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Abstract. Previous work on program obfuscation gives strong negative
results for general-purpose obfuscators, and positive results for obfuscat-
ing simple functions such as equality testing (point functions). In this
work, we construct an obfuscator for a more complex algebraic function-
ality: testing for membership in a hyperplane (of constant dimension).
We prove the security of the obfuscator under a new strong variant of the
Decisional Di�e-Hellman assumption. Finally, we show a cryptographic
application of the new obfuscator to digital signatures.

1 Introduction

The problem of program obfuscation has been of long-standing interest to prac-
titioners, and has recently been an active topic of research in theoretical cryp-
tography. The high-level goal of program obfuscation is to compile a computer
program in such a way that an adversary cannot learn anything from seeing
the program beyond could be learned by running the program and observing its
input-output behavior.

Barak et al. [1] formalized the notion of obfuscation using simulation-based
de�nitions. Over the past decade, the theory community has found a few positive
obfuscation results for speci�c families of programs. In this paper, we provide
an obfuscator for a new family of programs.

Virtual black-box obfuscation. The procedure of �obfuscating� a computer
program should garble the program's code and make it unintelligible. The extent
of the garbling is limited by the fact that the program's functionality should
be preserved. As a result, both honest and adversarial users of the obfuscated
program can learn some information by observing the program's input-output
functionality, and we do not wish to prevent users from learning information this
way. Instead, obfuscation ensures that this is the only way that an adversary can
learn information from the obfuscated program.
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There are several ways to formalize this intuitive notion [2,3,4]. This paper
uses the virtual black-box formalization of [1]. A signi�cant obstacle to obtain-
ing positive results with respect to this de�nition is that the security notion
must hold for all programs in a given family, and not just a random instance.
This is one reason why standard cryptographic tools and analytical techniques
(which usually deal with randomly chosen instances) are not always helpful for
obfuscation.

Previous results. Several works have disproved the existence of a �general-
purpose obfuscator� that can simultaneously obfuscate every program [1,2,5]. In
fact, these papers demonstrate speci�c programs that cannot be obfuscated, and
these programs come from a relatively low complexity class. While these negative
results are disheartening, they focus on speci�c (often contrived) functionalities.
Obfuscation remains possible for many programs of interest.

Still, very few positive results are known even for speci�c, simple programs (or
boolean circuits). One family of programs for which positive results are known
is the family of �point circuits�: password-checking programs that accept a single
input string and reject all other inputs. This family can be obfuscated under a
variety of cryptographic assumptions [6,7,8,9]. Some of these constructions can
be generalized in two ways. First, we can obfuscate �multi-point circuits,� which
accept a polynomially-sized list of input strings, and second, we can obfuscate
�point circuits with multi-bit output,� which store a hidden output string that
is revealed only for a single input value [10]. Other formalizations of program
obfuscation [3,4] allow for the obfuscation of cryptographic tasks such as checking
proximity to a hidden point [11], vote mixing [12], and re-encryption [4]. The
latter two applications use a di�erent security guarantee that only holds over a
random choice of the circuit from the family.

Our result. In this paper, we obfuscate programs that perform hyperplane
membership testing. Let P be a hyperplane in a vector space, and let HP be a
program that tests whether its input is a point on the hyperplane. An obfuscation
of HP allows a user to determine whether her input point is on the hyperplane,
but reveals no additional information such as the distance from her point to the
hyperplane or any other points that are on the hyperplane.

More precisely, given a prime p and positive integer d, consider the family
of hyperplanes through the origin in the vector space ( Z

pZ )d over the �nite �eld
Z
pZ . In this setting, a hyperplane can be de�ned by a vector that is orthogonal

to every point in the plane. Let a be a vector in ( Z
pZ )d and consider the program

Ha(x) =

{
1 if 〈a,x〉 = 0
0 otherwise.

We construct an obfuscator for this family of programs.
This primitive subsumes many of the previously-known results. In the d = 2

case, these �hyperplanes� turn out to be equivalent to point circuits, and our



speci�c construction and assumption reduce to those in [6]. Furthermore, the
technique of [10] can be applied to our primitive as well, so we can obfuscate
circuits that output a hidden message when its input is on the hyperplane.

We also note that hyperplane membership testing has been considered in the
context of private predicate encryption schemes by Shen, Shi, and Waters [13],
although our results are incomparable to theirs.

