1 .

Proof (Sketch). In step 2 the adversary simulates G(PRI) many times, thus
learning all the pubs that are frequently generated by G on random PRI. In
order for a public key pub to be likely to appear in the computation of two
independent executions of G, it must frequently generated by G. Therefore,
with high probability, all the pubs that were generated in both the computation
of G(PRI1) and G(PRI2) have already been observed by the adversary during
the sampling of step 2. The complete proof is given in the full version of this
paper [19].

We now show that it is sufficient for event E to occur in order for our adver-
sary to successfully construct the partial oracles O′1 and O′2, and make a Break
query that passes checks 1 and 2.

Claim. If event E occurs then the adversary successfully constructs the oracles
O′1 and O′2 in step 4. Furthermore, the adversary’s query to Break successfully
passes checks 1 and 2.

Proof. If event E occurs then L contains trapdoors for all pub that appear in
both the computation of GO(PRI1) and GO(PRI2). Thus, one possibility for the
values of O′1,O′2,PRI1,PRI2 in this case is simply the correct PRI1,PRI2 and
the subset of O that is used in the generation of PUB1 and PUB2 respectively.



Now consider the adversary’s query to Break. Check 1 passes because of the
conditions imposed on the choice of the partial oracles O′1 and O′2. To see why
check 2 passes, notice that under O′i the made up PRIi is a correct private key
for the public key PUBi, and so by the correctness of the trapdoor permuta-
tion (G,E,D), for every oracle O′′ such that O′i ⊆ O′′, DO

′′
(PRIi, y) inverts y

correctly.

Our next step is to prove the second property of our adversary: that for for
i ∈ {1, 2}, with high probability, for every query α that is asked by EO(PUBi, x)
the answers under the oracle O, and the modified oracle O′′i = O �c O′i are
identical. The proof of this statement is very similar to Claim 6.9 in [5]. We
repeat it here for completeness.

Lemma 2. Let O′i, for i ∈ {1, 2}, be the partial oracles chosen by the adversary,
and let O′′i = O �cO′i. Then, with probability at least 1− 2

eqc2 , for every query α
asked by EOPUBi

(x), O′′i (α) = O(α).

Proof. From the fact that O′i is defined on at most q points that are not in
L ∪ L1 ∪ L2, and the definition of the �c operator we know that O �c O′i differs
from O on at most 2q points.

More precisely, for a query α of the form α = [g(sk)] where O(α) 6= O′′i (α) =
pk it must be that [g(sk) = pk] ∈ O′i \ L ∪ L1 ∪ L2. Thus, queries of this form
contribute at most one point on which O′′i and O differ.

If α is of the form e(pk, x), and [e(pk, x) = y] ∈ O and [e(pk, x) = w] ∈ O′′i ,
where w 6= y, then one of the following holds: either [e(pk, x) = w] ∈ O′i\L∪L1∪
L2 or there exists x′ such that e(pk, x′) = w, and e′i(pk, x

′) = y. Thus, queries
of this form can contribute at most two points on which O′′i and O differ.

Consider a query α such that O(α) 6= O′′i (α). Then, [α,O(α)] 6∈ L1∪L2. This
means that α did not appear in any of the simulations in step 3. Since the simu-
lations in step 3 are done with independently chosen xi, we can apply Lemma 1,
and so the probability of α appearing during the computations EO

′′
i

PUBi
(x) = yi

for i ∈ {1, 2} is at most 1
eqc2 .

Applying the union bound over all ≤ 2q points on which O and O′′i differ,
we obtain that the probability that a query α is asked during EOPUBi(, x) such
that O(α) 6= O′′i (α) is at most 2q

eqc2 .

We are now ready to prove the main theorem of this section: that our ad-
versary successfully breaks the correlation security of any trapdoor permutation
with probability which is arbitrarily close to one.

Theorem 1. Given PUB1, PUB2, y1, y2 in the correlated one-wayness exper-
iment, our adversary wins with probability ≥ 1 −

(
qc1+1

eq
c1 + 1

qc1−1 + 4
eqc2

)
. Fur-

thermore, it does so by making at most 5q + 3qc1+1 + 6qc2+1 oracle queries.

Proof. The theorem follows by simple calculation from the above claims, and
Lemma 2. The complete proof appears in [19].



5 One-way Trapdoor Permutations Exist Relative To
Our Oracle

In this section we show that the trapdoor permutation (G,E,D) whereGO(pri) =
g(pri), EOpub(x) = e(pub, x) and DOpri(y) = d(pri, y) is a secure one-way trapdoor
permutation, even when the adversary is given access to the oracle Break. Let
A be an adversary that tries to break the one-wayness of (G,E,D). We show
that δ ≤ 3q

2λ−q + 3q
2λ

where δ = δOW (A) is the advantage of A in the one-wayness
experiment. In fact, our proof carries through even when the input x is not
uniform, but is chosen from a high entropy distribution.

