
On the Necessary and Sufficient Assumptions for
UC Computation⋆

Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi

Department of Computer Science, Aarhus University
{ivan, jbn, claudio}@cs.au.dk

Abstract. We study the necessary and sufficient assumptions for uni-
versally composable (UC) computation, both in terms of setup and com-
putational assumptions. We look at the common reference string model,
the uniform random string model and the key-registration authority
model (KRA), and provide new results for all of them. Perhaps most
interestingly we show that:
– For even the minimal meaningful KRA, where we only assume that

the secret key is a value which is hard to compute from the public key,
one can UC securely compute any poly-time functionality if there
exists a passive secure oblivious-transfer protocol for the stand-alone
model. Since a KRA where the secret keys can be computed from the
public keys is useless, and some setup assumption is needed for UC
secure computation, this establishes the best we could hope for the
KRA model: any non-trivial KRA is sufficient for UC computation.

– We show that in the KRA model one-way functions are sufficient for
UC commitment and UC zero-knowledge. These are the first exam-
ples of UC secure protocols for non-trivial tasks which do not assume
the existence of public-key primitives. In particular, the protocols
show that non-trivial UC computation is possible in Minicrypt.

1 Introduction
We study the necessary and sufficient assumptions for universally composable
(UC) computation [Can01], both in terms of which setup models are needed and
how strong assumptions on the setup are needed, and in terms of necessary and
sufficient computational assumptions.

One of the motivation is to study the minimal setup required for UC com-
putation. It is known that some kind of setup is required, which makes it a
theoretically interesting question exactly how strong an assumption must be
made on the setup. We study both the common reference string model (CRS)
and the key registration authority model (KRA), and some variations.

The goal of the study is also to determine the relationships between one way
functions (OWF), passive secure stand-alone oblivious transfer (SA-OT)1, UC
⋆ A full version of this work can be found at http://eprint.iacr.org/2009/247.
1 If a passive secure SA-OT exists then also an active secure SA-OT exists via standard
compilation techniques.



commitments (UC-Com) and UC oblivious transfer (UC-OT) in different set-up
models2: for stand-alone security, we know that OWF are sufficient for other
cryptographic tasks such as commitments and zero-knowledge proofs. Are OWF
equivalent to any of these tasks when it comes to UC security? For the CRS
models, Damgård and Groth [DG03] answered the question negatively showing
that UC-Com implies key agreement in the CRS models and therefore, given the
black-box separation between OWF and key agreement [IR89,RTV04], OWF are
not sufficient to realize UC-Com. We find it interesting to study if this is inherent
or associated to the particular setup model. We include SA-OT because it is
complete for stand alone computation [Kil88], and therefore a natural question
is whether SA-OT is sufficient also for UC computation. On the other hand it is
interesting to know whether this assumption is minimal, i.e. whether SA-OT is
also necessary to implement UC-Com and UC-OT. The motivation for including
UC-OT is that it is complete for general UC computation: it is possible to
implement any well-formed ideal functionality given the UC-OT functionality,
see [CLOS02,IPS08]. Finally the motivation for including UC-Com is that it is
potentially weaker than UC-OT but still implies a number of non-trivial tasks
like coin-flip and zero-knowledge.

Highlights. We highlight some of the new findings which we find particularly
interesting: In the KRA model, we provide the first construction of UC com-
mitment from one-way functions—all previous constructions, to the best of our
knowledge, used special assumptions or assumed at least public-key encryption.
A consequence of it is that zero-knowledge and coin-flip can be UC securely
implemented in Minicrypt. Until now it was not known if any non-trivial UC
computation was possible in Minicrypt.

Remembering that UC-Com implies SA-OT in the CRS models we get an-
other new result: The choice of the setup model can make a difference in which
ideal functionalities can be implemented under a given computational assump-
tion. In the CRS model we need SA-OT for UC-Com, but in the KRA model we
can do with just OWF. This seems to be the first such separation of the setup
models.

It turns out that SA-OT is sufficient for UC-OT in any setup model we
considered, in particular in the minimal version of both the CRS and KRA
model. Since some setup assumption is needed for general UC computation, this
seems a very positive addition to the UC theory: Some setup is needed, but even
the most trivial setup will allow to implement any well-formed functionality.

Finally, we show how to implement authenticated channels given a mini-
mal meaningful KRA: Implementing authentication in a public-key setting is of
course trivial if one can choose the structure of the public keys—one includes a
verification key in the public key and signs all messages. It is by far trivial in our
relaxed KRA model as we make no assumption on the public keys except that
they are in the range of some one-way function, which might itself be maliciously

2 When writing UC-Com or UC-OT we mean the multi-party, multi-session version of
the protocols.

2



chosen. Standard constructions of signature schemes from one-way functions use
verification keys with much more structure than this. This seems to be the first
result which shows that any value you could hope for to act as a public key can
actually be used to implement an authenticated channel.

Setup models: We look at five setup models:

– In the uniform common random string (U-CRS) model we assume that a
single uniformly random ℓ-bit string crs is chosen by a trusted party and
made public. Here ℓ is chosen by the protocol.

– In the chosen common reference string (C-CRS) model the trusted party
samples crs using a poly-time one-way3 distribution D ∶ {0,1}· → {0,1}ℓ,
which allows crs to have a particular form. We assume that the trusted party
samples a single crs =D(r) for uniformly random r ∈ {0,1}· and makes crs
public. The function D might be given by the protocol ¼.

– The any common reference string (A-CRS) model is like the C-CRS model,
except that we let the adversary pick D, under the only restriction that D is
one-way. The trusted party samples crs =D(r) and makes (D, crs) public. 4

– In the chosen key registration authority (C-KRA) model we assume that the
protocol contains a poly-time function fi for each party Pi. A trusted party
will sample pki = fi(si) for each Pi and give si to Pi and pki to all other
parties. This models a key-registration authority with public keys pki, secret
keys si and where the parties are guaranteed to know their secret keys. 5

– The any key registration authority (A-KRA) model is like the C-KRA model,
except that we allow the adversary to specify each fi, under the only restric-
tion that fi is a one-way function when Pi is honest.