Application to digital signatures. As an example of the proposed primitive's
usefulness, we demonstrate an application of our obfuscator to leakage-resilient
one-time signatures. We emphasize, though, that the main motivation for this
work is the new obfuscator, rather than any single application.

The signature scheme is constructed as follows: the secret key is a randomly
chosen plane in 3-dimensional space, and the public key is the obfuscated mem-
bership program. To sign a message m, �nd a point on the plane that is related
to m. This signature can be veri�ed by running the public obfuscated program.

This signature scheme satis�es a weaker form of the unforgeability game,
where the adversary is required to submit a message m to be signed before
receiving the public key. Techniques from [14] allows us to transform the weak
scheme into an ordinary one-time signature scheme. Additionally, this one-time
signature scheme remains unforgeable even when a function of the secret key is
leaked whose output length is up to half as long as the secret key. For schemes
that do not use general zero-knowledge proofs, this matches the leakage bound
of [15] (albeit under much stronger assumptions).

Construction. The construction is as follows. Let G be a group of order p
that satis�es a strengthened version of the Decisional Di�e-Hellman assump-
tion, which we describe in more detail below. When the obfuscator is given a
hyperplane Ha to obfuscate, where a = (a1, . . . , ad), it chooses a random gener-

ator g
U← G and outputs gai for all i. This allows the user to compute whether

a given point x = (x1, . . . , xd) is on the hyperplane by computing

(ga1)x1 × · · · × (gad)xd = g〈a,x〉 ,

and checking whether this equals G's identity element (i.e. whether 〈a,x〉 = 0).

Our assumption. We are not able to prove the security of our construction
based on the standard Decisional Di�e-Hellman assumption, which states that
gab is indistinguishable from uniform, given g, ga, and gb for uniformly-chosen
exponents a and b. We describe the di�culty with basing our scheme on DDH,
as it motivates and clari�es our new assumption.

For our construction, it is crucial that the adversary not be able to compute
any polynomial relationships in the exponent (not just quadratic ones). Consider,

for instance, whether it is possible to compute ga
3
given just g and ga. What if

we wish to compute gabc from g, ga, gb, and gc? Can elements of the form ga
3



or gabc even be distinguished from uniform? No e�cient algorithms for running
these computations are known (e.g. in groups where DDH is hard), but standard
assumptions such as DDH do not seem to rule out the existence of such algo-
rithms. In general, we wish to understand when gp(a,b) is distinguishable from
uniform, given a polynomial p and group elements g, ga, and gb. Clearly, this
is true when p is linear, or closely resembles a line. Our new assumption states
that these are the only such polynomials for which gp(a,b) can be distinguished
from uniform.

We also consider the e�ect of choosing exponents from weak entropy distri-
butions. This setting has been previously considered by Canetti [6], who forms
a modi�ed DDH assumption in which gab is considered to be indistinguishable
from uniform, even given g, ga, and gb, where a is chosen from the uniform dis-
tribution but b is chosen from any distribution of super-logarithmic min-entropy.
Our assumption expands upon this idea and considers many exponents that are
not only chosen from weak entropy distributions, but which may also be related.

Speci�cally, given a tuple of group elements 〈ga1 , ga2 , . . . , gad〉 where the
ai's are chosen from some joint distribution, we ask for which polynomials p
is gp(a1,...,ad) still indistinguishable from uniform? If the polynomial p looks
linear when restricted to the support of the joint distribution, then of course
gp(a1,...,ad) can be distinguished from uniform. Our new assumption states that
indistinguishability holds in all other cases.

This new assumption is stronger than the standard DDH assumption, or even
the modi�ed DDH assumption of [6], but we provide evidence of its feasibility
by proving that it holds in the generic group model. Furthermore, we believe
that resolving the status of this new assumption would be interesting either
way. If it holds, then we obtain an obfuscator for a new and interesting family
of functions. Showing that the assumption does not hold would shed new light
on which computations can be run e�ciently in the exponent of DDH groups.

Organization. Section 2 de�nes virtual black-box obfuscation and the hyper-
plane membership testing programs. Section 3 describes our assumption in detail
and compares it to previous assumptions. Section 4 presents our obfuscator for
the family of hyperplanes and proves its security. Section 5 extends our construc-
tion to the multi-bit setting. Section 6 presents our one-time signature scheme.
Some of the proofs are relegated to the full version of this paper [16].

