
On Complete Primitives for Fairness

Dov Gordon1,?, Yuval Ishai2,3,??, Tal Moran4, Rafail Ostrovsky3,? ? ?, and Amit
Sahai3,†

1 University of Maryland, gordon@cs.umd.edu
2 Technion, Israel, yuvali@cs.technion.il

3 University of California, Los Angeles, {rafail,sahai}@cs.ucla.edu
4 Harvard SEAS, talm@seas.harvard.edu

Abstract. For secure two-party and multi-party computation with abort, clas-
sification of which primitives are complete has been extensively studied in the
literature. However, for fair secure computation, where (roughly speaking) either
all parties learn the output or none do, the question of complete primitives has re-
mained largely unstudied. In this work, we initiate a rigorous study of complete-
ness for primitives that allow fair computation. We show the following results:

– No “short” primitive is complete for fairness. In surprising contrast to
other notions of security for secure two-party computation, we show that for
fair secure computation, no primitive of size O(log k) is complete, where k
is a security parameter. This is the case even if we can enforce parallelism
in calls to the primitives (i.e., the adversary does not get output from any
primitive in a parallel call until it sends input to all of them). This negative
result holds regardless of any computational assumptions.

– A fairness hierarchy. We clarify the fairness landscape further by exhibiting
the existence of a “fairness hierarchy”. We show that for every “short” ` =

O(log k), no protocol making (serial) access to any `-bit primitive can be
used to construct even a (` + 1)-bit simultaneous broadcast.

– Positive results. To complement the negative results, we exhibit a k-bit prim-
itive that is complete for two-party fair secure computation. We show how to
generalize this result to the multi-party setting.

– Fairness combiners. We also introduce the question of constructing a proto-
col for fair secure computation from primitives that may be faulty. We show
that this is possible when a majority of the instances are honest. On the flip
side, we show that this result is tight: no functionality is complete for fairness
if half (or more) of the instances can be malicious.
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1 Introduction

In the setting of secure multi-party computation, n participants wish to jointly compute
a function while maintaining several security properties, such as the privacy of their
inputs, correctness of the outputs, and others. The security of their computation is de-
fined by comparing their view in the protocol to an ideal world — one that embodies
complete security — and proving that they are indistinguishable to an outside observer.
In this ideal world there is an additional trusted party that privately receives the inputs
from all participants, performs the computation on their behalf, and returns the outputs.

In the real world, of course, relying on an outside party is undesirable. In some of
the most fundamental results in modern cryptography, many beautiful techniques have
been developed in order to remove the trusted party while retaining most of the security
properties that he affords. In fact, in the two-party setting there is only one security
property for which the trusted third party has remained essential. Informally, we say a
computation is fair if either all players receive their output or none of them do. It is easy
to see that in the ideal world, where there is an additional trusted party, computations
are always fair. This is a difficult property to achieve in the real world, as a malicious
player may abort the protocol prematurely.

In 1986, Richard Cleve [20] proved that, for general functionalities, fairness is im-
possible to achieve unless the majority of parties is honest. Specifically, he showed that
even the very basic functionality of coin-tossing cannot be fairly computed by a two-
party protocol. Recalling that fairness is immediate with the help of a third party, in this
paper we address a very natural question.

What is the minimum amount of help required to be able to compute all func-
tions fairly?

We think of this helper as a naive black box, or a primitive, with no knowledge of
the function being computed. It is charged with a fixed task: it takes inputs from each
player, and then simultaneously outputs some fixed function of the inputs to all players.
Clearly we can compute any function fairly if this primitive is sufficiently complex: we
can simply define its input to be a description of the function being computed, along
with the inputs to that function. (Indeed, this was demonstrated by Fitzi et al. [26], as
discussed below.) However, our interest is in reducing the complexity of these primi-
tives. In particular, we study the minimum input size to such primitives that will enable
the fair computation of any function.

Interestingly, there has been extensive research on very similar questions in the con-
text of unfair secure computation. When there is no honest majority among the players,
it is known that oblivious transfer is both necessary and sufficient for computational
security (without fairness) [50, 30, 41]. Similarly, in addition to the impossibility of at-
taining fairness without an honest majority, it is also known that we cannot achieve
information-theoretic security in this setting [19], and there is a long line of research
identifying the minimum primitives that enable information theoretic security (without
fairness). Surprisingly, very little work has addressed the parallel questions with respect
to fairness.



1.1 Our Results

The main theme that recurs throughout our results is that when looking at primitives for
fair computation, input size matters. We classify primitives according to the length of
the inputs provided by the two parties: a k-bit primitive accepts inputs of size k from
both parties.

No “Short” Primitive is Complete for Fairness For many other notions of security
which are unrealizable in the plain model (such as unconditional security and UC se-
curity) there exist finite functionalities which are complete for that setting (e.g., [31,
38, 40, 41]). In other words, to enable (unfair) secure computation in these models, it
suffices to give access to a trusted implementation of some simple function with short
inputs. Surprisingly, we show that no primitive of size O(log κ) is complete for fair com-
putation (where κ is the security parameter). Our impossibility result holds even if we
allow parallel calls to the primitives (where the adversary does not get output from any
primitive in a parallel call until it sends input to all of them), and even if the adversary
may only deviate from the protocol by aborting early.