In the CRS models we in addition assume the presence of authenticated chan-
nels, as the existence of a CRS clearly does not allow authentication: All parties
know the CRS and nothing else, so nothing distinguishes an honest party from
the adversary. In the KRA models we start from the unauthenticated channels
model, as the existence of a public-key infrastructure has the potential to allow
authentication. In the A-CRS model the protocol ¼ does not choose D, and the
security of ¼ should hold for any one-way function D. Another way of phrasing
the model is to say that the protocol ¼, parametrized by D, should be secure
in the C-CRS model for any one-way function D. In some sense this models the
minimal meaningful common random string: we do not make assumptions on
how random it is, but the parties can agree on the fact that there is something
about the string which neither of them knows.
3 If D is invertible then the C-CRS and the U-CRS model are trivially equivalent.
4 Note that the A-CRS model generalizes both the U-CRS and the C-CRS, for com-
putational security: the U-CRS is computationally indistinguishable from a setup
where the trusted party picks a random seed and expands it using a pseudo random
generator.

5 This is essentially the key registration with knowledge (KRK) model from [BCNP04].
We cannot start from the KR model from [BCNP04] as we need that parties know
their secret keys to implemented authenticated channels.

3



The A-KRA model in some sense is the minimal meaningful assumption on a
key registration authority: Each party has a publicly known public key pki and
there is some secret about pki which only Pi knows. A protocol for the A-KRA
can therefore be run given any meaningful key registration authority, with no
assumption whatsoever about the form of pki or the exact hardness of finding
si. Note that one can think of simpler public key models, as the bare public key
model (BPK) introduced in [CGGM00], that does not require corrupted parties
to know their secret keys. However, even if the BPK model has been successfully
used to break some impossibility results about concurrent ZK (see [OPV08] and
reference therein), it was shown in [KL07] that UC computation is impossible
even in the BPK model or any other public key model “without knowledge”.

Results: Let C1,C2 ∈ { OWF, SA-OT, UC-Com, UC-OT } and M one of the
described setup model. Then we can ask ourselves questions of the form “is
C1 necessary/sufficient for C2 in the M model?” Some of these are of course
trivial, like is OWF necessary for UC-OT in the U-CRS model?, but many are
non-trivial and theoretically interesting, like is SA-OT sufficient for UC-OT in
the A-CRS model?. The answers to these questions are pictorially illustrated
in Figures 1 and 2. The main results are proved through the text while the
implications that were already known, or that easily follow from our results and
known facts are presented in Sec. 8.

U/C/A-CRS, C/A-KRA
⇙ UC-COM⇖

OWF ⇑ SA-OT
⇖ UC-OT ⇙

Fig. 1. One direction of the relationship between the primitives holds in any setup
model.

U-CRS, A-CRS, A-KRA C-KRA C-CRS

� UC-COM ⇘ ⇗ UC-COM� � UC-COM
?

⇘
OWF ⇓ SA-OT OWF � SA-OT OWF ⇓? SA-OT

� UC-OT ⇗ � UC-OT ⇗ � UC-OT
?

⇗

Fig. 2. The other direction differs in different setup models.

When SA-OT appears on the left side of the implication, the assumption
is that there exist a protocol that implement SA-OT in the stand alone mode.
When UC-Com and UC-OT appear on the left side of the implication, the as-
sumption is that there exist a protocol that implement that functionality in the

4



model in question, i.e., we are not referring to an hybrid world where the func-
tionality is given to the party: We assume that the parties know a protocol to
implement the functionality.

Note that the figure states that UC-Com is not sufficient for UC-OT in the
C-KRA model, while the answer is yes in the A-KRA model. This may seem
surprising because the C-KRA model (unlike A-KRA) allows the protocol to
choose how public keys are computed and so it seems that anything that is
possible in the A-KRA model should also possible in C-KRA. The catch is that
the UC-Com assumption is not the same in the two models, in particular, having
a UC-commitment scheme that works in the A-KRA model is a much stronger
tool than one that needs C-KRA.

For all our negative answers to sufficient questions and positive answers to
necessary questions, we mean that there is no black-box construction. We cannot
answer whether OWF is sufficient for UC-Com with our current understanding
of complexity theory: It might be that one-way functions do not exists, in which
case the assumption OWF is false, and then OWF ⇒ UC-Com is true. The

result UC −Com
(C−KRA)⇏ UC −OT therefore means that there is no black-box

construction which takes an implementation of UC commitment for the C-KRA
model and gives an implementation of UC OT for the C-KRA model. For some
of our positive answers to sufficient questions and negative answers to necessary
questions, we appeal to non-black box constructions. As an example, the result

OWF
(C−KRA)⇒ UC −Com uses a description of the circuit for the OWF.6

Related work. In [CLOS02] the main feasibility result for UC computation in
the CRS model can be found. [CLOS02] needs to assume enhanced trapdoor
permutation in order to achieve their results, while we use the strictly weaker
assumption SA-OT. On the other hand this comparison is not quite fair as
[CLOS02] tries to achieve adaptive security, and consider static security just
as a special case, while our focus is entirely on static security. In [LPV09] a
general framework for UC feasibility results is presented, showing how different
setup assumptions (including timing model, tamper proof hardware, etc.) can
be seen as different implementations of what the authors call UC puzzles. While
in [LPV09] the results are proved assuming the existence of enhanced trapdoor
permutation, we look at strictly weaker assumptions as OWF and SA-OT.

In a recent series of papers [PR08,MPR09], the classification of the crypto-
graphic complexity of UC functionalities is studied. Perhaps most interestingly
with respect to our work, in [MPR09] it is shown the SA-OT assumption is
equivalent to any UC functionality being either trivial or complete. There is a
clear overlap between these results and some of ours, however we focus on setup
functionalities - that are invoked just once at the beginning of the protocol, while

6 It might be possible that A⇏ B and A⇒ B at the same time. However, if for any of
the ⇏ separations in Figure 1, 2 this is the case, then one would have a non-black-
box construction of SA-OT using OWF. Such a construction is unlikely to exist - or
at least requires completely new cryptographic techniques - see also [RTV04].

5



the constructions in [MPR09] use the ideal functionalities during the protocol in
an on-line fashion.