2 De�nitions

2.1 Virtual black-box obfuscation

In [1], [5], and other works, an obfuscator is de�ned as a compiler that takes
a circuit as input and returns another circuit. The output circuit should be
a �garbled� version of the input circuit, in the sense that the circuits should
have the same functionality, but it should be di�cult for an adversary to learn
information from the output circuit.



Consider an imaginary world in which people can give others access to ora-
cles at will. In this imaginary world, we can easily perform perfect obfuscation
by giving users oracle access to a computer program. The oracle allows them
to learn the program's input-output functionality, but any other aspect of the
program's behavior is hidden from the users. Unfortunately, in the real world
we cannot hand out oracles to other people. Instead, we want obfuscators to be
able to replicate the power of oracles in the imaginary world. The formalization
of obfuscation provided by Barak et al. [1], called the virtual black-box property,
achieves this goal.

The virtual black-box property considers two di�erent worlds. In the real
world, an e�cient adversary has access to the obfuscated program code and at-
tempts to learn a one bit predicate about the underlying program. The de�nition
ensures that there exists a simulator in imaginary world that only interacts with
an oracle to the program but can still can learn the same predicate that the
adversary learns in the real world. Hence, the virtual black-box property ensures
that access to the code of an obfuscated program is no more useful than access
to the oracle.

We only require that the obfuscator operate over a speci�ed family of circuits.
Throughout this work, all circuits are assumed to be non-uniform.

De�nition 1 (Obfuscation). Let C = {Cn}n∈N be a family of polynomial-size
circuits, where Cn denotes all circuits of input length n. A probabilistic polynomial
time (PPT) algorithm O is an obfuscator for the family C if the following three
conditions are met.

1. Approximate functionality: There exists a negligible function ε such that for
every n, every circuit C ∈ Cn and every x in the input space of C,

Pr[O(C)(x) = C(x)] > 1− ε(n) ,

where the probability is over the randomness of O. If this probability always
equals 1, then we say that O has exact functionality.

2. Polynomial slowdown: There exists a polynomial q such that for every n,
every circuit C ∈ Cn, and every possible sequence of coin tosses for O, the
circuit O(C) runs in time at most q(|C|).

3. Virtual black-box: For every PPT adversary A and polynomial δ, there exists
a PPT simulator S such that for all su�ciently large n, and for all C ∈ Cn,

|Pr[A(O(C)) = 1]− Pr[SC(1n) = 1]| < 1
δ(n)

,

where the �rst probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.

2.2 Vector spaces

In this section, we de�ne the vector spaces over which our constructions operate.
Let d ∈ N, p be a prime number, and Fp = Z

pZ . Then, Fp is a �eld and Fdp is a



vector space over Fp. We denote a vector in the vector space by x = (x1, . . . , xd),
and we have an inner product-style operation given by 〈x,y〉 =

∑d
i=1 xiyi.

De�nition 2. Let S ⊆ Fdp be a set.

1. Two vectors x,y ∈ Fdp are said to be orthogonal if their inner product is
zero, so 〈x,y〉 = 0. Note that the set of all vectors orthogonal to x forms a
(d− 1) dimensional hyperplane.

2. The closure of S, written S̄, is the subspace of all linear combinations of
vectors in S.

3. The orthogonal complement of S, written S⊥, is the subspace of all vectors
that are orthogonal to every vector in S. That is,

S⊥ = {x ∈ Fdp : 〈x, s〉 = 0 ∀s ∈ S} .

We caution that Fdp does not satisfy all of the axioms of an inner product space.
Nevertheless, the following theorem about inner product spaces, which we need
in the proof of our main theorem, does hold over Fdp.

Theorem 3. Let S ⊆ Fdp be a set. Then, (S⊥)⊥ = S̄.

Proof (sketch). First, S⊥ and S⊥⊥ are subspaces of Fdp because the conditions

imposed on them are linear. Second, S̄ ⊆ S⊥⊥ because the vectors in S̄ are
orthogonal to those in S⊥, so they are in S⊥⊥. Third, dim(S̄) = dim(S⊥⊥)
because both of them are equal to d− dim(S⊥).