Coin-Flipping and Simultaneous Broadcast are not Complete for Fairness Coin-flipping
is perhaps the simplest fair functionality that is known to be unrealizable in the plain
model [20]. Simultaneous broadcast is important because it is one of the most natural
candidates for a complete primitive for fairness. It is often the first thing that comes
to mind when thinking about how to construct a fair protocol. Lending weight to this
intuition, Katz proved that simultaneous broadcast is complete for partial fairness [39].
Finally, although we know that is also unrealizable in the plain model (even a 1-bit si-
multaneous broadcast implies fair coin-flipping), it can be constructed from conceivable
non-standard assumptions such as timed commitments [12] or physical limits on signal
propagation. Surprisingly, our results imply that simultaneous broadcast of any size (as
well as coin-flipping) is not complete for fair computation (this is a direct corollary of
our “No Short Primitive” result).

A Fairness Hierarchy We clarify the fairness landscape further by exhibiting the exis-
tence of a “fairness hierarchy.” We show that for every “short” k (when the adversary
can run in time poly(2k)), no k-bit primitive can be used to construct even a k + 1-bit
simultaneous broadcast. This result is almost tight: given a “long” k′-bit simultaneous
broadcast and a semantically-secure encryption scheme with keys of length k′, we can
construct a simultaneous broadcast of any length by first exchanging encrypted inputs
and then exchanging keys. The fairness hierarchy complements the first proof of im-
possibility for achieving fair computation through short primitives (described above).
The latter demonstrates that there exists some function that cannot be fairly computed,
even with (parallel) access to a short primitive. In the hierarchy result, we only consider
serial access to a short, k-bit primitive, but we demonstrates that it does not enable fair
computation for even the most simple k + 1 bit primitives.

Positive Results Previous work by Fitzi et al. [26] proposed the Universal Black Box
(UBB) primitive and showed that is is complete for fair secure computation in both



the two-party and multi-party settings. However, the UBB primitive requires as input
a description of functionality to be computed (a more detailed description appears in
Sec. 3.2). Thus, its input size and running time depend on the complexity of the target
functionality.

In this paper, we show that there exists a much simpler primitive that is complete
for two-party fair computation. This primitive implements a “Fair Reconstruction” pro-
cedure for a secret sharing scheme. Before calling the primitive, the parties first run
an unfair secure computation that outputs non-malleable secret shares of the desired
function’s output. They then call the primitive using these secret shares as their input.
The input to the primitive depends on a security parameter and on the output size of the
functionality being computed (but not on its description). With the addition of compu-
tational assumptions (the existence of one-way functions), the input size can be made
to depend only on the security parameter.

We also show how this result can be generalized to the multi-party setting. This
generalization is straightforward if we are satisfied by fairness without robustness (i.e.,
if a single malicious party can cause the entire computation to abort). In the full-security
case, however, our results exhibit a trade-off between the input size and the number of
primitive invocations that may be required to complete the protocol: for n parties, we
describe a primitive that has input size O(n2) but requires O(n) invocations in the worst
case, and a more complex primitive that has input size O(2n), but only requires a single
invocation. (In contrast, the input size of the UBB primitive grows with the number of
parties, the functionality’s input length and description size — however, it requires only
a single invocation.)

Fairness Combiners We next consider the orthogonal question of constructing a proto-
col for fair computation from primitives which may be faulty. Questions of this nature
have been studied in the context of many other primitives (e.g., [36, 37]). We show a
functionality that is complete for two-party fair computation when the majority of its
instances are honest. On the flip side, we show that this result is tight: no functionality
is complete for fairness if half (or more) of the instances can be malicious.

1.2 Related Work

The issue of fairness has not been neglected; there has been a lot of diverging work
on achieving fairness through relaxations in the security definition [10, 21, 23, 29, 39,
33], relaxations in the communication model [42, 39] and by enabling dispute resolu-
tion through a trusted third party [2, 3, 13, 46]. The recent counter-intuitive results of
Gordon, Hazay, Katz and Lindell [34, 35], showing that some non-trivial functions can
be fairly computed in the plain model, have caused a surge of renewed interest in the
subject.

Fair Exchange and Contract Signing One of the earliest related problems in the cryp-
tographic literature is that of fairly exchanging items or information. In a fair exchange,
either both parties receive the item, or neither party does. Although we are interested in
fair computation of arbitrary functions, the problem of fair exchange turns out to be the



crux of the matter. Exemplifying this, both the security definitions and the solutions for
the more general setting were usually used in this setting first.

In the plain model, Cleve showed that perfectly fair exchange is impossible [20].
Boneh and Naor gave a similar lower bound for fair contract signing [12]. However,
relaxed definitions of fairness are still possible to achieve.

One very common relaxation is that each party would have to perform a similar
amount of computation to compute its output. This definition is weak enough to be
satisfied by protocols in the plain model (using standard cryptographic assumptions),
and is usually accomplished by releasing the information “gradually” ([10, 25, 28, 21,
24, 11, 47, 29]). In a similar approach, the output of the parties is masked with noise
that decreases over the time, allowing their confidence in the output to increase as the
protocol proceeds ([44, 6, 32]).

