
From Passive to Covert Security at Low Cost

Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen

Dept. of Computer Science, University of Aarhus, Denmark
{ivan,mg,jbn}@cs.au.dk

Abstract. Aumann and Lindell defined security against covert attacks,
where the adversary is malicious, but is only caught cheating with a
certain probability. The idea is that in many real-world cases, a large
probability of being caught is sufficient to prevent the adversary from
trying to cheat. In this paper, we show how to compile a passively secure
protocol for honest majority into one that is secure against covert attacks,
again for honest majority and catches cheating with probability 1/4. The
cost of the modified protocol is essentially twice that of the original plus
an overhead that only depends on the number of inputs.

1 Introduction

When studying cryptographic protocols, the behavior of the adversary has tradi-
tionally been categorized as being either semi-honest (passive) or malicious (ac-
tive). A semi-honest adversary will only listen in on the network communication
and spy passively on the internal state of the corrupted protocol participants. At
the other end of the spectrum, a malicious adversary can make corrupted parties
behave arbitrarily and will try to actively disrupt the computation in order to
gain extra information and/or cause incorrect results.

Aumann and Lindell [2] introduce a third type of adversary called a covert
adversary. This is intuitively an adversary which is able to do an active attack,
but will behave correctly if the risk of being caught is sufficiently large—even
if that probability is not essentially 1. The argument for studying covert ad-
versaries is that there are many real world situations where the consequences of
being caught out-weights the benefit of cheating—even a small but non-negligible
risk of being caught is a deterrent. An example could be companies that agree
to conduct an auction using secure multiparty computation. If a company is
found to be cheating it may be subject to fines and it will hurt its long-term
relationships with customers and other companies.

In the standard simulation-based definition of secure multiparty computa-
tion a protocol is said to securely evaluate a function f if no attack against the
protocol can do better than an attack on an ideal process where an ideal func-
tionality evaluates f and hands the result to the parties. Aumann and Lindell
[2] give three different models of what a covert adversary can do by defining
two different ideal functionalities that may compute f as usual, but may also
act differently, depending on what the adversary does. They also define what it

means for a protocol to implement an ideal functionality securely, this is a fairly
standard simulation-based definition for sequentially composable protocols.

Thus, the special ingredient in the model that allows to accommodate covert
attacks is only in the definition of the functionalities, which correspond to dif-
ferent levels of security, which are called Explicit Cheat Formulation (ECF) and
Strong Explicit Cheat Formulation (SECF).1 The basic idea in both cases is that
the adversary may decide to try to cheat and must inform the functionality about
this. The functionality then decides if the cheating is detected which happens
with probability ε, where ε is called the deterrence factor. In this case all parties
are informed that some specific corrupt party cheated. Otherwise, with probabil-
ity 1−ε, the cheating is undetected, and there is no security guarantee anymore:
the functionality gives all inputs to the adversary and lets him decide the out-
puts. The difference between the two variants is that for ECF, the adversary
gets the inputs of honest parties and decides their outputs immediately when he
decides to cheat. For SECF, this only happens if the cheat is not detected.

Thus, with ECF, the adversary is caught with probability ε, but will learn
the honest parties’ inputs even if he is caught. With SECF, he must try to cheat
and succeed to learn anything he was not supposed to.

1.1 Our Contribution

In this paper we propose a new construction that “compiles” a passively secure
protocol into a new protocol with covert security. The approach is generic, but for
concreteness we describe the idea starting from the classical BGW protocol [6]
for evaluating arithmetic circuits, and only give the full compiler in the full
version of this paper [13].

We assume honest majority and synchronous communication with secure
point-to-point channels. We also assume a poly-time adversary, as we use cryp-
tographic tools.

The basic idea is to first use a protocol with full active security to do a small
amount of computation. Here, we will prepare two sets of (secret-shared) inputs
to the passively secure protocol. However, only one set of sharings contains the
actual inputs, while the other—the dummy shares—contain only zeros. Initially,
it is unknown which set is the dummy one. We then run the passively secure
protocol on both sets of inputs until parties hold shares of the outputs, which
they must commit to. Now we reveal which sharings contained dummy values,
and everything concerning the dummy execution can be then made available to
check that no cheating occurred here. If no cheating was detected, we open the
outputs of the real execution.

The intuition is that the adversary has to decide whether to cheat without
knowing which execution is the dummy one, and therefore we can catch him with
probability 1

2 if he cheats at all, so one would expect this to give a deterrence
factor of 1

2 .
1 They also have a so called Failed Simulation definition which is weaker and which

we do not use here.

However, while the intuition is straightforward, there are several non-trivial
technicalities to take care of to make this work. We need parties to be able to
prove that they really sent/received a given message earlier, and we have to do
the final check without introducing too much overhead. After solving these prob-
lems, we obtain a protocol with deterrence factor 1

4 whose complexity is essen-
tially twice that of the passive protocol plus the overhead involved in preparing
the inputs (which does not depend on the size of the computation).

It should be noted that there is an overhead involved in proving what mes-
sages were sent in the past. For this, players need to sign the messages they
send. However, unless the arithmetic circuit we compute has very large depth
and small breath, the cost of signing can be amortized over several operations
requiring communication, and so is not significant. For the most advanced ver-
sion of our construction, players also need to UC commit at the end to the set
of messages they sent to each player. Our solution to this in the standard model
is based on Paillier encryption and is quite elaborate, but for a practical im-
plementation one can use the random oracle model, in which case commitment
reduces essentially to hashing the messages, and is not a major cost.