Therefore, S̄ and S⊥⊥ are subspaces of Fdp of the same dimension such that
one is included in the other, so they are equal. ut

We also note that the vector space Fdp is a bit redundant for our needs. We wish
to identify a hyperplane P with a vector x that is orthogonal to every vector in
the hyperplane. However, the vector x is not unique: indeed, for any c ∈ Fp \ 0,
the vector cx is also orthogonal to every vector in P , so the normal vector to the
hyperplane is only unique up to scalar multiplication. As a result, we note that
there are only d− 1 degrees of freedom when choosing a normal vector, which is
why the d = 2 case corresponds to point functions. One canonical representation
of the normal vector, which we will use when convenient throughout the paper,
is to consider all of the vectors in Fdp whose �rst non-zero coordinate equals 1.4

3 Our assumption

In this section, we de�ne the main assumption. Then, we relate our assumption
to a DDH variant found in [6] and consider the assumption in the generic group
model.

Our assumption uses groups of increasing prime order. We use the following
de�nition to encapsulate the order requirement.

4 In fact, the appropriate ambient space from which to consider the normal vectors is
the projective space Pd−1(Fp), and we are using its embedding in Fdp as a concrete
instantiation of the projective space.



De�nition 4. A function ρ(n) is called a prime sequence if for every n ∈ N,
ρ(n) is a prime number in the range (2n−1, 2n].

Our assumption is parametrized by d ∈ N. We abuse notation a bit and denote
Fdρ = {Fdρ(n)}n∈N.

Assumption 5. Given d ∈ N, there exists a family of groups G = {Gn}n∈N
(written multiplicatively) such that the following three conditions hold:

1. There are e�cient algorithms to perform the group operation, to test for
equality with the identity element, and to sample uniformly from G.

2. The orders of the groups form a prime sequence ρ(n) = |Gn|.
3. For every PPT adversary A and for all families of distributions L = {Ln}n∈N

and R = {Rn}n∈N over Fdρ, there exists a polynomial q such that for all n,

|Pr[l← Ln, g
U← Gn : A(gl1 , . . . , gld) = 1]

− Pr[r ← Rn, g
U← Gn : A(gr1 , . . . , grd) = 1]|

≤ q(n) · max
x∈Fd

ρ(n)

|Pr[l← Ln : 〈l,x〉 = 0]− Pr[r ← Rn : 〈r,x〉 = 0]| . (1)

In words, this assumption states that an adversary can distinguish two dis-
tributions of vectors if and only if linear tests can do so as well.

3.1 Discussion

We make several remarks:

1. The right-hand side of (1) depends on ρ but not on any other property of G.
2. Note that the adversary is allowed to distinguish L and R better than any

single linear test does. For example, the adversary may try many linear tests.
The assumption merely states that the left-hand side of (1) is negligible
whenever the right-hand side is.

3. For a given adversary A, we denote Al = Pr[g U← Gn : A(gl1 , . . . , gld) = 1]
and AL = Pr[l ← Ln : Al] for simplicity. We will say that L and R are
indistinguishable by linear tests if

ε(n) = max
x∈Fd

ρ(n)

|Pr[l← L : 〈l,x〉 = 0]− Pr[r ← R : 〈r,x〉 = 0]|

is a negligible function of n. Thus, the assumption states that for all L and
R that are indistinguishable by linear tests, |AL − AR| is negligible as well
for all PPT adversaries A.

4. This assumption is computationally falsi�able, though perhaps ine�ciently.
There are two possible obstructions to e�ciency. First, the descriptions of
L and R may be ine�cient, although this is not a problem for the distribu-
tions constructed in our proof. Second, it may not be e�cient to determine
which linear test performs the best. An interesting question is whether this
computation can be performed e�ciently, leading to an e�cient falsi�cation
procedure.



3.2 On the assumption's hardness

In this section, we categorize the hardness of our assumption. To begin with, we
present a DDH-based assumption due to Canetti [6].

Assumption 6. Let n be a security parameter and let p = 2q+1 be a randomly
chosen n-bit safe prime. Consider the group Q of squares in F∗p. For any well-

spread distribution ensemble {Xq} where the domain of Xq is Fq, for g
U← Q, a←

Xq, b, c
U← Fq, the ensembles 〈g, ga, gb, gab〉 and 〈g, ga, gb, gc〉 are computationally

indistinguishable.

In this assumption, a �well-spread ensemble� means that the min-entropyH∞(Xq)
is a super-logarithmic function of n.

The following theorem exempli�es the strength of our assumption by relating
it to Assumption 6, which is already considered by the cryptographic community
to be quite strong.