2 The KRA Model
In this section we give our model of minimal public-key setup, where each party
knows a secret which is not known by the other parties. We associate these
secrets to public values which we distribute via a key generator G. When sampled
it outputs ((R1, s1), . . . , (Rn, sn)), where each Ri is a description of a PPT
set and si is the secret of Pi, and si ∈ Ri for i ∈ [n] = {1, . . . , n}. We call
R = (R1,R2, . . . ,Rn). For a “normal” KRA we would have that the description
of R contains the parties’ public keys pk1, . . . , pkn and that si ∈ Ri if si is the
secret key associated to pki; in this case we will write (pki, si) ∈ Ri. To model
that a party’s secret si is hard to find for the other parties we require that it
is hard to find any s′i such that s′i ∈ Ri. This should hold even if one is given
R ∪ {sj}j∈[n]∖{i}.

To allow corrupted parties to use secrets different from those of the honest
parties (maybe fixed instead of random or even of another form), we let G depend
on the set C of corrupted parties, and we let the adversary A influence the key
generation as follows: Both G and A are ITMs. First G is given input n and C,
where n defines the number of parties and C ⊂ [n] defines the set of corrupted
parties. Then G and A interact and at some point G outputs (R,s1, . . . , sn);
we write (R,s1, . . . , sn) ← (G(n,C),A). For G to be meaningful we require that
sj ∈ Rj for all parties Pj∈[n]. We only require that the secrets of honest parties,
Pi∈[n]∖C , are hard to find, as it is not necessarily meaningful to require that
corrupted parties keep their secrets hidden.

We introduce some convenient notation for the case where all public keys
are generated using the same function f . For a function f ∶ {0,1}· → {0,1}ℓ
we define the key generator Gf as follows: For each honest party Pi it samples
si ∈ {0,1}· and computes pki = f(si). Then it outputs {pki}i∈[n]∖C to the adviser.
It interprets the next message from the adviser as a set {si}i∈C and computes
pki = f(si) for i ∈ C. It defines Rf by (pk, s) ∈ Rf iff pk = f(s) and then outputs
((pk1, s1,Rf), . . . , (pkn, sn,Rf)).

– Let n be the number of parties and C the set of corrupted parties, and run
G(n,C) with the UC adversary A as adviser.

– When G(n,C) outputs (R, s1, . . . , sn), then send (R,{si}i∈C) to A and send
(R, si) to each Pi, letting A determine the delivery time.

Fig. 3. The KRA ideal functionality FG
kra for a generator G.

Definition 1. We call G meaningful if ∀ A, A wins the following game with
negligible probability: Run A to get (n,C), with n polynomially bounded and
C ⊂ [n]. Then sample (R, s1, . . . , sn) ← (G(n,C),A). At this point A wins if
∃j ∈ [n] sj /∈ Rj. If A did not win here, run A on R to get i ∈ [n] ∖C, and run
A on s−i = {sj}j∈[n]∖{i} to get an output (i, s′i). If s′i ∈ Ri, then A wins.

6



Definition 2. Let G be a set of key generators, let ¼ be a protocol and F an
ideal functionality. We say that ¼ is a UC secure implementation of F with
a G KRA if ¼ is a UC secure implementation of F in the FG

kra-hybrid model
(Fig. 3) for all G ∈ G. We say that ¼ is a UC secure implementation of F
with any meaningful KRA (A-KRA) if the above holds for G being the set of all
meaningful key generators.

3 Authentication in the A-KRA Model given OWF

We show here how to implement authentication with any meaningful KRA. We
first construct a system for identification secure under concurrent composition,
using §-protocols in a more or less standard manner. Then we extend this iden-
tification system to a UC secure authentication system in a novel manner.

Implementing authentication in a public-key setting is of course trivial if one
can choose the structure of the public keys—one includes a verification key in the
public key and signs all messages. It is by far trivial in our relaxed KRA model
as we make no assumption on the public keys except that they are in the range
of some one-way function, which might itself be maliciously chosen. Standard
constructions of signature schemes from one-way functions use verification keys
with much more structure than this.

3.1 §-Protocols

For details on the following brief introduction see [CDS94]. Let R ⊆ {0,1}∗ ×
{0,1}∗ be a binary relation. A §-protocol for R consists of (A,E,Z, J,W,S),
where A is a poly-time algorithm which for all (x,w) ∈ R and sufficiently long
randomness r outputs a commit message a = A(x,w, r); E = {0,1}ℓ is a set of
challenges; Z is a poly-time algorithm which given (x,w) ∈ R and e ∈ E and ran-
domness r outputs a reply z = Z(x,w, e, r); J is a poly-time algorithm, called the
judgment, which given any (x, a, e, z) outputs J(x, a, e, z) ∈ {accept,reject};
and W is a poly-time algorithm called the witness extractor and S is a PPT
algorithm called the simulator. Furthermore:

completeness: For all (x,w) ∈ R, all randomness r and a = A(x,w, r) and
z = Z(x,w, e, r) it holds that J(x, a, e, z) = accept.

special soundness: For all (x, a, e, z) and (x, a, e′, z′) with e ≠ e′, V (x, a, e, z) =
accept and J(x, a, e′, z′) = accept it holds that (x,W (x, a, e, z, e′, z′)) ∈ R.

honest verifier zero-knowledge: For all (x,w) ∈ R and all e ∈ E the sim-
ulator outputs (a, z) ← S(x, e) such that J(x, a, e, z) = accept and such
that the distribution of (x, a, e, z) is computationally indistinguishable from
(x,A(x,w, r), e,Z(x,w, e, r)) for a uniformly random r. This holds even
when the distinguisher is given w.

One round of the standard zero-knowledge protocol for Hamiltonian Cycle
using a statistically binding commitment scheme is a §-protocol for Hamiltonian
Cycle with E = {0,1}. Since §-protocols are closed under parallel composition,

7



this gives a §-protocol for any NP relation R based on one-way function, with
E = {0,1}ℓ for any polynomial ℓ.