We note that we focus on the complexity we get when there is no deviation
from the protocol. In our construction, the adversary can slow things down by
a factor linear in the number of parties by deviating, but the protocol is still
secure, the adversary can only make it fail if he runs the risk of actually cheating
and hence of being caught. Now, the spirit of covert security is that the adversary
is to some extent rational, he does not cheat because it does not pay off to do
so. It seems to us that there is little benefit in practice for the adversary in only
slowing things down, while he cannot learn extra information or influence the
result. We therefore believe that the complexity in practice can be expected to
be what we get when there is no deviation.

We show our protocol is secure by showing that it implements Aumann and
Lindell’s functionality in the UC model [9], i.e., we do not use their simulation
notion. The only difference this makes is that we get a stronger composition
property for our protocol.

We show that the classical passively secure protocol by Ben-Or et al. [6]
can be compiled to give a protocol with SECF security. Our approach can be
used in a more general way, to compile any passively secure protocols into a
covert protocol, if the original protocol satisfies certain reasonable conditions.
The conditions are essentially as follows. The protocol should be based on secret
sharing and consist of a computation phase and a reconstruction phase.

Computation phase: The computation phase starts from sharings of the in-
puts and produces sharings of the outputs, where the view of t < n/2 pas-
sively corrupted parties is independent of the inputs being computed on.

Reconstruction phase: The reconstruction phase consists of a single message
from each party to each other party—i.e., it is non-interactive.

Passive security: Suppose uniformly random sharings of the inputs are dealt
by an ideal functionality. Consider the protocol that executes the compu-
tation phase on these sharings followed by the reconstruction phase. This

protocol should be passively secure against t < n/2 statically corrupted
parties.

The approach to obtaining covert security is basically the same as described
above. The details are described in the full version [13]. If the computation
phase leaks no information, even under active attacks (as is the case for the
BGW protocol), we get SECF security, otherwise ECF security is obtained.

1.2 Related Work and Discussion

Goyal et al. [15] improve Aumann and Lindell’s 2-party protocol and also give
a general multiparty computation protocol with covert security for the case of
dishonest majority.

Our work focuses instead on honest majority. The skeptical reader may ask
whether this is really interesting: the motivation for covert security is to settle
for less than full robustness in return for more efficient protocols, and it may
seem that we already know how to have great efficiency with honest majority
and full active security. For instance, in [5, 10], it is shown that unconditionally
secure evaluation of a circuit C for n parties and t < n/3 corruptions can be
done in complexity O(|C|n) plus an overhead that only depends on the depth
of the circuit, and in [12], it is shown under a computational assumption that
this can be reduced to O(|C|) except for logarithmic factors plus an overhead
that is independent of the circuit. Here, the security threshold can be selected
arbitrarily close to 1

2 .
How could we hope to be better than that? There are two answers to this:

First, the previous protocols are not as efficient as it may seem: the result
from [12] only works asymptotically for a large number of parties and very large
computations, it makes non black-box use of a pseudo-random function and is,
in fact, very far from being practical. The protocols in [5, 10] use only cheap
information theoretic primitives, but the security threshold in non-optimal and
there is an overhead implying that deep circuits are expensive.

However, these protocols can all become much simpler and more practical if
we assume the adversary is passive. For instance, when the adversary is passive
the protocols from [5, 10] can tolerate t < n/2 and no longer have an overhead
that depends on the circuit depth. Our compiler works for any “reasonable” pro-
tocol that is based on secret sharing, so we can use it on these simpler passively
secure protocols and get a protocol with covert security, but with efficiency and
security threshold similar to the passively secure solutions.

The second answer is that general circuit evaluation is not the only applica-
tion. There are many special purpose protocols that are designed for a passive
adversary but where obtaining active security comes at a significant cost. One
example is the protocol by Algesheimer et al. [1] for distributed RSA key gen-
eration. Another is the auction application described in [8]. In both cases the
protocols do not go via evaluation of a circuit for the desired function, but gets
significant optimizations by taking other approaches. We can use our construc-
tion here to get covert security at a cost essentially a factor of two.

2 Preliminaries

Aumann and Lindell [2] present three successively stronger notions of security in
the presence of covert adversaries, of which we consider the two strongest ones.
There the adversary is forced to decide whether to cheat without knowledge of
the honest parties’ inputs. As mentioned, these are called ECF and SECF and
are defined by specifying two (very similar) ideal functionalities.

For convenience, we give the ECF and SECF functionalities here. The only
differences from [2] is that we do not include an option for the adversary to abort
the protocol, and also, if no cheating is detected, the adversary cannot stop the
functionality from giving outputs to the honest parties. This gives a stronger
notion of security, and we can obtain it as we assume an honest majority.

Another difference is that we relax the requirements on the detection mech-
anism slightly. In [2] it is required that only one corrupted party is detected and
that the honest parties agree on that party. We allow that several corrupted
parties are detected and allow that different honest parties detect different sets
of corrupted parties. The only requirement is that there is at least one corrupted
party which is detected by all honest parties. In the presence of an honest ma-
jority, the stronger detection requirement in [2] can then be implemented using
a Byzantine agreement at the end of the protocol on who should take the blame.
We prefer to see this negotiation as external to the protocol and thus allow the
more relaxed detection. See Fig. 1.

Let f be a function with n inputs and n outputs, where n is the number of parties.
The ECF functionality Ff

ecf for function f with deterrence factor ε works as follows:

Inputs: Any honest party Pi sends input xi to Ff
ecf, while the adversary A sends

input on behalf of the corrupted parties.
Cheat detection: Let C ⊂ {1, . . . , n} denote the indices of the corrupted parties

and let H = {1, . . . , n} \ C be the honest parties. The adversary can at any
time instruct Ff

ecf to give outputs of the form (corrupt, j) for j ∈ C to Pi with
i ∈ H. For i ∈ H, let Ji ⊂ C be the set of j for which Pi output (corrupt, j).