The adversary’s input is a pair (pub∗, y∗), and she is given access to oracles
(g, e, d,Break). Our proof proceeds in two steps: first, we show that if we modify
the oracle Break slightly then the adversary can simulate the modified oracle
Break′ on her own with high probability. Since no adversary can break the one-
wayness of a random trapdoor permutation, we obtain a bound on the advantage
of an adversary that has access to Break′ instead of Break. The second step is to
show that, in fact, the oracles Break and Break′ always produce the same answer.
Combining the two steps together we get a bound on the advantage of A.

The Modified Oracle Break′. The oracle Break′ is parameterized by a public key
pub∗, and is defined as follows: Break′ is the same as Break except step 4, which
is modified in Break′ as follows:

4. Let i ∈ {1, 2} such that pub∗ 6∈ PKg(O′i). If pub∗ ∈ PKg(O′1) ∩ PKg(O′2) or
pub∗ 6∈ PKg(O′1) ∪ PKg(O′2) then set i = 1. Then, run D

O′′i
PRIi

(yi) to obtain
an output x. If x = ⊥ return ⊥.

In other words, instead of always inverting y1, Break′ inverts yi where pub∗ is not
generated during the generation of PUBi. Intuitively, this is a useful property
because A is trying to break a single public key pub∗. Relying on the fact that the
permutation e(pub∗, ·) is random and independent from the rest of the oracle,
A can simulate Break′ by generating the rest of the oracle by herself. She runs
into trouble only when asked to invert e(pub∗, ·). However, this is avoided by
the check that is performed in step 5, and by the above modification. The check
of step 5 prevents E from making a query that requires a trapdoor for pub∗.
Note that although this may seem like a severe restriction, we have shown in
Section 4 that it does not prevent us from breaking correlation security. The
change in Break′ allows A to invert the one yi which does not require knowledge
of a trapdoor for pub∗.

5.1 Simulating Break′

The simulator itself is very technical, and is given in full detail in the full version
[19]. We describe here the main ideas that are used in the construction. As
previously mentioned, our adversary can generate all of O by herself, except for
the permutation e(pub∗, ·). Thus, if she wanted to simulate Break′ she would



run into the following two problems: firstly, she is unable to compute the oracles
O′′i = O�cO′i, and secondly she is unable to answer queries of the form [d(pri, y)]
where [g(pri) = pub∗] ∈ O′′i .

The first problem is caused by the fact that the �c operator resolves collisions,
which requires the knowledge of entries of O of the form [e(pub∗, x) = y] where
[e(pub∗, x′) = y] ∈ O′i. Our adversary may not possess this knowledge which
prevents her from resolving all collisions. Instead, she resolves only the collisions
that are known to her from the previous queries to the actual oracle O, and the
inputs of the Break′ query. Since the rest of e(pub∗, ·) is random, she is unlikely
to stumble unto any new collisions during the simulation of the Break′ query.

The second problem is caused by the fact that O′i are adversarially chosen,
and as such may contain an entry [g(pri) = pub∗] which is incorrect according to
O. This allows DO

′′
i

PRIi
(yi) and E

O′′i
PUBi

(x) to query d(pri, y), which the adversary
is unable to answer. This is dealt with as follows: to prevent D from making
such queries we introduced the modification in Break′. The only case in which
O′′1 and O′′2 may both contain trapdoors for pub is when the adversary knows at
least one such trapdoor which is correct according to O. Consequently, since it
is hard to find a correct trapdoor for pub∗, there is an i such that O′i does not
define any fake trapdoors for it. It is now safe to simulate DO

′′
i

PRIi
(yi) because

D is unlikely to find a true trapdoor of pub∗. To prevent E from making such
queries, Break (and Break′) perform a check in step 5 that forces the oracle to
return ⊥ if E makes a query of the form g(pri) where O′i and O disagree on the
answer.

5.2 Equivalence of Break and Break′

We have shown that Break′ provides very little help to an adversary trying to
break the one-wayness of (g, e, d). We now show that Break and Break′ always
answer queries identically, which proves that Break does not break the one-
wayness of (g, e, d).

Claim. The adversary A has advantage δ when given access to Break′ instead of
Break.