Let R0 and R1 be binary relations and define R = R0∨R1 by ((x0, x1),w) ∈ R
iff (x0,w) ∈ R0 or (x1,w) ∈ R1. Then given two §−protocols §0,§1 for R0,R1

respectively, we can use the OR-construction to construct a §−protocol, § =
§0 ∨§1 for the relation R = R0 ∨R1. Let x = (x0, x1) be an instance for which
there exists w0 and w1 such that (x0,w0) ∈ R0 and (x1,w1) ∈ R1. Then the
OR-construction is witness indistinguishable in the following sense: Consider a
PPT adversary A. Give it (x, (w0,w1)) and give it access to a proof oracle
Ob, which on input prv picks a fresh identifier I, samples a(I) ← A(x,wb, r),
stores the prover intermediate state P (I) = (I, b, r) and returns a(I) to A. On an
input (chl, I, e(I)) when some P (I) = (I, b, r) is stored, it deletes P (I), computes
z(I) = Z(x,wb, e

(I), r) and returns z(I) to A. At the end A outputs a guess at b.
Then ∣Pr[AO0(x, (w0,w1)) = 0] −Pr[AO1(x, (w0,w1)) = 0]∣ is negligible.

We call G a hard double-witness generator for R = R0 ∨R1 if it is PPT and a
random sample (x,w0,w1) ← G has the property that (x,w0) ∈ R and (x,w1) ∈ R
and that it is hard to compute w0 from (x,w1) and hard to compute w1 from
(x,w0), i.e., a PPT algorithm given a random (x,wb) outputs (x,w1−b) with
negligible probability. If G is a hard double-witness generator for R = R0 ∨R1,
then § = §0 ∨§1 is witness hiding for G, i.e., an adversary cannot compute a
witness after seeing any number of proofs. Since §-protocol are proofs of knowl-
edge, the adversary cannot give a proof without knowing the witness. Putting
these two observations together we get that the adversary cannot give a proof for
a statement x even after seeing any number of proofs for x, in the following sense:
We say that A wins the reprove game in Fig. 4 if at the end of the game there is
a stored value (a, e, z) (from reply verifier), where J(x, a, e, z) = accept and
where A did not challenge a prover (in reply verifier) between receiving e and
returning z. I.e., A did not challenge a prover while it had to compute its own
challenge.

initialize Let I = 0. Sample (x,w0,w1) ← G and give x to A.
start prover Whenever A inputs (prv, b), let I = I+1, sample a(I) ← A(x,wb, r),

store the prover intermediate state P (I) = (I, b, r) and return a(I) to A.
challenge prover Whenever A inputs (chl, I, e(I)) and some P (I) = (I, b, r) is

stored, delete P (I), compute z(I) = Z(x,wb, e
(I), r) and return z(I) to A.

start verifier On input (verify, a) from A, sample a uniformly random e ∈R E,
store (a, e) and return e to A.

reply verifier On input (reply, a, e, z) from A, where (a, e) is stored, delete
(a, e) and store (a, e, z).

Fig. 4. The reprove game for A, § and G

Theorem 1. Let §0 be a §-protocol for R0, §1 be a §-protocol for R1 and G be
a hard double-witness generator for R = R0 ∨R1. Then for all A PPT verifiers,
A wins the reprove game with § = §0 ∨§1 and G with negligible probability.

8



The intuition behind the proof is that an adversary A which wins the game
can be used to extract a witness by rewinding the winning conversation and
sending a new challenge, to get two valid conversations. Since A did not challenge
a prover between getting e and sending its reply, the rewinding does not give
problems. Which of the two witnesses w0 and w1 is extracted by A does not
change significantly if we give all the proofs to A using a random fixed witness wb

instead of letting A choose b from proof to proof: If it did, it would clearly allow
us to break witness indistinguishability. So, with a non-negligible probability A
computes the witness not used to give the proofs. This allows to break G.

3.2 Authentication

We now turn our focus to authentication. Given that we are in the A-KRAmodel,
the sender S knows a secret sS for his public key pkS s.t. (pkS , sS) ∈ RS for some
poly-time relation RS . In the same way, the receiver R knows sR s.t. (pkR, sR) ∈
RR. Construct a §−protocol § = §0 ∨§1 for the relation R = RR ∨RS , i.e. the
verifier V accepts if the prover P knows a secret key for pkS or for pkR. Now
the parties can identify to each other using this §−protocol.

The way we build an authenticated channel from this identification protocol
is as follows: S wants to send R a message m ∈ {0,1}ℓ, where ℓ is a fixed message
length. We essentially let the receiver simulate a clock by identifying towards the
sender ℓ times. In each “time period” the sender will then either identify itself or
not. This defines the ℓ bits of the message. At the end the sender does a number
of identifications to bring up the total number of identifications given by the
sender to ℓ. The receiver will accept only if it sees a total of ℓ identifications.
This is done to make it impossible for an adversary to drop identifications from
the sender to the receiver. At the end, we add two last rounds where S identify to
R and then R identifies to S. This is to inform the other party that the message
was accepted.

For m ∈ {0,1}ℓ define ¾(m) ∈ {R,S}2ℓ+2 to be
Sm1∥R∥Sm2∥R∥⋯∥Smℓ∥R∥Sℓ−∑ℓ

i=1 mi∥S∥R, where mi is the i-th bit of m. Note that
m ≠m′ ⇒ ¾(m) ≠ ¾(m′), that ¾(m) contains exactly ℓ+1 symbols of each type,
and that the last symbols are always S∥R. These are sufficient properties for the
protocol to be secure. The protocol is given in Fig. 5.

Theorem 2. If the public keys are set up as in Fig. 3, then the following holds
except with negligible probability: If S outputs accept at the end of ¼au then R
outputs (accept,m), where m was the message input by S.

The intuition is as follows: For I = 1, . . . ,2ℓ + 2 we match the i’th instance
run by S to the i’th instance run by R. If S and R open a prover respectively
a verifier, or a verifier respectively a prover, then they might both continue to
I +1 without rejecting. If S and R both open a verifier, then one of them will be
terminated without a prover were running. Therefore this verifier will reject (by
Thm. 1), which makes the party running that verifier reject. If S and R both
instantiate a prover, then one of these provers will close without a verifier having
been running at the other party.