Attempted cheat: If Ff
ecf receives (cheat) from A, it will send (x1, . . . , xn) to

A. It then decides randomly if the cheating was detected or not:
Undetected: With probability 1− ε, Ff

ecf sends (undetected) to the adver-
sary. Then A specifies for each i ∈ H an output yi and Ff

ecf outputs yi to
Pi for i ∈ H.

Detected: With probability ε, Ff
ecf sends (detected) toA. In this caseA also

gets to decide the output yi for i ∈ H, but must ensure that ∩i∈HJi 6= ∅
at the end of the execution.

Output generation: If A did not attempt to cheat, Ff
ecf computes outputs

(y1, . . . , yn) = f(x1, . . . , xn) and gives yi to Pi.

Fig. 1. Functionality Ff
ecf

The functionality Ffsecf is defined exactly as Ffecf, except that when the
adversary sends a cheat message, the functionality does not send the inputs of
honest parties to the adversary. This only happens if the cheating is undetected.
We can now define security:

Definition 1. Protocol π computes f with ε-ECF (SECF) security and thresh-
old t if it implements Ffecf (Ffsecf) in the UC model, securely against poly-time
adversaries corrupting at most t parties.

This definition naturally extends to a hybrid UC model where certain func-
tionalities are assumed to be available. By the UC composition theorem and
given implementations of the auxiliary functionalities, a protocol follows that
satisfy the above definition without auxiliary functionalities.

In the following, we will consider secure evaluation of an arithmetic circuit C
over some finite field K. We assume that each input and output of C is assigned
to some party, whence C induces in a natural way a function fC of the form
considered above. In the following, “computing C securely” will mean computing
fC securely in the sense of the above definition.

We will denote the participants in the protocol by P1, . . . , Pn for a total
of n parties. Shamir secret sharing of a ∈ K with threshold t results in a set of
shares denoted by [a]t or simply [a] when the threshold is clear from the context.
The share held by Pi is denoted ai.

3 Auxiliary Functionalities

We define some ideal functionalities to make the presentation clearer. We show
how to implement them Section 5.

Message Transmission Functionality Functionality Ftransmit is an enhance-
ment of the standard model for secure point-to-point channels. It essentially al-
lows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. It does not commit the corrupted
parties to what they sent to each other. See Fig. 2 for details.

The ideal functionality Ftransmit works with message identifiers mid encoding a
sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n}. We assume that no
mid is used twice. The functionality works as follows:

Secure transmit: When receiving (transmit, mid, m) from Ps(mid) and receiving
(transmit, mid) from all (other) honest parties, store (mid, m), mark it as
undelivered, and output (mid, |m|) to the adversary. If Ps does not input a
(transmit, mid, m) message, then output (corrupt, s(mid)) to all parties.

Synchronous delivery: At the end of each round, deliver each undelivered
(mid, m) to Pr(mid) and mark (mid, m) as delivered.

Reveal received message: On input (reveal, mid, i) from a party Pj which at
any point received the output (mid, m), output (mid, m) to Pi.

Do not commit corrupt to corrupt: If both Pj and Ps are corrupt, then the
adversary can ask Ftransmit to output (mid, m′) to any honest Pi for any m′

and any mid with s(mid) = s.

Fig. 2. Ideal Functionality Ftransmit

This functionality will be used for all private communication in the following,
and provides a way to reliably show what was received at any earlier point in
the protocol. This is used when the dummy execution is checked for consistency.

Input Functionality For notational convenience we assume that each Pi has
one input xi ∈ K. The input functionality is given in Fig. 3. Note that we let
the adversary pick the dummy inputs, which is done simply not to decide at this
abstract level on any specific set of dummy inputs. We also let the adversary pick
the shares the functionality should produce for corrupt players. This is necessary
to be able to implement the functionality with a real-life protocol.

The ideal functionality Finput is parametrized by a secret sharing scheme, sss, and
works as follows.

1. Receive an input xi from each Pi and an input (d1, . . . , dn) from the adversary.
The adversary also inputs xi for i ∈ C.

2. Flip a uniformly random bit d ∈R {0, 1}.
3. Let e = 1− d. Let x(i,d) = di be the dummy inputs and let x(i,e) = xi be the

enriched inputs.
4. For every xi,d and xi,e, the adversary inputs sets of shares Xi,d and Xi,e.

They each contain a share for every player in C, and we think of Xi,d as the
set of shares of xi,d that the adversary wants the functionality to produce for
corrupt players.

5. For j = 1, . . . , n and c = 0, 1, sample [x(j,c)] ← sss(x(j,c)|Xj,c), by which we
mean that shares of xi,c are sampled, conditioned on players in C receiving
shares Xi,c.

6. Output (x
(j,0)
i)n

j=1 and (x
(j,1)
i)n

j=1 to Pi.

7. On a later input (reveal, i, k), output d and (x
(j,d)
i)n

j=1 to Pk.

Fig. 3. Ideal Functionality Finput

Commitment Functionality We use a flavor of commitment where the com-
mitter cannot avoid that a commitment is revealed. Details are in Fig. 4.

The functionality Fcommit uses commitment identifiers encoding the sender s(cid)
of the commitment. It works as follows:

Commit: On input (commit, cid, m) from Ps(cid) and input (commit, cid) from
all (other) honest parties, store (cid, m) and output (commit, cid, |m|) to the
adversary.