Theorem 7. Assumption 6 implies Assumption 5 for dimension 2. For higher
dimensions, our assumption may be stronger because Assumption 5 for dimen-
sion d+ 1 implies Assumption 5 for dimension d.

On the other hand, we provide evidence that our assumption is feasible by show-
ing that it holds in the generic group model.

Theorem 8. For all d ∈ N, Assumption 5 for dimension d holds in the generic
group model.

Finally, we note that Assumption 5 for dimension 1 trivially holds, even by
groups that do not satisfy DDH. A precise de�nition of the generic group model
and a proof of Theorem 8 can be found in [16]. The rest of this section is devoted
to a proof of Theorem 7, which we break into the following two lemmas.

Lemma 9. Assumption 5 for dimension d+1 implies Assumption 5 for dimen-
sion d.

Lemma 10. Assumption 6 implies Assumption 5 for dimension 2.

Proof (Lemma 9). Assume that Assumption 5 for dimension d is false, so for
every prime sequence ρ and every set of groups G = {Gn}n∈N, there exists
a PPT adversary A and two distributions L, R over vectors in Fdρ that are
indistinguishable by linear tests but such that |AL −AR| is noticeable.

Now construct distributions L′ and R′ over vectors in Fd+1
ρ that sample L

and R, respectively, to obtain the �rst d components of the vector, and then
sample the �nal component uniformly over Fρ. We claim that linear tests do not
distinguish L′ from R′.

Any linear test x′
n ∈ Fd+1

ρ(n) that has a non-zero �nal component will not

distinguish L′n from R′n because the �nal component of these two distributions
is uniform, so the inner product will have the uniform distribution in both cases
as well. Furthermore, if there exists a sequence of linear tests {x′

n} ∈ Fd+1
ρ that



have zero for the �nal component and distinguish L′ from R′, then the sequence
{xn} ∈ Fdρ formed by deleting the �nal component from x′

n distinguishes L and
R, contradicting our assumption that L and R are indistinguishable by linear
tests.

Finally, let A′ be the adversary that drops its �nal component and feeds the
rest to A. It is clear that A′L′ = AL and A′R′ = AR, so |A′L′ −A′R′ | is noticeable.
Therefore, Assumption 5 for dimension d+ 1 is false as well. ut

Proof (Lemma 10). Suppose that Assumption 6 holds. For every n, the assump-
tion holds for a randomly chosen safe prime p, and thus for every n there exists
some safe prime pn = 2qn + 1 for which it holds. Let Gn be the subgroup of
quadratic residues in F∗pn , and let G = {Gn}n∈N. We claim that Assumption 5
for dimension 2 holds for the family G and prime sequence ρ(n) = qn.

It is clear that the �rst two properties of Assumption 5 for dimension 2 hold.
Also, using our convention that the �rst non-zero coordinate of a vector is �xed
to be 1, we may assume without loss of generality that every vector in F2

ρ has
the form (1, x) for x ∈ Fqn except for the vector (0, 1), which is easy to test for.
Thus, a �vector� is really just a group element. Furthermore, a �linear test� is
just an equality check because the vector (y,−1) has an inner product of zero
with the vector (1, x) if and only if y = x.

Hence, it remains to prove the following: for every PPT adversary A and for
all families of distributions L and R over {Fqn}n∈N such that

max
x∈Fqn

|Pr[l← L : l = x]− Pr[r ← R : r = x]|

is negligible, the quantity

|Pr[l← Ln, g
U← Gn : A(g, gl) = 1]− Pr[r ← Rn, g

U← Gn : A(g, gr) = 1]|

is negligible as well.
First, we prove that the statement holds when L is well-spread and R is the

uniform distribution. Hence, we wish to show that for all PPT A,

|Pr[l← Ln, g
U← Gn : A(g, gl) = 1]− Pr[r U← Fqn , g

U← Gn : A(g, gr) = 1]|

is negligible. The proof of this statement closely follows the proofs in [6], so we
only sketch the details here. If this statement is not true, then the probability
Px = A(1,x) = Pr[A(g, gx) = 1] is noticeably di�erent from the mean value
P̄ = AR for super-polynomially many values of x. Without loss of generality,
there exist super-polynomially many values a for which Pa is noticeably larger
than P̄ . Let Xqn be the uniform distribution over all such a. Then, the ensembles
〈g, ga, gb, gc〉 and 〈g, ga, gb, gab〉 are distinguishable when a ← Xqn by running
A on the �nal two components of the ensemble. In the �rst case, A outputs 1
with probability P̄ , and in the second case, A outputs 1 with noticeably higher
probability. This contradicts Assumption 6.