More recently, the fair exchange problem has been studied in the optimistic model: this
model, introduced by Asokan [2], uses a trusted third party (TTP) but requires that the
TTP be involved in the protocol only if one of the parties is malicious.

A third model was proposed by Chen, Kudla and Paterson [16] and extended by
Lindell [43]. In this model fairness is legally rather than technically enforceable: the
guarantee is the honest party will either receive her output, or a “check” from the other
party (for a pre-agreed amount). In order to invalidate the check in court, the paying
party will have to reveal information which will allow the honest party to compute her
output.

Fairness in General Secure Computation Positive results in all three models have been
extended to the general two-party computation setting [50, 13, 43]. Although a complete
primitive for fairness is implied in these works, the construction in each is specific to
the model. In contrast, our positive result (Thm. 1) is generic: in any of the fairness
models above, it is sufficient to implement our simple complete primitive for fairness in
order to get generic fair computation in that model.

A fourth relaxation of the fairness definition, partial fairness, was proposed by Katz
[39]. This definition is phrased in the language of secure computation: informally, a
protocol realizes a functionality with ε-partial fairness if there exists an ideal-world
simulator whose output cannot be distinguished from the real-world adversary with
advantage greater than ε. Katz showed that simultaneous broadcast (SB) is a complete
primitive for ε-partial fairness (for any fixed ε). Our positive result uses techniques
similar to his.

Gordon and Katz study partial fairness in the plain model [33], and show that even
partial fairness is impossible to achieve in general in the plain model. Their proof gives
a specific functionality that is complete for (perfect) fairness, and our proof of Thm. 2
has a similar flavor.

In the multi-party computation setting with an honest majority and a broadcast chan-
nel, completely fair computation is possible for any functionality, even without compu-
tational assumptions [9, 15, 48]. When there is no honest majority, Cleve’s lower-bound
applies and general fair computation cannot be achieved at all in the plain model. Lepin-
ski, Micali, Peikert, and shelat devised a protocol for completely fair multi-party com-
putation with any number of malicious parties by relying on “envelope” primitives;



communication primitives with special physical properties [42]. Our complete primi-
tives for the multi-party case are possibly less amenable to implementation via simple
physical means (such as envelopes), but allow us to separate the unfair computation
from the calls to the complete primitive (whereas the two are intertwined in [42]).

We note that we have mentioned only a small fraction of the related work on fair-
exchange and fair computation. See [13, 46, 47, 43] for more works in this area.

Classifying Primitives in Secure Computation Our result in Sec. 5 defines a fairness
hierarchy, based on the input size of the primitives. While classification based on input
size seems less useful in other contexts of secure computation, other hierarchies have
been studied. For example, classification according to the number of calls to a primitive
[5, 7], classification by privacy level [17] and by reductions to other primitives [45].
While these works may share some of our goals, namely to further understand the theo-
retical underpinnings of secure computation, their methods are quite different, and they
do not address fairness.

2 Definitions

Definition 1 (Non-Malleable Secret Sharing). A 2-out-of-2 non-malleable secret shar-
ing scheme (NMSS scheme) is defined by a pair of algorithms (Share,Rec) with the
following properties:

– Share(s, r) returns 2 shares, (s0, s1) (where si is the share of the i-th party) such
that if r is picked at random, then a single share reveals no information about s.

– Rec(Share(s, r)) = (s, 0) for every s, r. The second output of Rec serves as a flag
which is set to 0 if the secret has been successfully reconstructed.

– Any attempt by a player to modify their share (independently of the remaining
share) is detected with overwhelming probability. Formally, we say that (Share,Rec)
is ε-non-malleable if for every secret s, every (computationally unbounded) adver-
saryA can win the following game with at most ε probability:
• A corrupts one of the parties.
• Random shares (s0, s1) from Share(s, r) are given to the 2 parties.
• Based on the share sA it observed,A computes a new share s∗

A
.

• A wins if s∗
A
, sA and Rec(s∗

A
, sH) = (s′, 0) for some secret s′, where sH is

the share received by the uncorrupted party.

We note that similar notions of robust secret sharing from the literature (cf. [22] and
references therein) are weaker in that they defineA to win the above game only if s′ ,
s. While this weaker notion does not suffice for our purposes, previous constructions
(including the ones from [22]) in fact also satisfy our stronger requirement. We include
a construction of an NMSS scheme in the full version.

The following functionality will play a role in several of our results:

Definition 2 (Fair Reconstruction). FairRec`(x, y) is defined:

FairRec`(x, y) =

(s, s) if Rec(x, y) = (s, 0)
(⊥,⊥) otherwise

where x, y ∈ {0, 1}`.



Intuitively, the FairRec functionality is just a fair implementation of Rec: it takes a non-
malleable secret share from each player, and outputs the result of Rec to both players if
and only if the secret was successfully reconstructed. We will prove that it is complete
for fairness in Section 3.1. Interestingly, it will also play a key role in our proofs of
impossibility in Section 4.

Secure Function Evaluation (SFE) We use the standard definitions for secure function
evaluation in the standalone model. Due to limited space, we do not repeat them here,
but refer the reader to [14] for a complete definition.