Reveal: On input (reveal, cid, r) from all honest parties, where (cid, m) is stored,
give (cid, m) to Pr.

Fig. 4. Ideal Functionality Fcommit

Coin-Flip Functionality We use the coin-flip functionality given in Fig. 5.

4 Protocol

Having defined the necessary ideal functionalities, we will now describe how we
use them to compile the classical passively secure protocol by Ben-Or et al.
[6] based on Shamir secret-sharing into one with covert security. This protocol
computes an arithmetic circuit C with passive security. Assuming the inputs

The functionality FB
flip is parametrized by a positive integer B and works as follows:

1. Sample a uniformly random k ∈R {0, . . . , B − 1}.
2. When the first honest party inputs (flip), output k to the adversary.
3. If in the round where the first honest party inputs (flip) there is some party

Pi which does not input (flip), then output (corrupt, i) to all parties.

Fig. 5. Ideal Functionality FB
flip

to the arithmetic circuit have been secret shared, the protocol does addition by
having parties add their shares locally, and multiplication by local multiplication
of shares followed by a re-sharing by each parties of the local products. Due to
space constraints, we assume the details are known to the reader.

The protocols in this section use the auxiliary functionalities we defined.
Thus the actual complexity of our construction depends on the implementation
of those auxiliary functionalities. It turns out that the overhead incurred includes
a contribution coming from the cryptographic primitives we use, this overhead
does not depend on the communication complexity of the protocol we compile.
In addition, the adversary can choose to slow down Ftransmit by a factor of n,
but since he cannot make it fail, a covert adversary is unlikely to make such a
choice as discussed in the introduction.

We begin with a simple construction which has a rather poor computational
complexity. Following that, we show how the simple protocol can be adapted to
yield a better complexity.

Theorem 1. The protocol in Fig. 6 computes C with 1
2 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world against a
static adversary.

Proof. Initially S is given the inputs of the corrupt parties. It passes them on
to A and simulates the protocol execution up until the point where the bit d
is revealed and it is determined which of the two executions were the dummy
execution. S does this by inventing random shares whenever A would expect to
see a share from an honest party. A will always see only t shares and any subset
of size t look completely random in the real protocol execution. S can therefore
simulate them perfectly by giving A random values.

During the protocol, A is observed by S and it can thus be determined if A
ever sends an incorrect intermediate result to one of the honest parties.

– If A did not cheat at all, or if A cheated in both executions, then S simply
follows the protocol. In the first case FfCsecf will give S the outputs for the
corrupt parties, which S can pass along to A unchanged. In the second case,
A will be caught with certainty before seeing anything which depend on
the honest parties inputs. S can therefore simulate the protocol execution
towards A using random shares only.

– If A cheats in execution d′ (first or second execution), S will send (cheat)
to F . The functionality then determines if the cheat was successful:

In general, if any of the ideal functionalities output (corrupt, j) to Pi, then Pi

also outputs (corrupt, j). Not mentioning this further, the protocol proceeds in
five steps:

1. All parties provide input to Finput. In return they obtain shares of secret
sharings [x(j,0)] and [x(j,1)] for j = 1, . . . , n. Nobody knows which sharings are
dummy at this point.

2. Each party Pi generates random keys K0
i and K1

i and commit to them using
Fcommit twice.

3. The passively secure protocol is run on both input sets {[x(j,0)]}nj=1 and

{[x(j,1)]}nj=1. This evaluates the circuit C twice. The parties use Fcommit to
commit to their shares of the output. All randomness used in the first and
second protocol run come from pseudo-random generators seeded by K0

i and
K1

i , respectively.
4. The parties query Finput for the random bit d and the shares of {[x(j,d)]}nj=1.

They then use Fcommit to reveal the key Kd
i used for the pseudo-random gener-

ator for all Pi. Knowing the initial inputs and the seed for the pseudo-random
generator used, the entire message trace of all parties is fixed. The parties also
open the commitments to the dummy output shares.

5. Each party locally simulates the entire dummy execution to determine if any
cheating took place. This amounts to checking for each party whether his
input shares of [x(j,d)] (revealed by Finput) and seed Kd

i (revealed by Fcommit)
together lead to the shares he claims to have obtained of the output (revealed
by Fcommit) if he follows the passively secure protocol on the messages that
other parties would have sent if they followed the protocol on their shares and
expanded randomness. If no discrepancies are found, the output shares of the
real execution are opened.
Otherwise, the honest parties must determine who cheated.a

The parties have already locally simulated the dummy execution so they know
the correct message trace. It is therefore simple to match this against the actual
message trace revealed by Ftransmit and pinpoint the first deviation. If Pj made
the first mistake, the honest parties output (corrupt, j) and halt.

a Note that it is possible for a corrupt party to “frame” an honest party by sending
him wrong intermediate results. The honest party cannot tell the difference
and will produce incorrect output. Ftransmit is there to safeguard honest parties
against this form of attack. The parties call it to reveal all messages that were
received in the dummy execution.

Fig. 6. Simple version

Detected: The simulator must now ensure that A believes he cheated in
the dummy execution.

A will want to query Finput for the value of d and the shares of the
dummy inputs. In response, S sends a response with d = d′, which
means that A cheated in the dummy execution. S must also send back
shares of the inputs {x(j,d) = dj}nj=1 consistent with the shares A has
already seen. At this point A has only seen the shares it chose for the
(non-qualified) subset of corrupt parties when Finput was called initially.
S can therefore choose polynomials that agree with these values and

correspond to a sharing of the inputs dj , and finally compute consistent
shares of the honest parties using these polynomials.
If Pj were the first corrupt party who send an incorrect message to an
honest party, S will send (corrupt, j) to FfCsecf.