9



setup: Sender S knows sS , pkR, RS and RR and receiver R knows pkS , sR, RS

and RR such that (pkS , sS) ∈ RS and (pkR, sR) ∈ RR.
sender: The first time S gets an input m ∈ {0,1}ℓ it computes ¾ = ¾(m), sends

m to R and runs the following:
1. Let I = 1.
2. If ¾I = S, then instantiate a prover P = P ((pkS , pkR), sS) and let it

interact with R.
3. If ¾I = R, then instantiate a verifier V = V (pkS , pkR) and let it interact

with R. If V rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V ), then let I = I + 1. If

I ≤ 2ℓ + 2, then go to Step 2. If I > 2ℓ + 2, then output accept.
receiver: The first time R receives m ∈ {0,1}ℓ from S it computes ¾ = ¾(m) and

runs the following:
1. Let I = 1.
2. If ¾I = R, then instantiate a prover P = P ((pkS , pkR), sR) and let it

interact with S.
3. If ¾I = S, then instantiate a verifier V = V (pkS , pkR) and let it interact

with S. If V rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V ), then let I = I + 1. If

I ≤ 2ℓ + 2, then go to Step 2. If I > 2ℓ + 2, then output (accept,m).

Fig. 5. The authentication protocol ¼au((pkS , pkR), sS , sR).
Wlog, say that a prover was running at S while no verifier was running at

R (one can repeat the argument switching the role of R and S). This prover
will not make any verifier accept at R, therefore S will run more provers than
the number of accepting verifiers that R runs. Since S starts ℓ + 1 provers, by
construction of ¾, it follows that R sees at most ℓ accepting verifiers. Therefore
R will not output accept. It follows that if S and R have different ¾, then one
of them does not output accept. In other words, if both parties output accept,
then they saw the same message m, as ¾ is a unique encoding of m.

Second, assume that R did not accept. This implies that R rejected when
I < 2ℓ + 2 or at least R never reached I = 2ℓ + 2, as ¾2ℓ+2 = R implies that R
cannot reject while I = 2ℓ+2. Therefore R ran at most ℓ provers and thus S saw
at most ℓ verifiers accept. Therefore S did not accept either. In other words, if
S accepts, then R accepts.

Putting these two observations together, we conclude that if S accepts, then
both parties accept, and then S and R saw the same message m, as desired. This
symmetric guarantee makes the protocol suitable also to authenticate messages
from R to S, and we will use this property in Thm. 3.

3.3 Multiparty Authentication

Our ideal functionality for authenticated transmission is given in Fig. 6. We have
it do a key setup as FG

kra and output the generated keys before the authenticated
transfer phase begins. This is for compositional reasons—it allows outer protocols
to use the same secrets, which we exploit in later sections. Here we focus on
the phase after the keys are generated: The functionality allows to deliver only
messages which were actually sent, which models authentication. It can deliver

10



init: First it lets initi = 1 for all Pi, and then it runs FG
kra with adversary A, to

generate (R1, pk1, s1), . . . , (Rn, pkn, sn).
init done: If the adversary inputs (done, i) at a point where initi = 1

and after FG
kra terminated, then output (pki, si) to Pi, where pki =

((R1, pk1), . . . , (Rn, pkn)), and set initi = 0.
authenticated transfer, send: On input (j,m) from Pi where initi = 0, store

(i, j,m) and output (i, j,m) to the adversary.
authenticated transfer, receive: On input (i, j,m) from the adversary, if

(i, j,m) was previously stored, wait until initj = 0 and then output (i,m)
to Pj .

Fig. 6. The ideal functionality FG
mau for multiparty authenticated communication.

a message several times and reorder them. This can be handled outside Fmau
using e.g. sequence numbers. Any message sent is leaked to the adversary to
model that the transmission is only authenticated, not private.

Our implementation of FG
mau runs in the FG

kra hybrid model, see Fig. 7.

setup: When party Pi receives (pki, si) from FG
kra, it parses pki as

((R1, pk1), . . . , (Rn, pkn)) and sets init = 1.
key generation: On its first activation Pi generates a random verification key

vki for a digital signature scheme, along with the corresponding signing key
ski and stores (keys, vki, ski). Then Pi sends vki to all other parties.

key authentication: After key generation each ordered pair of parties
(Pi, Pj) with i < j runs the following in parallel:
– The parties Pi and Pj run the protocol ¼i,j = ¼au((pki, pkj), si, sj) from

Fig. 5.
– Party Pi uses the input m = (vki, vk′j), where vk′j is the value it received

from Pj in key generation. Party Pj uses the input m = (vk′i, vkj),
where vk′i is the value it received from Pi in key generation.

– If Pi accepts in ¼i,j , then it stores (vk, j, vk′j). If Pj accepts in ¼i,j then
it stores (vk, i, vk′i).

KRA propagation: When Pi stored (keys, vki, ski) and (vk, j, vk′j) for all Pj

with j ≠ i, then Pi outputs (pki, si) and sets init = 0.
authenticated transfer, send: When Pi gets input (j,m), where init = 0, Pi

computes S = sigski
(i∥j∥m) and sends (i, j,m,S) to Pj .

authenticated transfer, receive: On a message (i, j,m,S) the party Pj

waits until init = 0. Then it looks up (vk, i, vki) and outputs (i,m) if
vervki(i∥j∥m,S) = accept.

Fig. 7. The protocol ¼G
mau for multiparty authenticated communication.

Theorem 3. If G is a meaningful key generator, then ¼G
mau UC securely imple-

ments FG
mau against a static, active adversary.

The proof is essentially a reduction to Thm. 2. If ¼G
mau is not secure it is

possible to make an honest Pj output (i,m) for an honest Pi without giving
input (j,m) to Pi. We can reduce that to an attack on the protocol in Fig. 5.
First of all, we can assume that all other parties than Pi and Pj are corrupted, as

11



this can only help the adversary. Then, whenever Pi or Pj have to interact with
any Pk /∈ {Pi, Pj}, they run the protocol honestly, but use the secret sk of Pk as
witness. By witness indistinguishability (WI) this changes the probability that
Pj outputs (i,m) without Pi having received input (j,m) at most negligibly.
But now all interaction involving other parties than Pi and Pj can be run by the
adversary in its head, as it knows sk for all corrupted parties—whatever messages
Pi would send to Pk can be computed using sk. But this modified adversary is
carrying out an attack on Fig. 7 with n = 2. This is essentially an attack on
Fig. 5. The only difference is that in Fig. 7, during KRA propagation, the
environment gets si and sj from Pi, Pj . This happens after the protocol ¼i,j was
run, and therefore it is not needed to run the adversary against Fig. 5.