We note that any (polynomial-time computable) functionality can be computed ac-
cording to relaxed notion of security in which the adversary receives his output first and
may choose to abort immediately afterwards. Since our interest in this work is in fair
secure-computation, we will always refer to the stronger notion of security described
above, except when explicitly stating a computation is “secure-with-abort”. We some-
times (informally) refer to a protocol as fair when we actually mean that it is secure
according to this stricter notion (which includes fairness).

Definition 3 (k-bit Primitives). We say a protocol Π implementing some functionality
F has access to a k-bit primitive g, if in every round of the protocol, the players may
submit k-bit inputs to a trusted computation that securely implements g. We write Πg to
make explicit the fact that Π has access to g.

We often consider k-bit primitives where k = k(κ) is a function of the security
parameter. In this case, when we say g is a k-bit primitive we mean that g is an infinite
sequence of primitives, such that for every κ ∈ N there is defined a k(κ)-bit primitive gκ
in that sequence.

We sometimes informally refer to primitives as “short” or “long”. A k-bit primitive
is considered “short” if k = O(log κ), where κ is the security parameter. A k bit primitive
is considered “long” if k = Ω(κ).

Definition 4 (Complete Primitive for Fairness). For a functionality F and a primitive
g, we say the fairness of F reduces to g if there exists a protocol Πg that securely
computes F. Let C be a class of functionalities. We say that g is C-complete for fairness
if, for all F ∈ C, the fairness of F reduces to g.

When g is C-complete for fairness and C is the class of all functions, we may omit it
and say that g is complete for fairness.

Definition 5 (Parallel Primitives). For a primitive g, we denote park(g) the primitive
that consists of k independent copies of g with enforced parallelism. The parallelism is
enforced in that none of the copies of g in park(g) send output to any party until all k
copies have received input from all parties. We use Πg

p to denote that protocol Π has
access to park(g).

Definition 6 (Simultaneous Broadcast). This primitive was originally defined by Chor,
Goldwasser, Micali and Awerbuch [18], in the context of multi-party computation. In



the two-party setting, we define the primitive Simultaneous Broadcast (SB) that takes
one input value from each player and (fairly) swaps them. Formally, SB (x, y) = (y, x).
We refer to a k-bit SB when the input sizes are at most k-bits long.

3 Fairness-Complete Primitives

3.1 Fairness-Complete Primitives for Two-Party Computation

In this section we demonstrate an ideal function that is complete for two-party fair-
ness. In order to compute some function F(x, y) = {F0(x, y), F1(x, y)} fairly, the parties
will first compute a related function F ′(x, y) that provides player i with an encryption
of Fi(x, y), along with a share of the corresponding decryption key (generated using a
2-out-of-2 NMSS scheme). This reduces the problem to a simple exchange of the se-
cret shares. Of course, if the players exchanged these on their own, one player might
abort just at the point of exchange, recovering the decryption key (and thus his output)
all alone. Instead, the ideal functionality FairRec takes the shares from each player
and performs the reconstruction fairly; the non-malleability property of the secret shar-
ing scheme enables the functionality to verify that both players have provided correct
shares. The details follow:

Theorem 1. Any two-party functionalityF with output length m can be fairly computed
in the OT-hybrid model by using a single call to FairRecO(m). If one-way functions exist,
then F can be fairly computed in the OT-hybrid model with a single call to FairRecO(κ).

We begin by defining a function F ′ related to F in the way described above. Specif-
ically, let (Enc,Dec) be the encryption and decryption functions for a semantically se-
cure symmetric encryption scheme. When using FairRecO(m), as in the first part of the
theorem, the encryption scheme is a one-time pad (with key length m). When using
FairRecO(κ), any semantically-secure symmetric encryption scheme may be used (with
key length O(κ)). Then we define:

F ′(x, y) =
{
F′0(x, y), F′1(x, y)

}
=

{(
EnckEnc (F0(x, y)), s0

)
,
(
EnckEnc (F1(x, y)), s1

)}
where (s0, s1) = Share(kEnc, r), and r is chosen uniformly at random.

The size of the input to FairRec is the size of the share of one decryption key. The
fair computation of F(x, y) follows easily:

1. Execute a secure-with-abort protocol to compute F ′(x, y) in the OT-hybrid model
(e.g., [40]).

2. Player i ∈ {0, 1} parses the output F′i (x, y) as

zi = (zEnc, zFairRec ) =
(
EnckEnc (Fi(x, y)),Share(kEnc, r)i

)
and submits zFairRec to the ideal function FairRec

3. Let Ki denote the output that player i receives from FairRec. If Ki = ⊥, output ⊥.
Otherwise, output DecKi (zEnc).

Due to space limitations, we defer the proof of security for this protocol to the full
version of the paper.



Standalone vs. Composable Security Note that the SFE security definitions we use in
this paper are in the standalone setting, and in particular allow the ideal-world simulator
to rewind the adversary. In the first part of Thm. 3.1, using FairRecO(m) and a one-time
pad, this is not a problem: we can use a straight-line simulator (that does not rewind
the adversary) and prove security even under parallel composition. In the second part
of the theorem, however (with a small FairRec functionality), we use rewinding in an
essential way. Thus, FairRecO(κ) may not be complete for fairness under parallel com-
position. The crux of the problem is that the adversary’s actions may depend on the
encryption used to reduce the input size to FairRec (this causes a selective decommit-
ment problem). We note that given access to parO(m)(FairRecO(κ)) (O(m) parallel calls
to a small fair reconstruction functionality) we can construct a protocol that is provably
secure under parallel composition: we can replace the encryption with an all-or-nothing
transform of the output of F, each share of which is then split between the parties us-
ing a 2-out-of-2 NMSS scheme. These shares are fairly reconstructed in parallel using
parO(m)(FairRecO(κ)).