Undetected: In this case the functionality responded with (undetected)
together with the honest parties’ inputs. The simulator must therefore
make it look as if A cheated in the execution that was not opened, i.e.,
the real execution. As above, S can compute polynomials that will give
a correct sharing of inputs based on what A already knows and with
d = 1− d′.
Using these inputs together with the corrupt parties’ inputs and outputs,
S can now compute the consequence of A’s cheating, i.e., the altered
outputs of the honest parties. It passes these outputs to FfCsecf as the
honest parties’ outputs.

It is clear that the above simulation matches the output of A in the hybrid
world perfectly when A did not cheat and when A was foolish enough to cheat
in both executions.

When A cheats in just one execution, S will make the honest parties output
(corrupt, j) for some corrupt Pj (if A was detected) or output normal outputs
(ifA was undetected). Each of these two cases are picked with probability exactly
1
2 by the random choice made by FfCsecf. We get the same probability distribution
in the hybrid world where Finput picks the bit d uniformly at random.

In total, we can now conclude that the protocol in Fig. 6 computes fC with
1
2 -SECF security.

The above protocol has each party execute the passively secure protocol twice
after which each party simulates the actions of all other parties in the dummy
execution. In the standard BGW protocol [6], each party has a computational
complexity of O(n) per gate. By asking every party to simulate every other party,
we increase the computational complexity to O(n2) per gate.

The communication complexity is doubled by running the passively secure
protocol twice. In the normal case where the dummy execution is found to con-
tain no errors, the communication complexity is increased no further. When er-
rors are detected, every party is sent the messages communicated by every other
party. This will again introduce a quadratic blowup, now in the communication
complexity. We argued in the introduction that even a small fixed probability of
catching misbehavior is enough to deter the parties. Because of that, we expect
to find no discrepancies most of the time, and thus obtain the same communica-
tion complexity as the original protocol within a constant factor. We still have a
quadratic blowup in the computational complexity. However, local computations
are normally considered free compared to the communication, i.e., the network is
expected to be the bottleneck. So for a moderate number of parties, this simple
protocol can still be quite efficient.

Still, we would like to lower the complexity when errors are detected. Below
we propose a slightly more complex protocol which has only a constant overhead

This is a modification of the protocol in Fig. 6. After running Step 1–3 unchanged,
it continues with:

1. All Pi use Fcommit to commit to their view of the protocol, i.e., all messages
exchanged between Pi and Pj for all j. This results in commitments comm

(i,0)

{i,j}

for the first execution and comm
(i,1)

{i,j} for the second, where comm
(m,c)

{i,j} is the
view of Pm of what was sent between Pi and Pj in execution number c.

2. The parties query Finput for the random bit d and the shares of the dummy
inputs. They then use Fn−1

flip to flip a uniformly random k ∈ {1, . . . , n−1} that
will be used when checking. Fcommit is used by all parties to reveal the key Kd

i

used for the pseudo-random generator for all Pi. Finally, the commitments to
shares in the output from the dummy execution are opened.

3. Each party Pi checks Pl, where l = (i− 1 + k mod n) + 1, i.e., he checks Pi+k

with wraparound from Pn back to P1.
The commitments comm

(j,d)

{l,j} and comm
(l,d)

{l,j} are opened to Pi, i.e., the com-
mitted views of Pl and Pj of what was exchanged between them. If there is a
disagreement, then Pi broadcasts a complaint and Pl and Pj must decommit
to all parties and use Ftransmit to show which messages they received from the
other. This will clearly detect at least one corrupt party among Pl and Pj if
Pi was honest, or reveal Pi as corrupt if the commitments were equal after all,
i.e., if Pi made a false accusation.
If all committed views agree, then Pi simulates the local computations done
by Pl and checks whether this leads to the shares of the dummy output opened
by Pl and the messages sent according to comm

(l,d)

{l,j}. If a deviation is found,
Pi broadcasts an accusation against Pl, and all parties check Pl as Pi did.
If they verify the deviation they output (corrupt, l), otherwise they output
(corrupt, i).

4. If no accusations were made, the output of the real execution is opened.

Fig. 7. Efficient version

in both computation and communication both when no errors are detected and
when the parties are forced to do a more careful verification.

If no errors are detected, each party does two protocol executions followed
by a check of the input/output behavior of one other party. This is clearly a
constant factor overhead compared to the passively secure protocol. When a
party is accused, all other parties must check this party. This adds only a linear
overhead to the overall protocol, and thus the protocol in Fig. 7 has a linear
overhead compared to the passively secure protocol.

It might seem as an overkill in the protocol in Fig. 7 to use Ftransmit for
communication and then also have the parties commit to their communication
using Fcommit. The reason for the commitments is to commit the corrupted
parties to what they sent among each other before it is revealed which parties
check which parties. If we do not do that, they might decide on which of them
was the deviator after the revelation of d and k and thus always pick the deviator
to be one which is checked by a corrupted party. For an example of what can go
wrong without the commitments the interested reader can refer to the Chinese-
Whispers protocol in the full version of this paper [13].

Theorem 2. The protocol in Fig. 7 computes C with 1
4 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world.

Proof. The simulator for the protocol in Fig. 7 runs like the simulator for the
protocol in Fig. 6, except that it must now only output (corrupt, i) to F if it
determines that a message trace for a corrupt party Pi was checked by an honest
party, and it must do while maintaining the same probability distribution as in
the hybrid world.