4 UC-OT in the A-KRA Model given SA-OT
Suppose we are given an UC commitment functionality, Fmcom as defined in
[CF01]: then we can implement UC zero-knowledge, Fmzk, for all NP relations,
which in turn allows us to implement a static, active UC secure OT from the
passive secure OT. We can therefore focus on implementing Fmcom using SA-OT.

The main idea of the protocol in Fig. 8 is to “compile” the SA-OT into a
UC-OT using the WI proof for statements of the kind “I followed to protocol or
I know your secret key”.

The following describes a commitment to m from party S to party R. In the full
protocol different instances use session identifiers to separate executions. Here
commit(⋅) is a statistically binding commitment.

1. All communication is authenticated using FG
mau. Use sequence numbers to

guarantee that no identical messages are ever sent, and thus never accept the
same message twice from any party.

2. R samples a uniformly random string u and sends U ← commit(u) to S.
3. S samples a uniformly random string v, sets m0 = 1∣m∣, sets m1 =m and sends

V ← commit(v), M0 ← commit(m0) and M1 ← commit(m1) to R.
4. Then S and R run the SA-OT, where S takes inputs m0 and m1 and uses

randomness v while R gives input c = 0 and uses randomness u. After sending
each message in the SA-OT R shows that it knows an opening of U to u
such that the message it sent is consistent with having run the SA-OT with
randomness u, selection bit c = 0 and the messages received from R so far.
After sending each message in the SA-OT S shows that it knows an opening
of V , M0 and M1 to v, m0 respectively m1 such that the messages it sent are
consistent with the execution of the SA-OT with randomness v, inputs m0,
m1 and the messages received from S. The proofs are given via a §-protocol
for NP and use the OR-construction to prove either knowledge of the openings
mentioned above or the secret of the other party.

5. To open S sends m to R and shows that m is the message inside M1 or that S
knows sR such that (pkR, sR) ∈ RR. The proof is given using two §-protocols
and the OR-construction.

Fig. 8. The protocol ¼mcom for UC commitments using SA-OT.

12



Theorem 4. The protocol ¼mcom is a UC secure implementation of Fmcom in
the FG

mau hybrid model secure against a static, active adversary.

The simulator extracts a commitment from a corrupted sender S∗ to an hon-
est receiver R by using selection bit c = 1 to learn m from the SA-OT. If the
sender manages to send m′ ≠m in the opening phase for some commitment, we
can extract the proofs in the SA-OT for this commitment and learn a secret s′R
for R’s public key pkR. Since R never uses sR in the protocol, this contradicts
the hardness of computing a witness for pkR. To be able to use selection bit
c = 1, the simulator gives the proof in the run of the SA-OT using the secret
s′S of the sender. This goes unnoticed by the computational hiding of the com-
mitment scheme, the computational hiding of the SA-OT and the WI of the
OR-construction. To trapdoor open a commitment to some m′ the simulator
simply sends m′ and simulates the proof that this is the correct message, by
using the secret of the receiver as witness. This goes unnoticed as for c = 1.

Corollary 1. If there exists a passive secure OT protocol, then any well-formed
functionality F can be UC implemented in the A-KRA model, against a static,
active adversary.
Proof: By Thm. 4 we can implement Fmcom in the FG

mau-hybrid model, which
implies that we can implement any well-formed F in the FG

mau-hybrid model, if
there exists a passive secure SA-OT protocol. By Thm. 3 we can implement FG

mau
in the unauthenticated FG

kra-hybrid model for any meaningful G. It then follows
from the UC composition theorem that we can implement any well-formed F in
the unauthenticated FG

kra-hybrid model for any meaningful G, if there exists a
passive secure SA-OT protocol. ◻

5 UC Commitment in the C-KRA Model given OWFs

In a nutshell, to construct UC-Com in the C-KRA model, we let the public
keys to be commitments of the secret keys. Then to commit the sender send an
encryption of the message under his secret key. To open, he sends the message
m together with a WI proof for a statement “m is the committed message or I
know your secret key”.

Theorem 5. If one-way functions exist, then there exists a UC commitment
scheme for the C-KRA model secure against a static, active adversary.
Proof: The public key is an unconditionally binding commitment pki =
commit(Ki; ri) to a uniformly random value Ki ∈R {0,1}·. Let F{0,1}· ∶
{0,1}2· → {0,1}2· be a pseudo-random permutation (PRP). Both can be in-
stantiated using one-way functions.

To commit to m ∈ {0,1}· with session identifier sid ∈ {0,1}· towards Pj ,
Pi sends M = FKi(sid∥m). To open the commitment to Pj , the sender sends m
and gives a proof that it knows K and r such that “pkj = commit(K; r) ∨ (pki =
commit(K; r) ∧M = FK(sid∥m))”. The proof is given using two §-protocols
combined with the OR-construction.

13



To extract, the simulator computes m = F −1
Ki

(M), where Ki is found as part
of the secret si = (Ki, ri) of the sender Pi. By pki binding the sender to Ki

unconditionally and the soundness of the proof and the fact that the sender
cannot open the commitment pkj , this will yield the only m that the sender can
open the commitment to later.

To equivocate the simulator sends a uniformly random M . When given m it
sends m and gives the proof using the secret sj of the receiver as witness. By
computational hiding of the commitment scheme, pseudo-randomness of F and
WI of the proof, this will go unnoticed. ◻

6 UC OT in the A-CRS Model given SA-OT

Here we implement UC OT from SA-OT in any CRS model. We prove it for the
A-CRS model, and hence for the U-CRS and C-CRS models too. We already
know how to do UC OT in the A-KRA model given SA-OT, so it is sufficient to
implement FG

kra in the FD
crs for any meaningful G and all one-way D.