3.2 Fairness-Complete Primitives for Multi-party Computation

The results of Sec. 3.1 raise a natural question: what primitives are complete for multi-
party fairness? Below, we describe three different primitives that are complete for mul-
tiparty fairness. These primitives actually give a stronger property than fairness: they
are complete for robust secure computation. In an ideal-world robust computation, the
trusted third party will never abort; instead it may replace the inputs of aborting players
with a default value. The honest parties are always guaranteed to receive output (note
that in the two-party case, robustness and fairness are equivalent). Note that if we are
satisfied with fairness (without robustness) then the two-party result can be generalized
in a straightforward way by using n-out-of-n NMSS. Each of the three primitives has a
different trade-off between the call complexity (how many times the functionality must
be invoked) and the input size to the primitive (depending on the number of participat-
ing parties and the description of the function to be evaluated).

Universal Black Box (UBB) This primitive was originally proposed by Fitzi et al. [26]:
The UBB receives as input from each party both a circuit (specifying the function to
be computed) and an argument to that function. It then partitions the parties by circuit.
For each set of parties that gave the same circuit as input, the UBB primitive outputs to
that set of parties the evaluation of that circuit on the arguments given by those parties,
using default arguments for the remaining parties. It is easy to see that a single call to
this primitive can be used to robustly compute any function.

Fair Consistent Reconstruction (FCR) This functionality receives from each of the n
parties 2(n− 1) NMSS shares (party i sends the shares

{
ai, j, b j,i

}
j,i

). The FCR primitive
applies the NMSS reconstruction function n − 1 times for every i to compute, for all j,
k( j)

i = Rec(ai, j, bi, j). It then considers 3 distinct cases for each i:

Case 1: all n − 1 attempts to reconstruct ki fail. In this case, the functionality puts Pi in
category A of parties who accuse all other parties of being cheaters.



Case 2: two attempts to reconstruct ki succeed but produce distinct values. In this case,
the functionality puts Pi in category B of definite cheaters.

Case 3: there is at least one successful attempt to reconstruct ki and all produce the
same value. In this case the functionality puts Pi in category C of possible
cheaters.

The FCR primitive delivers to all parties an announcement of the parties in categories
A, B,C. If all the parties are in C, the functionality also outputs the reconstructed key
k =

∑n
i=1 ki to all parties.

In order to use this primitive to compute a functionality F, the n parties first per-
form a secure computation with abort for the related function F′. F′(x1, . . . , xn) chooses
random keys k1, . . . , kn and computes k =

∑n
i=1 ki and o = Enck (F(x1, . . . , xn)), and for

every j , i computes (ai, j, bi, j) = Share(ki). The output to party i is
(
o,

{
ai, j, b j,i

}
j,i

)
.

The parties then invoke the FCR primitive on the key shares.

Case 1: If an honest party Pi (which must be unique) is informed that it belongs to A, it
terminates the protocol and computes the output of F on its own using default
values for the inputs of all other parties.

Case 2: If FCR returned the value k (all parties were in C), the parties can use it to
decrypt o.

Case 3: If at least one party is in B, the remaining parties rerun the protocol without the
party in B (replacing their input with default values).

This process may continue for up to n − 2 more iterations until the protocol terminates.
We defer the proof of security to the full version of the paper.

All-Subsets Reconstruction (ASR) The ASR primitive is, essentially, a version of the
FCR primitive that can be used to fairly compute any functionality with a single invo-
cation (rather than n). The price is that its input size is exponential in the number of
parties (although still independent of the complexity of the target functionality). The
input from party i is a set of inputs to the FCR primitive: one input to FCR for every
subset S ⊆ [n] of the parties such that {i} ⊂ S . The ASR primitive internally runs the
entire reconstruction protocol using FCR:

1. ASR begins by running FCR using the inputs corresponding to the set of all parties.
2. If reconstruction fails, it reruns FCR using the inputs corresponding to the set of

players in C.
3. This iteration continues until either reconstruction succeeds or there is no party left

in C.

The ASR primitive then outputs the set C and the reconstructed value to all the parties
in the final set C, and ⊥ to the remaining parties.

In order to use this primitive to compute a functionality F, the n parties first perform
a secure computation with abort for the related function F′′. Let F′ be the function
computed in the protocol that uses FCR. Then F′′(x1, . . . , xn) computes, for every subset
of parties S , the outputs (o(S )

1 , . . . , o(S )
n ) = F′(x(S )

1 , . . . , x(S )
n ) where

x(S )
i =

xi if i ∈ S
⊥ if i < S



(i.e., o(S )
i is the output of the function F′ to party i assuming only the parties in S are

honest and the remaining parties abort). F′′ outputs o(S )
i to player i, for each set S such

that {i} ⊂ S . Note that by the definition of F′, o(S )
i = (o(S ),

{
a(S )

i, j , b
(S )
j,i

}
j,i

).