As before, S will simulate A and observe the messages sent to honest parties.
As soon as an incorrect message is observed in execution d′ and all parties
committed to their communication with the other parties, we know there exists
an offset k′ ∈ {1, . . . , n − 1} for which an honest Pi would catch a corrupt Pl,
where l = (i− 1 + k′ mod n) + 1 in execution d′:

– If two parties Pl and Pj committed to comm(l,d′)
{l,j} 6= comm(j,d′)

{l,j} , then one
of them is corrupted, Pl say, and we pick k′ such that Pl is checked by an
honest Pi.

– If comm(l,d′)
{l,j} = comm(j,d′)

{l,j} for all pairs of parties, then the wrong message
sent to an honest party in execution d′ implies that some party Pl is com-
mitted to values which are not consistent with an execution of the protocol,
and we pick k′ to ensure that Pl is checked by an honest party.2

The simulator sends (cheat) to FfCsecf. We have two outcomes:

Detected: Set d = d′ and sample k at random such that Pl is checked by an
honest party.

Undetected: Set d = d′ with probability 1
3 , and d = 1− d′ otherwise. Sample

k ∈ {1, . . . , n−1} such that Pl is checked by an honest party with probability
α = 4

3 (n−tn−1 −
1
4).

If A did not cheat, S selects d and k as in the hybrid protocol. The simulation
continues as in the hybrid world with these choices for d and k. The ideal world
output clearly match the hybrid world.

When A did cheat, we will show that d and k are picked with the correct
distribution. First note that S pick d = d′ with probability 1

4 · 1 + 3
4 ·

1
3 = 1

2 , as
in the hybrid world.

For the selection of k, note that a cheating party will always have a unique
distance to every honest party. These distances make up a subset of {1, . . . , n−1}
of size n− t. The cheater is caught exactly when the offset is picked within this
subset. This happens with probability n−t

n−1 in the hybrid world. The simulator
picks k among the indices of honest parties with the same probability: 1

4 + 3
4α =

n−t
n−1 . We conclude that S will simulate the hybrid world.

5 Implementation of Sub-Protocols

In this section we sketch how to implement the sub-protocols described above.
2 Note that Pl need not be the one who sent the incorrect message to the honest

party—Pl may have behaved locally consistent given its inputs—but S will be able
to find a first deviator, and it will clearly not be one of the honest parties.

Detection In all sub-protocols we will need a tool for stopping the protocol
“gracefully” when corruption is detected This is done by all parties running the
following rules in parallel.

1. If a party Pi sees that a party Pd deviates from the protocol, then Pi signs
(corrupt, d) to get signature γi and sends the signature to all parties. Then
Pi outputs (corrupt, d).

2. If Pk received a signature γi on (corrupt, d) from t + 1 distinct parties Pi,
it considers these as a proof that Pd is corrupted, sends this proof to all
parties, outputs (corrupt, d), waits for one round and then terminates all
protocols.

3. If Pk receives a proof that Pd is corrupt from any party, it relays this proof
to all parties, outputs (corrupt, d), waits for one round and then terminates
all protocols.

If the signature scheme are unforgeable and only corrupted parties deviate
from the protocol, then the protocol has the following two properties, except
with negligible probability.

Detection soundness: If an honest party outputs (corrupt, d), then Pd is
corrupt.

Common detection: If an honest party terminates the protocol prematurely,
then there exists Pd such that all honest parties have output (corrupt, d).

The reason why the relayer Pr waits for one round before terminating is that
Pr wants all other parties to have seen a proof that Pi is corrupt before it ter-
minates itself. Otherwise the termination of Pr would be considered a deviation
and an honest Pr could be falsely detected. In the following we do not always
mention explicitly that the detection sub-protocol is run as part of all protocols.

Transmission Functionality The transmission protocol can run in two modes.
In cheap mode Ftransmit is implemented as follows.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to Pr(mid).

2. On input (transmit,mid) party Pr(mid) waits for one round and then ex-
pects a message (mid,m, σs) from Ps(mid), where σs is a valid signature from
Ps on (mid,m). If it receives it, it outputs (mid,m).

3. On input (reveal,mid, i) party Pj , if it at some point output (mid,m),
sends (mid,m, σs) to Pi, which outputs (mid,m) if σs is valid.

It is easy to check that this is a UC secure implementation under the following
restrictions:

Synchronized input from honest parties: If some honest party receives in-
put (transmit,mid), then all honest parties Pi 6= Ps(mid) receives the same
input (transmit,mid). Furthermore, if Ps(mid) is honest, it receives input
(transmit,mid,m) for some m.

Signatures: Even corrupted Ps send along the signatures σs.

The restriction synchronized input from honest can be enforced by the way
the ideal functionality is used by an outer protocol, i.e., by ensuring that the
honest parties agree on which message identifiers are used for which message
in which rounds. This is the case for the way we use Ftransmit. The restriction
signatures is unreasonable, and we show how to get rid of it below. We need the
rule Do not commit corrupt to corrupt in Ftransmit as we cannot prevent a
corrupt Ps from providing a corrupt Pi with signatures on arbitrary messages,
i.e., we cannot commit the corrupted parties to what they have sent among
themselves.

As mentioned, the above implementation only works if all senders honestly
send the needed signatures. If at some point some Pr does not receive a valid
signature from Ps, it publicly accuses Ps of being corrupted and the parties
switch to the below expensive mode for transmissions from Ps to Pr.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to all Pi 6= Ps(mid).