Next, we note that the statement immediately extends to the setting where
both L and R are well-spread by a simple hybrid argument.



Finally, we consider arbitrarily distributions L and R such that

max
x∈Fqn

|Pr[l← L : l = x]− Pr[r ← R : r = x]|

is negligible. In words, this equation means that for every x that occurs with
noticeable probability in L, it occurs with the same probability in R as well
up to a negligible di�erence. Thus, the distributions L and R can only di�er on
outcomes that occur with negligible probability. Therefore, it su�ces to consider
L and R that are well-spread, and in this case we showed that for every PPT A,

|Pr[l← Ln, g
U← Gn : A(g, gl) = 1]− Pr[r ← Rn, g

U← Gn : A(g, gr) = 1]|

is negligible, so Assumption 5 for dimension 2 holds as desired. ut

We note that a literal converse to this lemma does not quite make sense because
Assumption 6 is speci�c to the group of quadratic residues modulo F∗p for a safe
prime p, whereas Assumption 5 makes the more general claim that there exists
some family of groups that satisfy a certain condition (potentially quite di�erent
from the groups used in Assumption 6).

4 Construction

In this section, we de�ne the family of programs that we obfuscate, present the
obfuscator, and prove its security under Assumption 5.

Let d be an integer and ρ be a prime sequence. Given a vector a ∈ Fdρ(n),

let Ha be the circuit that has a hardwired, and on input x ∈ Fdρ(n), computes

〈a,x〉 in the obvious way and accepts if and only if the inner product equals 0.
Let Fdρ = {Ha : n ∈ N,a ∈ Fdρ(n)} be the family of all such circuits.

We show how to obfuscate the family Fdρ for any d ∈ N, prime sequence
ρ, and set of groups G (written multiplicatively) that satisfy Assumption 5 for
dimension d. The obfuscator OG,d operates as follows.

Algorithm 1 Obfuscator OG,d for the family of hyperplanes Fdρ
Input: vector a = (a1, . . . , ad) in Fdρ(n)

1: choose a generator g
U← Gn \ {1Gn} uniformly at random

2: compute gi ← gai for i = 1, . . . , d
Output: circuit that has g1, . . . , gd hardwired, and on input a vector x, accepts if and

only if
∏d
i=1 gxii = 1Gn

We stress that the generator g is not made public in addition to the gi. How-
ever, recall that the vector a is only de�ned uniquely up to scalar multiplication,
and that one way to enforce this requirement is to assume that the �rst non-zero
coordinate of a equals 1. With this convention, the generator g is revealed.



This convention makes it clear that in the d = 2 case, this construction is
the same as the one in [6], and it can be based o� the same DDH assumption
by Theorem 7. Hence, our construction subsumes the one in [6].

We note that in the work of Shen, Shi and Waters [13] on private inner-
product predicate encryption schemes, their construction also tests whether an
inner product is 0 by running it in the exponent of a group where CDH is hard.
Otherwise the settings, constructions, and assumptions are quite di�erent. In
particular, a user who wants to check whether a vector x has inner product
0 with a hidden vector v needs to �rst encrypt v using a secret key (so their
predicate encryption scheme does not directly yield an obfuscation).

We now show that OG,d is an obfuscator, based on Assumption 5.

Theorem 11. Let d ∈ N and G be a set of groups satisfying Assumption 5.
Then, the algorithm OG,d is an obfuscator for the family Fdρ with exact function-
ality.

It is clear that OG,d satis�es the exact functionality and polynomial slowdown
properties required of an obfuscator, so it remains to prove the virtual black-box
property. Before doing so, we present a de�nition that will be useful throughout
the proof and an intermediate lemma.

De�nition 12. Let d ∈ N and p be a prime number. We say that the set V ⊆ Fdp
distinguishes two vectors l, r ∈ Fdp if there exists x ∈ V such that exactly one of
the inner products 〈l,x〉 and 〈r,x〉 equals 0. Otherwise, we say that l and r are
indistinguishable by V , which means that for all x ∈ V , 〈l,x〉 = 0 if and only if
〈r,x〉 = 0.