The parties invoke ASR with the sets of shares
{
a(S )

i, j , b
(S )
j,i

}
j,i

. If an honest party re-
ceives the output⊥, it assumes it is the only honest party and computes the functionality
F on its own. Otherwise, it uses the reconstructed value to decrypt o(C).

Intuitively, the security of the protocol using ASR follows from the security of the
protocol that uses FCR: since internally ASR runs the FCR protocol, but requires the
parties to commit in advance to all the inputs to the FCR primitive that will be used.
Thus, any attack against the ASR protocol can be converted into an attack against the
FCR protocol.

4 Limits on Fairness-Completeness

In this section we show that there does not exist a finite (i.e. “short”) primitive that is
complete for fairness. More specifically, we prove that the FairRecκ function cannot
be fairly computed even if the players are given parallel access to a primitive of size
O(log κ). There are two main ideas behind the proof. For simplicity, imagine for now
that the entire protocol consisted of a single call to this short primitive. Our first ob-
servation is that because the primitive is short, the adversary can locally simulate it,
computing its output for each possible input of the other party. This will play a crucial
role in our proof, but it does not itself suffice: so far the adversary has no way of know-
ing which of these outputs are correct. However, because the primitive is supposed to
be complete for fairness, it allows us to compute the FairRec functionality, which has a
very useful property: its output is verifiable. That is, when two parties are given inputs
generated by Share, then the correct output of FairRec is (s, 0), where the flag 0 indi-
cates that s is the correct output. Furthermore, for incorrect inputs, with overwhelming
probability the output of FairRec is (⊥,⊥). The adversary simply computes the primi-
tive for every possible input of the other player, and outputs s when he recovers it.

When we consider a protocol with many calls to the primitive (including parallel
calls), we combine the above ideas using a standard hybrid argument. If the adversary
aborts before any invocations of the primitive, he cannot learn anything about the output
s. On the other hand, if he behaves honestly in all invocations, he should always recover
s. We prove below that there is some specific invocation for which the adversary can
gain a non-negligible advantage over the honest party by aborting and simulating the
input to that invocation as described above. Finally, he can guess which invocation will
allow this advantage with significant probability. Formally, we prove:

Theorem 2. Let g be an O(log κ)-bit primitive. Then for any polynomial p, parp(κ)(g) is
not complete for fairness.

Note that for any k ≥ 1, park(g) is a more powerful primitive than g (i.e., if the
fairness of F reduces to g then the fairness of F also reduces to park(g)). We are proving
an impossibility, so starting with a more powerful primitive strengthens our results. Our
proof will hold even if we restrict the adversarial behavior to aborting early.



Proof. Suppose there exists such a primitive g and polynomial p. Consider the r = r(κ)
round protocol Π g

p that fairly computes FairRecκ(x, y) while making a call to parp(κ)(g)
in each round. We can think of this call as p(κ) parallel calls to g. Without loss of
generality, we assume that these calls to g constitute the only communication between
the players5. Let q = p · r be the total number of calls to g. For each round i ∈ r,
we define some arbitrary ordering σi on the parallel calls to g that occur in that round.
This induces a natural ordering over all q calls to g, where for i < j, calls in round i
are ordered before calls in round j. We let gk denote the kth call to g according to this
ordering.

Consider an execution of Π g
p in which Share(s, r) = (s0, s1) is used to generate

shares, for a random s and r. Player j gets the share s j. We let the value ai denote the
output of player 0 when player 1 acts honestly for the first i calls to g (according to
the ordering previously described) and then aborts. We define bi in the symmetric way.
Note that by correctness of Π g

p , and the definition of FairRecκ, for all i

Pr[ai , s ∧ ai , ⊥] = negl(κ) = Pr[bi , s ∧ bi , ⊥]

and
Pr[aq = s] = Pr[bq = s] = 1 − negl(κ).

where the probability is over the random tapes of the players. Furthermore, by the defi-
nition of FairRec and the properties of a NMSS scheme,

Pr[a0 , ⊥] = negl(κ) = Pr[b0 , ⊥].

It follows that for every large enough κ, there exists a polynomial p′(κ) and a round i
such that either

Pr[ai = s] − Pr[bi−1 = s] ≥
1

p′(κ)
.

or
Pr[bi = s] − Pr[ai−1 = s] ≥

1
p′(κ)

.

Without loss of generality, we will assume the former, and we demonstrate an adversary
A that breaks the security of Π g

p with probability at least 1/(q · p′(κ)).
A begins by choosing a random value i∗ ∈ [1, . . . , q], and plays honestly for the

first i∗ − 1 calls to g (i.e., submits correct values to g) and then aborts. Note that the
resulting output of player 1 is bi∗−1. The adversary now attempts to compute the value of
ai∗ by simulating the side of player 1. Note, however, that by definition, the value of ai∗

depends on honest input to gi∗ from both players, andAmay not know (anything) about
player 1’s input to gi∗ . Here we use the fact that g has short inputs, and that FairRec is
verifiable. A goes through all possible inputs β ∈ {0, 1}O(log κ) that player 1 might have
sent to gi∗ , and for each such value he simulates g internally, using as input his own
(honest) value that he would have sent if he had not aborted, and β. He computes ai∗