2. On input (transmit,mid) parties Pi 6= Ps(mid) wait for one round and then
expects a message (mid,m, σs) from Pr(mid), where σs is a valid signature
of Ps(mid) on (mid,m). If Pi receives it, it sends (mid,m, σs) to Pr(mid).
Otherwise, it sends a signature γi on (corrupt, i) to all parties.

3. On input (transmit,mid) party Pr(mid) waits for two rounds and then ex-
pects a message (mid,m, σs) from each Pi, where σs is a valid signature of
Ps(mid) on (mid,m). If it arrives from some Pi, then Pr outputs (mid,m).

Note that now each round of communication on Ftransmit takes two rounds on the
underlying network. Between two parties where there have been no accusations,
messages are sent as before (Step 1 in the above protocol) and the extra round
is used for silence—it is necessary that also non-accusing parties use two rounds
to not lose synchronization.

If Ps sends a valid signature to just one honest party, then Pr gets its signa-
ture and can proceed as in optimistic mode. If Ps does not send a valid signature
to any honest party, then all n− t honest Pi send γi to all parties and hence all
honest parties output (corrupt, s) in the following round, meaning that Ps was
detected. Using these observations it can easily be shown that the above protocol
is a UC implementation of Ftransmit against covert adversaries with deterrence
factor 1. Note that it is not a problem that we send m in cleartext through all
parties, as an accusation of Ps by Pr means that Ps or Pr is corrupt, and hence
m need not be kept secret.

We skipped the details of how the accusations are handled. We could in prin-
ciple handle accusations by using one round of broadcast after each round of
communication to check if any party wants to make an accusation. After broad-
casting the accusations, the appropriate parties can then switch to expensive
model. To avoid using a Byzantine agreement primitive in each round, we use
a slightly more involved, but much cheaper technique which communicates less
than n2 bits in each round and which only uses a BA primitive when there are

actually some accusations to be dealt with. The details are given in the next
section.

In cheap mode, using Ftransmit adds an overhead Nκ bits compared to plain
transmission, where κ is the length of a signature and N is the number of mes-
sages sent. In expensive mode this overhead is a factor n larger.

Cheap Exception Handling Consider a protocol consisting of two protocols
πmain and πexcept, both for the authenticated, synchronous point-to-point model.
Initially the parties run πmain. The goal is to allow any party to raise a flag, which
stops πmain and starts πexcept. With some details left out for now, this is handled
as follows.

– If a party Pi wants to stop the main protocol, it sends (stop) to all parties
and stops the execution of πmain. It records the round Ri in which it stopped
running πmain.

– If a party Pi receives (stop) from any party while running πmain, it sends
(stop) to all parties and stops the execution of πmain. It records the round
Ri in which it stopped running πmain.

– After all parties stopped they resynchronize and then run πexcept.
– After having run πexcept, the parties agree on a round C of πmain which was

executed completely, i.e., Ri > C for all honest Pi, and then they rerun from
round C+ 1. If a party Pr already received a message from Ps for one of the
rounds that are now rerun, then Pr ignores any new message sent by Ps for
that round. This is to avoid that corrupted parties can change their mind
on what they sent in a previous round.

The resynchronization is needed as honest parties might stop in different
rounds—though at most with a staggering of one round.

The resynchronization uses a sub-protocol where the input of Pi is the round
Ri in which it stopped. The output is some common R such that it is guaranteed
that Ri = R for some honest Pi, i.e., at least one honest party stopped in round
R. Since the honest parties stop within one round of each other, it follows that
all honest parties stopped in round R − 1, R or R + 1. In particular, no honest
party stopped in round R − 2. The parties can therefore safely set C = R − 2,
i.e., rerun from round R− 1.

The protocol used to agree on the round R proceeds as follows:

1. Each Pi has input Ri ∈ N and it is guaranteed that |Ri − Rj | ≤ 1 for all
honest Pi and Pj .

2. Let ri = Ri mod 4 and make 4 calls to the BA functionality—name the calls
BA0, BA1, BA2 and BA3. The input to BAc is 1 if c = ri or c = ri−1 mod 4
and the input to BAc is 0 if c = ri + 1 mod 4 or c = ri + 2 mod 4.

3. Let oc ∈ {0, 1} for c = 0, 1, 2, 3 denote the outcome of BAc. Now Pi finds
the largest R ∈ {Ri − 1, Ri, Ri + 1} for which oR mod 4 = 1 and outputs R.

It is fairly straight forward to see that the honest parties output the same R and
that R was always the input of some honest party. Look at two cases.

– If there exists ρ such that Ri = ρ for all honest Pi, then all honest parties
input the same to the BA functionalities, and then trivially oρ−1 mod 4 = 1,
oρ mod 4 = 1, oρ+1 mod 4 = 0 and oρ+2 mod 4 = 0. Consequently, at honest
parties outputs R = ρ.

– If there exists ρ such that Ri = ρ for some honest Pi and Rj = ρ + 1 for
some honest Pj , then Rk ∈ {ρ, ρ+ 1} for all honest Pk, and thus all honest
Pk input 1 to BAρ mod 4, and so oρ mod 4 = 1. Furthermore, all honest parties
input 0 to BAρ+2 mod 4, so oρ+2 mod 4 = 0. It follows that all honest parties
output R = ρ if oρ+1 mod 4 = 0 and that all honest parties output R = ρ+ 1
if oρ+1 mod 4 = 1. Both outputs are valid.

The above protocol is an improved version of a protocol by Bar-Noy et al.
[3], which in turn uses techniques from Berman et al. [7]). The protocol in [3]
uses log(B) calls to the BA functionality, where B is an upper bound on the
input of the parties. We use just 4.