At a high level, this lemma states that for every adversary A, there exists a set
V that can distinguish vectors in Fdρ(n) as well as A can.

Lemma 13. Suppose (G, d) satisfy Assumption 5. For every PPT adversary A
and polynomial ε, there exists a polynomial s (that can depend on A) such that
for every n ∈ N, there exists a set V ⊆ Fdρ(n) of size at most s(n), such that for

every pair of vectors l, r ∈ Fdρ(n) that are indistinguishable by V , |Al−Ar| < 1
ε(n) .

Using standard techniques found in [6] and other papers, we can show that the
lemma implies that OG,d is an obfuscator.

Proof (Theorem 11 from Lemma 13). Let A be an adversary and ε be a polyno-
mial, and we must construct a simulator S such that for every n ∈ N and every
vector r ∈ Fdρ(n),

|Pr[A(OG,d(Hr)) = 1]− Pr[SHr (1n) = 1]| < 1
ε(n)

.

By Lemma 13, there exists a polynomial s such that for every n ∈ N, there exists
a set V ⊆ Fdρ(n) of size at most s(n) such that the property in the lemma holds.

Let SHr (1n) be the nonuniform circuit that receives V as advice and does the
following:



1: for all x ∈ V do
2: query the oracle on input x and record the response
3: end for
4: choose a vector l ∈ Fdρ(n) such that ∀x ∈ V, 〈l,x〉 = 0 i� H(x) accepts
5: output A(OG,d(Hl))
Finally, since Pr[A(OG,d(Hr)) = 1] = Ar by de�nition and Pr[SHr (1n) = 1] =
Al by construction, Lemma 13 ensures that S satis�es the virtual black-box
condition. ut

Next, we provide some high-level intuition about why the lemma is true. Sup-
pose there is an adversary A that breaks the obfuscation (and thus the lemma as
well). We build a new adversary A∗ that runs A many times. Also, we construct
two distributions L and R. These distributions will be uniform over their sup-
port, so we can really just think of them as sets. The construction of L and R
proceeds iteratively, subject to two invariant conditions: �rst, A∗ must be able
to distinguish these distributions, and second, no linear test should do so. These
constraints together violate Assumption 5.

We achieve the �rst invariant using the negation of Lemma 13, which con-
tinually gives us a pair of vectors (li, ri) that A (and thus A∗) can distinguish.
We add li to the support of L and ri to the support of R. The second invariant
is achieved by continually monitoring L and R as they grow. We �trap� any
linear test x once it is able to distinguish d of the pairs (li, ri). Once we have
identi�ed such a linear test, we ensure that subsequent pairs of vectors that we
add to L and R are indistinguishable by x. Hence, any linear test only distin-
guishes a constant number of the pairs, so by making the distributions L and R
well-spread, we ensure that all linear tests succeed with only negligible probabil-
ity. The only downside to the proof is that the �trapping� procedure requires a
simulator whose runtime is exponential in d, so the proof only holds for constant
dimension.

The rest of this section is devoted to a formal proof of the lemma, which uses
some techniques from the proofs in [6], some novel proof concepts, and some
linear algebra. We use the set notation [k] = {1, 2, . . . , k} in this proof.

Proof (Lemma 13). Given G and d, assume for the sake of contradiction that
the obfuscator OG,d does not satisfy Lemma 13. Hence, there exists an adversary
A and polynomial ε such that for all polynomials s, there exist in�nitely many
n ∈ N such that for every set V ⊆ Fdρ(n) of size at most s(n), there exist vectors
l, r ∈ Fdρ(n) with the property that 〈l,x〉 = 0 if and only if 〈r,x〉 = 0 for all

x ∈ V , such that |Ar −Al| ≥ 1
ε(n) .

Because these probabilities are separated by a noticeable amount, an e�cient
algorithm is able to determine which of Al and Ar is larger by taking n samples

of each one (using independent randomness for A and the choice of g
U← Gn each

time) and observing which sample probability is greater. By a Cherno� bound,
this algorithm succeeds with overwhelming probability. Thus, from now on we
assume without loss of generality that Ar > Al, which allows us to drop the
absolute value.



Given a constant c, apply this statement to the polynomial sc(n) = nc and
the resulting n ∈ N in order to build two large sets L̂cn and R̂cn iteratively as
follows.