5 This is without loss of generality because we can always modify g to do message transmission,
in addition to its original functionality. Note also that if less than p(κ) calls are needed in a
particular round, the players can make extra calls with random inputs, ignoring the outputs, to
make the total number of calls p(κ).



from his view in the (real) interaction with player 1, and the simulated output of gi∗ .
Since one of these values of β is the value used by player 1 in the actual execution,
it follows that the correct value of ai∗ is among this set of outputs. Furthermore, if
some simulated ai∗ = s′ , ⊥ then s′ = s with overwhelming probability. A outputs
s′ , ⊥ if this occurs, and ⊥ otherwise. By our assumption, there exists an i such that
Pr[ai = s ∧ bi−1 = ⊥] ≥ 1

p′(κ) . Hence, A recovers s without the honest party receiving
output with probability 1/(q · p′(κ)), contradicting the fairness of protocol.

Theorem 3. Simultaneous broadcast is not complete for fairness.

The fact that short simultaneous broadcast (cf. Section 2) is not complete for fairness
follows from Theorem 2. We give two different proofs that a large simultaneous broad-
cast is not complete for fairness.

Proof (First proof of Thm. 3.). The first proof follows as a corollary of Theorem 2, and
Lemma 1 (below). This is true because if long-SB were complete, then by Lemma 1,
short-SB would also be complete, contradicting Theorem 2.

Lemma 1. Let g denote the k-bit SB primitive. For any p ∈ N, there exists a protocol
Π

g
p that implements kp-bit SB with perfect security.

Proof. The protocol is the (trivial) one round protocol in which both parties split their
inputs into p blocks of size k, submit block i to instance gi, and output the concatenation
of the p outputs (maintaining the order). The proof of the lemma is straightforward, so
we omit a formal exposition. We simply note that the decision of an adversary to change
its input to any instance(s) of g (including the decision to abort in some instance(s)) is
entirely independent of the actions or input of the honest party. The simulator simply
recovers the p values that the adversary intended for g (recall that an abort is treated
as input 0k), concatenates them, and forwards them to the trusted party. After receiving
output, the simulator rewinds the adversary, parses the output into blocks, and uses
block i as the honest player’s input to gi.

In our full version we provide a second proof that is more direct and is of independent
interest. Due to space constraints we omit the proof here.

5 A Fairness Hierarchy

In this section we show that for small k, fairness cannot be “amplified” at all (with
regards to input size). Specifically, for small values of k we show that no k-bit func-
tionality can be used to build (k + 1)-SB, even if standard cryptographic assumptions
are allowed. Unlike in Section 4, here we assume that the players do not have parallel
access to the primitive. More formally:

Theorem 4. For k = O(log κ), the fairness of (k + 1)-SB does not reduce to any k-bit
primitive.



To gain some intuition for how we prove the theorem, consider that in an ideal world
execution of simultaneous broadcast, if the players inputs are chosen independently,
then (by definition) each player’s output is independent of their own input. However,
we show below that in any real world protocol constructing (k + 1)-SB from k-bit func-
tionalities, this property cannot be guaranteed. We demonstrate that there always exists
some round in which an adversary can gain information about the other party’s input,
as well as some later round in which it can still affect the other party’s output by choos-
ing whether or not to abort. By choosing whether to abort in the later round based on
what is learned in the earlier round, the adversary can correlate the output of the honest
player with his input.

There are two main ideas behind the proof. The first idea is the one used in the
proof of Theorem 2: because the k = O(log κ)-bit inputs to the primitive are small,
the adversary can gain an “information lead” of one round by testing all 2k = poly(κ)
inputs that the honest party might send to the k-bit primitive in the next round. For
each of these possible outputs from the primitive, the adversary computes the k + 1-bit
value that he would have output in the protocol if this were the last thing he received in
the protocol (i.e. if the honest player aborted immediately afterwards). In this way the
adversary computes the set of all “potential outputs” that he could possibly output if the
honest party sends a single additional message and then aborts.

Unfortunately, unlike in the proof of Theorem 2, we cannot argue here that the
adversary recognizes the correct output of the protocol among this set: in Theorem 2
the output was verifiable, while the output of SB is not. Instead, we rely on a different
observation: there are twice as many possible input values to the k + 1-SB protocol as
there are potential outputs from the k-bit primitive used in any particular round. Thus,
for every round, at least half of the possible k + 1 bit inputs to SB will not appear in
the set of potential outputs. We use this fact to show that there exist two inputs, y, y′,
and a round i such that if the honest player has input y, the potential output set in round
i contains y but not y′, while if his input is y′, it contains y′ but not y. Furthermore,
we will prove that at least one of the parties can affect the other’s output by sending a
random message in some later round, i′ > i, and then aborting. The adversarial strategy
is as follows: he runs the protocol honestly until round i, and then determines which
of the two inputs the honest party has. Depending on what he learns, the then chooses
whether to complete the protocol honestly, or to later abort after round i′. By making
this decision, he creates a correlation between the honest party’s output and his input,
violating the security of the simultaneous broadcast.

Due to space considerations, we defer the formal proof to the full version of the
paper.