Note that at the point where the four BAs are run, the honest parties might
still be desynchronized by one round. We handle this using a technique from [16]
which simulates each round in the BA protocols by three synchronous rounds in
the authenticated channel model.

Commitment Functionality The protocol uses a one-round UC commitment
scheme with a constant overhead (commit to κ bits using O(κ) bits), which can
be realized with static security in the PKI model [4] given any mixed commitment
scheme [11] with a constant overhead. Concretely we can instantiate such a
scheme under Paillier’s DCR assumption. Note that opposed to Barak et al. [4]
we do not need a setup assumption: We assume honest majority and can thus,
once and for all, use an active secure MPC to generate the needed setup [14].
The protocol also uses an error-correcting code (ECC) for n parties which allows
to compute the message from any n− t correct shares.

If one is willing to use the random oracle model, UC commitment can instead
be done by calling the oracle on input the message to commit to, followed by
some randomness. In practice, this translates to a very efficient solution based
on a hash function.

The protocol proceeds as follows.

1. On input (commit, cid,m), Ps(cid) computes an ECC (m1, . . . ,mn) of m. The
sender then computes ci ← commitpki(mi) and sends ci to Pi via Ftransmit.

2. On input (reveal, cid, r), Pi opens each ci to Pi. The opening is sent via
Ftransmit. If any Pi receives an invalid opening, it transfers ci and mi to all
parties and Ps is detected as a cheater. Otherwise, Pi transfers ci and the
opening to Pr.

3. Then Pr collects validly opened ci. Let I be the index of these and let mi be
the opening of ci for i ∈ C. If |I| < n − t, then Pr waits for one round and
terminates.3 If (mi)i∈I is not consistent with a codeword in the ECC, then

3 Since we assume that at most t parties are corrupted, we can assume that either Ps is
detected or Pr receives n−t commitments with corresponding valid decommitments.

Pr transfers (ci)i∈I and the valid openings to the other parties which detect
Ps as corrupted. Otherwise, Pr uses (mi)i∈I to determine m and outputs
(cid,m).

Assuming that a commitment to ` bits have bit-length O(max(κ, `)), where κ
is the security parameter, the complexity of a commitment to ` bits followed by
an opening is O(nmax(κ, `/n)) = O(n(κ+ `/n)) = O(`+ nκ). This is assuming
that there are no active corruptions, such that Ftransmit has constant overhead.

Flip Functionality To implement FBflip the parties proceed as follows.

1. On input (flip), all Pi commit to a uniformly random ki ∈ {0, . . . , B − 1}.
2. In the next round all Pi reveal ki to all parties.
3. All parties output k =

∑n
i=1 ki mod B.

Under the condition that the protocol is used by the honest parties in a
way that guarantees that they input (flip) in the same round, the argument
that the protocol implements the functionality against a covert adversary (with
deterrence 1) is straight forward.

Input Functionality The input functionality can be implemented using a VSS
with a multiplication protocol active secure against t < n/2 corruptions. The
VSS should have the property that it is possible to verifiable reconstruct the
secret and the share of all parties given the shares of the honest parties—standard
bivariate sharing has this property. We sketch the protocol.

1. Each Pi deals a VSS [[xi]] of its input xi.
2. The parties use standard techniques to compute a VSS [[d]] of a uniformly

random d ∈R {0, 1} ⊂ K.
3. For each input [[xi]] the parties use an actively secure multiplication protocol

to compute [[x(i,0)]] = [[di · xi]] and [[x(i,1)]] = [[(1− di) · xi]].
Each Pi takes its output to be (x(j,0)

i)nj=1 and (x(j,1)
i)nj=1, where x(j,c)

i is its
point on the polynomial used by the sharing [[x(j,c)]]. The other values of
the VSS are internal to the implementation of Finput and only used for the
below command.

4. On input (reveal, i, k) the parties reconstruct [[d]] and all [[xi,d]] towards Pk
and Pk computes the points x(j,d) of Pj in all sharings and output (x(j,d)

i)nj=1.

Bibliography

[1] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In CRYPTO, pages 417–432, 2002.

[2] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In S. P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 137–156. Springer, 2007.

[3] A. Bar-Noy, X. Deng, J. A. Garay, and T. Kameda. Optimal amortized
distributed consensus. Information and Computation, 120(1):93–100, 1995.

[4] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS, pages 186–195. IEEE
Computer Society, 2004.

[5] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear
communication complexity. In TCC, pages 213–230, 2008.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In STOC, pages 1–10. ACM, 1988.

[7] P. Berman, J. A. Garay, and K. J. Perry. Optimal early stopping in dis-
tributed consensus. In A. Segall and S. Zaks, editors, WDAG, volume 647
of Lecture Notes in Computer Science, pages 221–237. Springer, 1992.

[8] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live. In
Financial Cryptography, pages 325–343, 2009.

[9] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145. IEEE, 2001.

[10] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multi-
party computation. In CRYPTO, pages 572–590, 2007.

[11] I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In
M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 581–596. Springer, 2002.

[12] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scal-
able multiparty computation with nearly optimal work and resilience. In
CRYPTO, pages 241–261, 2008.

[13] I. Damg̊ard, M. Geisler, and J. B. Nielsen. From passive to covert security
at low cost. Cryptology ePrint Archive, Report 2009/592, 2009. http:
//eprint.iacr.org/.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
– a completeness theorem for protocols with honest majority. In STOC,
pages 218–229. ACM, 1987.

[15] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT, pages 289–306,
2008.

[16] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of pro-
tocols without simultaneous termination. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, pages 203–212.
ACM Press, 2002.