Proof (Sketch). The complete proof appears in [19]. Informally, let xi = D
O′′i
PRIi

(yi).
The only difference between Break and Break′ is that in step 4 Break always com-
putes x1 and Break′ sometimes computes x2. There are two cases: if x1 6= x2 then
due to the fact that EPUBi is a permutation, step 5 will return ⊥. If x1 = x2,
then both oracles perform the same computation in step 5.

5.3 Main Theorem

We are now ready to prove the main theorem of this section. We prove a strong
variant that implies the security of (g, e, d) even when the input x is not uniform,
but is chosen from a high entropy distribution. As previously mentioned, this
implies that even a strong type of trapdoor functions (deterministic public key
encryption) is insufficient to obtain correlation security.



Theorem 2. Let G,E,D be the trapdoor permutation that forwards its input
directly to the oracles g, e, d, and let D be a distribution over {0, 1}λ such that
H∞(D) = k. Then, for every adversary A that makes at most q oracle queries
to (g, e, d,Break), δ = δOW (A,D) ≤ 2q

2k−q + q
2λ−q + 3q

2λ
.

Proof (Sketch). The proof follows by a simple calculation from the equivalence
of Break and Break′, and the ability of the adversary to simulate Break′. The
complete argument appears in [19].

6 Extensions

In this section we present several strengthenings of our basic theorem, and ad-
dress the simplifications that we made for our proof.

Injective Trapdoor Functions. The oracle and proof require few changes to
handle trapdoor functions that are 1-1 but not necessarily onto. The modifica-
tions are as follows:

– Step 2 in the description of Break is modified to verify that (G,E,D) is a
valid injective trapdoor function instead of checking that it is a trapdoor
permutation. The rest of the oracle stays as before.

– The main issue that arises from changing from permutations to injective
functions is the concern that the adversary may design a family of injective
trapdoor functions that give away too much information when the inversion
algorithm is applied to a string that is not in the range of the function.
However, in that case check 5 of both Break and Break′ (which is described
in the proof) will always fail since both permutations are evaluated in the
forward direction on the inverse obtained in step 4.

Weaker Correlation. Our result easily generalizes to obtain the following
stronger theorem: for every n, k ∈ N, and every distribution C on elements of
({0, 1}n)k such that, with high probability each of the k coordinates can be found
given all the remaining k − 1 coordinates of the sample, there is no black-box
construction of a trapdoor permutation that is correlation secure under C from
a one-way trapdoor permutation. On a very high level, our Break oracle can be
generalized to break such constructions due to the following simple fact. In the
simulation of Break′ by an adversary that has access only to (g, e, d) (and not
to Break′, the simulator is unable to invert only one of the strings y1, y2. The
simulator can easily be extended to invert all the strings y1, . . . , yk except one.
More details are given in [19].

Families of Trapdoor Permutations That Use Break. Our adversary in
Section 4 breaks only constructions of trapdoor permutations that only make
use of the (g, e, d) part of the oracle, and never query Break. Similarly, our
simulator in Section 5 only simulates Break queries that do not make recursive
Break queries. We chose to describe the proof in this manner to simplify the



presentation. Both Theorem 1 and Theorem 2 extend to the case where G,E,D
are allowed to make Break queries.

One modification is to the cost of a Break query. When Break may make
recursive queries to itself, a single Break query by the adversary counts as the
sum of the costs of all the Break queries in the resulting recursion tree. A second
modification is to the adversary that uses Break. The modified adversary keeps
track of Break queries and answers that appear during the simulations of G and
E in steps 2 and 3. Then, in step 4, she chooses the partial oracles O′1 and O′2
to be consistent with the previously observed queries and answers to Break.

The main property of Break that allows us to handle such constructions is
that in every call to Break, only one of the values yi may require a trapdoor for
some pub∗ which happens to be the public key that our simulator is trying to
break. Hence, to extend the simulator of Section 5 to handle constructions that
make use of Break, the simulator is modified to recursively simulate Break by
running our simulator for Break′ for each recursive call.

Adding a PSPACE Oracle. In our proofs the only measure of complexity
for algorithms is the number of (g, e, d) queries that they make. This can be
interpreted intuitively as ruling out a certain type of reductions between the
two primitives in question. However, we are interested in showing that there
is an oracle relative to which there exists a secure trapdoor permutation, and
yet there exists a polytime adversary that breaks the correlation security of
every construction. This is achieved by adding a PSPACE oracle. Then, step
4 of our adversary can be implemented in a single step by making a query to
the PSPACE oracle. The rest of the computation that is performed by the
adversary, and by the simulator is done in polynomial time. To complete the
proof it is necessary to observe that a random trapdoor permutation remains
secure, even when the adversary has access to a PSPACE oracle. For more
details about the technique of adding a PSPACE oracle we direct the reader
to [16] and [18].
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