The protocol runs in the FD
crs-hybrid model.

– All parties Pi receive (D, crs) from FD
crs.

– Each Pi samples pki = D(si) for a uniformly random si and sends pki to all
parties. All parties resend the received value pki to all parties.

– Then in round-robin, for i = 1, . . . , n, each Pi proves knowledge of si to all
other parties. It does this in round robin, for j = 1, . . . , n. With each Pj it
runs the proof as in Fig. 8: It inputs m0 = 0∣si ∣ and m1 = si to the SA-OT and
Pj inputs c = 0. During the run of the SA-OT, Pi proves that either 1) its
messages are consistent with a run of the SA-OT protocol and pki = D(m1)
or 2) its messages are consistent with a run of the SA-OT protocol and crs =
D(m1). Party Pj proves that either 1) its messages are consistent with a run
of the SA-OT protocol with c = 0 or 2) it knows s such that crs =D(s). The
proofs are given via a §-protocol for NP and the OR-construction. When Pi

and Pj are done, they both send done to the other parties. Parties only begin
their proof when they received done from all previous pairs.

– If and when a party Pk received crs from FD
crs, a value pki from each Pi and a

resent value pk′i from all other parties Pj with pk′i = pki, and saw an accepting
proof from each Pi, it outputs ((pk1,RD), . . . , (pkn,RD)), sk.

Fig. 9. The protocol ¼D
kra that implements a KRA in the A-CRS model.

Theorem 6. If D is OWF, then GD is meaningful, and if the used OT protocol
is a SA-OT, then ¼D

kra in Fig. 9 is a UC secure implementation of FGD

kra in the
FD
crs-hybrid model against a static, active adversary.

The proof is very similar to the proof of Thm. 4. The simulator extracts the
secret of corrupted parties using selection bit c = 1. It simulates proofs using the
secret s of crs. We run the proofs in round-robin to ensure that the simulator
will not give a simulated proof (using s) while a corrupted party has to give

14



a proof. If it did so, we could not show that a corrupted party cannot give an
acceptable proof unless it used m1 such that pki =D(m1) in the SA-OT. When
the proofs are run in round-robin, we can.

7 UC-Com in the A-KRA model implies SA-OT

Theorem 7. SA-OT is necessary for UC-Com in the A-KRA model.
Proof: We show how a UC secure commitment scheme for the A-KRA model
can be turned into a SA-OT. Note that this UC-Com protocol needs to work
for any KRA, so we can choose a special KRA that it’s possible to “simulate” in
some sense without using any setup assumptions.

To simplify the proof, consider the AND primitive, where A inputs a ∈ {0,1}
and B inputs a bit b ∈ {0,1} and where A has no output and B gets output
c = ab. It is well-known that if there exists passive, stand-alone secure AND
(SA-AND), then there also exist SA-OT. Then it is sufficient to show how to
implement SA-AND from UC-Com in the A-KRA model.

The existence of UC-Com clearly implies OWFs, so we can assume that
we have a PRG g ∶ {0,1}· → {0,1}·+1. Consider the key generator Gf , where
f ∶ {0,1}×{0,1}·×{0,1}·+1 → {0,1}·+1×{0,1}·+1 and f(b, rb, pk1−b) = (pk0, pk1)
for pkb = g(rb). This is clearly a meaningful generator, as a PRG g ∶ {0,1}· →
{0,1}·+1 is one-way.

From the assumption that there exist UC-Com in the A-KRA model, we
have a protocol ¼ which UC implements Fmcom in the FG

kra-hybrid model with
sender S and receiver R. The sender gets key material (pkS , sS) and pkR and
the receiver gets key material pkS and (pkR, sR). Here pki = f(si) for i = S,R.

Consider the following adversary A against ¼ for the case when the sender
is corrupted: It samples uniformly random c ∈ {0,1}, rcS ∈ {0,1}· and r1−cS ∈
{0,1}· and lets pkcS = g(rcS) and pk1−cS = g(r1−cS ). Then it inputs s′S = (1 −
c, r1−cS , pkcS) to FGf

kra. Then it commits to some m ∈ {0,1} by honestly running
the commitment phase of the protocol ¼ with key material (pkS , sS) and pkR,
where sS = (c, rcS , pk1−cS ). It’s clear here that sS ≠ s′S as the first bit is different,
and f(sS) = f(s′S). Later it decommits by honestly running the opening phase
of the protocol ¼.

Lemma 1. When running with A, the honest receiver R will accept the com-
mitment and will later accept the opening to m, except with negligible probability.

The proof follows from the fact that R cannot distinguish A from the honest
sender S . By ¼ being UC secure, and the above lemma, it follows that there
exists a UC simulator S which can extract m from the conversation with A
already in the commitment phase. Since S is simulating FGf

kra to A, it follows
that S learns s′S and chooses the value of pkR.

Consider then the SA-AND in Fig. 10. If b = 1, then all values are distributed
as in the simulation of ¼ with A and S, so B computes a, except with negligible
probability. This established the correctness, hence it only remains to prove the
following lemma.

15



1. First B samples c ∈ {0,1} uniformly at random. Then, if b = 1, it uses S
to sample pkR, samples r1−cS ∈ {0,1}· uniformly at random and lets pk1−c

S =
g(r1−cS ). If b = 0, then B samples pkR = f(sR) for uniformly random sR and
samples uniformly random pk1−c

S ∈R {0,1}·+1. In both cases it sends (c, pk1−c
S )

and pkR to A.
At the same time A samples uniformly random rcS ∈R {0,1}·, lets pkc

S = g(rcS)
and sends pkc

S to B.
2. Both parties let pkS = (pkS

0 , pk
S
1 ). A sets sS = (c, rcS , pk1−c

S ). If b = 1 then B
lets s′S = (1 − c, r1−cS , pkc

S). Note that in this case f(sS) = pkS = f(s′S).
3. A inputs a by committing to m = a by honestly running the commitment

phase of ¼, playing the role of the sender S with key material (pkS , sS) and
pkR.
If b = 1, then B runs S to extract a from the conversation with A, and outputs
a. If b = 0, then B honestly runs the commitment phase of ¼, playing the role
of the receiver R with key material (pkR, sR) and pkS , and outputs 0.