6 Fairness Combiners

We have demonstrated that one possible approach for achieving fair secure computation
is to rely on a trusted third party to implement the FairRec functionality. A natural
question that arises is, how much can we distribute that trust? Instead of trusting a
single party, can we use multiple parties, guaranteeing both fairness and security so
long as some number of them act honestly?



This can be thought of as a fairness analogue of combiners [36, 37]; the two com-
puting parties (clients) have access to n “fairness providers” (servers), of which at least
n − t are guaranteed to be honest. Two questions arise: what are the values of t and n
for which this is possible, and what are the minimal requirements of the honest fairness
providers? Below, we show that combining is possible if and only if n > 2t.

6.1 Combining with an Honest Majority

If the clients and servers had a broadcast channel and a complete point to point net-
work, the problem would simply be a restricted case of secure multiparty computation
where only two parties have input and output. In this case we could use the protocol of
Rabin and Ben-Or to fairly compute any functionality [48], since a strict majority of the
servers are honest, and at least one client is honest. However, we are interested in using
independent servers, where each provider communicates only with the two clients and
is not expected to know anything about the other primitives.

Instead we model the problem as a secure multiparty computation over an incom-
plete point-to-point network, in which there only exist communication channels be-
tween the two computing players, and from each player to each server. The adversary
is allowed to corrupt at most one of the computing players, and at most t of the fairness
providers. Finally, we assume the existence of oblivious transfer, although we discuss
how to make our results unconditional in the full version. Viewing the problem this
way, one solution is to emulate the missing channels (including a broadcast channel),
enabling the use of the general result of Rabin and Ben-Or. We outline this solution
below.

The two clients begin by executing an unfair secure computation (using oblivious
transfer) to establish correlated randomness for each pair of servers. This randomness
will include shared secret keys that enable any two servers to authenticate and encrypt
messages to one another, as well as additional correlated randomness that will enable
broadcast for any n > 2t [4, 27]. In order to prevent the clients from learning the corre-
lated randomness, the computation will actually output NMSS shares of the output, one
share to each client, which they then relay to the appropriate servers. If the protocol to
establish these keys ends unfairly, then the honest client simply aborts; no information
is leaked and no harm is done, since this execution is independent of their inputs. Oth-
erwise, the servers inform both clients that they have successfully reconstructed their
keys and randomness. If anyone indicates otherwise, all players immediately abort the
protocol. With the communication channels in place, the players can now execute the
protocol of Rabin and Ben-Or [48] to compute the desired functionality.6

In the full version of the paper, we show how to construct a more efficient protocol
for this task and discuss in greater detail the security properties we can guarantee.

Impossibility of Combining with a Faulty Majority The previous result is tight; if the
majority of the fairness providers are corrupt, they do not help us to achieve fair-

6 We note that the protocol of Rabin and Ben-Or is robust, which means that even if some servers
abort, the clients can continue the computation with the remaining servers. This enables even
two honest clients to complete their computation correctly, so long as less than half of the
servers are corrupt.



ness. Specifically, we consider the case where the players have access to two fairness
providers, one of which is corrupt, and show that any function that can be computed in
this model can be computed in the plain model. Since there exist functions that cannot
be computed in the plain model [20], it follows that the same functions cannot be com-
puted in our setting. Below, when a protocol Π permits calls to two instances of some
primitive g, we denote this by Πg1,g2 .

Theorem 5. Let g1 and g2 be two instances of some arbitrary functionality g. If Πg1,g2

securely computes function F, even when an adversary corrupts one of the instances
of g, then there exists a protocol Π ′ that securely computes F without access to any
primitives.

Proof (Sketch). The proof is a standard partitioning argument. Π ′ simply follows the
description of Πg1,g2 , delegating the responsibilities for computing g1 and g2 to players
0 and 1 respectively. By our assumption, so long as one of the two instances is executed
fairly and securely, Π ′ fairly and securely computes F. Since one of the players is
honest, the primitive that they control will always be executed honestly.

References

1. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, 2-4 May
1988, Chicago, Illinois, USA. ACM, 1988.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In CCS,
pages 7–17. ACM, April 1997.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communications, 18(4):593–610, Apr. 2000.

4. B. Baum-Waidner, B. Pfitzmann, and M. Waidner. Unconditional byzantine agreement with
good majority. In C. Choffrut and M. Jantzen, editors, STACS, volume 480 of Lecture Notes
in Computer Science, pages 285–295. Springer, 1991.

5. D. Beaver. Correlated pseudorandomness and the complexity of private computations. In
STOC, pages 479–488. ACM, 1996.

6. D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. pages 468–473,
1989.

7. A. Beimel and T. Malkin. A quantitative approach to reductions in secure computation. In
M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages 238–257.
Springer, 2004.

8. M. Bellare, editor. Advances in Cryptology - CRYPTO 2000, 20th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings,
volume 1880 of Lecture Notes in Computer Science. Springer, 2000.

9. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC [1], pages
1–10.

10. M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems,
1(2):175–193, May 1983. Previously published in ACM STOC 1983 proceedings, pages
440–447.

11. D. Boneh and M. Naor. Timed commitments. pages 236–254.
12. D. Boneh and M. Naor. Timed commitments. In Bellare [8], pages 236–254.
13. C. Cachin and J. Camenisch. Optimistic fair secure computation. In Bellare [8], pages

93–111.



14. R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.
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