Fig. 10. SA-AND protocol

Lemma 2. 1) When A and B are honest, then the view of A when b = 0 and b = 1
are computationally indistinguishable. 2) When A and B are honest and b = 0,
then the views of B when a = 0 and a = 1 are computationally indistinguishable.

Part 1) follows readily from the fact that by UC security R and S cannot be
distinguished by A. Part 2) follows readily from the fact that a commitment
hides the message when both parties are honest. ◻

8 Conclusions

Combining our findings with some previous results it is possible to fill the rows
of Table 8. We will make use of the following:

Theorem 8. [IR89] There is no black-box construction of SA-OT from OWF.

Theorem 9. [IR89] There is no black-box construction of key-agreement (KA)
from OWF.

Theorem 10. [DG03] UC-Com in the U/A-CRS model implies SA-OT.

Theorem 11. [DG03] UC-Com in the C-CRS model implies KA.

The answer to (a) follows directly from Thm. 11 and Thm. 9 for the CRS
models; in the same way it follows from (j) and Thm. 8 for the A-KRA model;
(b) is shown in Thm. 5; (c) follows from Thm. 9 and the fact that UC-OT in
any model implies KA; the answer to (d) is built from the fact that UC-Com in
those models implies SA-OT (see (j)), and that we can compile this into a UC-
OT using the UC-Com, as it implies UC-ZK; the answer to (f) goes as follows:
(m) tells us that UC-OT in the C-KRA model implies SA-OT while (b) tells us
that OWF are sufficient for UC-OT in the C-KRA model. Therefore UC-Com
is not sufficient for UC-OT, or we will get a contradiction with Thm. 8; (g) is
proved in Thm. 4 and 6; (h) is trivial as OWF are minimal for cryptography, and
(i) is trivial as UC-OT is complete for UC computation; (j) is proved in Thm. 7

16



Assumption Functionality Model Answer
(a) OWF suf. UC-Com U/C/A-CRS, A-KRA N
(b) OWF suf. UC-Com C-KRA Y
(c) OWF suf. UC-OT U/C/A-CRS, C/A-KRA N
(d) UC-Com suf. UC-OT U/A-CRS, A-KRA Y
(e) UC-Com suf. UC-OT C-CRS open
(f) UC-Com suf. UC-OT C-KRA N
(g) SA-OT suf. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(h) OWF nec. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(i) UC-Com nec. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(j) SA-OT nec. UC-Com U/A-CRS, A-KRA Y
(k) SA-OT nec. UC-Com C-CRS open
(l) SA-OT nec. UC-Com C-KRA N
(m) SA-OT nec. UC-OT U/A/C-CRS, A-KRA Y
(n) SA-OT nec. UC-OT C-CRS open

Table 1. Questions and answers: If a cell contains more than one element it means
that the answer, Y(es) or N(o), in the row is true for all elements in the cell. As an
example, row (g) says that the answer to the question is SA-OT sufficient for UC-OT
in the A-CRS model? is yes.

and 10; (l) follows from (b) and Thm. 8; finally (m) follows from the following
observation: semi-honest parties can efficiently simulate the U-CRS (or the A-
CRS) setup model by letting one party pick a random string without learning
the trapdoor and make the crs public. Then the parties will run the UC-OT
protocol using this string as the CRS, therefore achieving a SA-OT. As for the
C-KRA (or the A-KRA) models, they can be efficiently simulated by letting
every party generate his own public/secret key pair and sending the public key
to all other parties. Now the parties can run the UC-OT using those public keys,
and they’ll achieve a SA-OT.

8.1 The C-CRS setup assumption

In this section we discuss the C-CRS model, and the open questions (e), (k) and
(n) left in the table. Consider (n): is SA-OT necessary for UC-OT in the C-CRS
model? The way we positively answered the question for the other setup models
is by letting one party honestly pick a random CRS and publish it, therefore
simulating the setup model. We don’t know how to do it in the C-CRS model:
in fact, we don’t know whether it is possible, for any chosen OWF f , to sample
an image y = f(x) without learning the pre-image x. For instance, if x ∈ ℤq

and f(x) = (gx, ℎx) for g, ℎ elements in group of large prime order q, then it
is believed that one cannot sample from the image of f without learning x, to
the extent that people construct protocols based on this belief (the so-called
knowledge of exponent assumption [Dam91]). This suggests very strongly that
the open questions cannot be solved using the techniques we have used here. It
could of course be possible to approach (n) in some other way. It seems counter-

17



intuitive to think that it would be possible to implement UC-OT in a world
where SA-OT does not exist: how much power does a symmetric setup as the
C-CRS give to the parties? However, if it turns out that the answer to (n) is
affirmative, then we could use (g) to turn any UC-OT in the C-CRS model into
a UC-OT in the U/A-CRS model, and this would also be a surprising result.
Similar considerations can be made for (e) and (k).
Acknowledgements We would like to thank Yuval Ishai and the anonymous re-
viewers for many valuable comments.
References
[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Uni-

versally composable protocols with relaxed set-up assumptions. In FOCS,
pages 186–195, 2004.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145, 2001.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. 1994.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, pages 19–40, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In STOC,
pages 494–503, 2002.

[Dam91] Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO, pages 445–456, 1991.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable
commitment schemes. In STOC, pages 426–437, 2003.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In STOC, pages 44–61, 1989.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages
20–31, 1988.

[KL07] Dafna Kidron and Yehuda Lindell. Impossibility results for universal com-
posability in public-key models and with fixed inputs. Cryptology ePrint
Archive, Report 2007/478, 2007.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A
unified framework for concurrent security: universal composability from
stand-alone non-malleability. In STOC, pages 179–188, 2009.

[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law
for deterministic 2-party secure computation. In Manuscript, 2009.

[OPV08] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Constant-round
concurrent non-malleable zero knowledge in the bare public-key model. In
ICALP (2), pages 548–559, 2008.

[PR08] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-
party computation problems: Classifications and separations. In CRYPTO,
pages 262–279, 2008.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In TCC, pages 1–20, 2004.

18