1: initialize V ← ∅ and i← 1
2: while |V | ≤ nc do
3: given the set V , let li and ri be vectors that violate Lemma 13
4: insert li ∈ L̂cn and ri ∈ R̂cn
5: for all subsets T ⊆ L̂cn ∪ R̂cn of size at most d− 2 do
6: add to V random bases of (T ∪ {li})⊥ and (T ∪ {ri})⊥
7: end for
8: increment i← i+ 1
9: end while

This algorithm iteratively �nds pairs of vectors that the adversary A can
distinguish but the set V cannot. Then, it adds many points to V . We now
describe in detail how these additional points a�ect future iterations of the loop.

When T = ∅ in the for loop, the algorithm adds to V a basis of vectors
orthogonal to li. Since li is the only vector (up to scalar multiplication) that is
orthogonal to every vector in this basis, it follows that in all future iterations
i′ > i of the loop, li′ and ri′ are linearly independent from li, because li′ and
ri′ must be indistinguishable by V . The same is true for ri, so the sets L̂cn and
R̂cn are continually increasing in size.

When T is not equal to the empty set, the additional points added to V
ensure that linear tests cannot distinguish L̂cn from R̂cn. Speci�cally, we claim
that for every vector x ∈ Fdρ(n), there are at most d indices such that 〈x, li〉 = 0
but 〈x, ri〉 6= 0, or vice-versa.

To see this, suppose without loss of generality that there exists a vector x ∈
Fdρ(n) and J indices i1 < i2 < · · · < iJ such that 〈x, lij

〉 = 0 but 〈x, rij
〉 6= 0 ∀j ∈

[J ]. We show by induction that the vectors li1 , . . . , liJ
are linearly independent.

As the base case, we showed above that any two vectors from L̂cn∪R̂cn are linearly
independent. Now, for j ≥ 2 suppose that Sj = {li1 , . . . , lij

} contains linearly
independent vectors. At iteration ij of the loop, a basis {b1, . . . , bk} of the space
S⊥j is added to V . By de�nition, the basis vectors are linearly independent. If
lij+1

were linearly dependent on Sj , say lij+1
= α1li1 + · · ·+ αjlij , then

〈lij+1
, bi′〉 = 〈α1li1 + · · ·+ αjlij

, bi′〉 = α1〈li1 , bi′〉+ · · ·+ αj〈lij
, bi′〉 = 0

for all i′ ∈ [k]. Because lij+1
and rij+1

are indistinguishable by V , it follows
that 〈rij+1

, bi′〉 = 0 for all i′ ∈ [k] as well, so

rij+1
∈ {b1, . . . , bk}

⊥
= (S⊥j )⊥ = Sj

by Theorem 3, which means that rij+1
is linearly dependent on the vectors in

Sj so 〈x, rij+1
〉 = 0. This contradicts the assumption that x distinguishes lij+1

from rij+1
, so the vectors li1 , . . . , lij+1

must be linearly independent, which
completes the induction. The vectors come from a space with dimension d, so
there can only be d linearly independent vectors, so J ≤ d as desired.



Next, we �nd a lower bound on the size of the sets L̂cn and R̂cn. The loop
condition is to stop when |V | > nc. On each iteration of the loop, |L̂cn| and |R̂cn|
each increase by 1 and |V | increases by at most

2d×

[
d−2∑
k=0

(
|L̂cn ∪ R̂cn|

k

)]
≤ 2d2

(
|L̂cn ∪ R̂cn|
d− 2

)
≤ O(|L̂cn ∪ R̂cn|d−2) ,

which means that the size of V is

|V | = O(2d−2) + O(4d−2) + · · ·+ O(|L̂cn ∪ R̂cn|d−2) = O(|L̂cn ∪ R̂cn|d−1) .

We also know that |V | ≤ nc, so it follows that |L̂cn| and |R̂cn| are Ω(nc/d).
Consider the 2ε(n) intervals [0, 1

2ε(n) ], [ 1
2ε(n) ,

1
ε(n) ], . . ., [1− 1

2ε(n) , 1] that par-
tition the unit interval. We say that an interval [α, β] �separates� an li, ri pair if
Ali < α and Ari > β. Since Ari −Ali >

1
ε(n) , each pair is separated by at least

one of the 2ε(n) intervals. Hence, by the pigeonhole principle, there exists one
interval that separates a 1

2ε(n) fraction of the pairs. Call this interval [α∗c , β
∗
c ].

Let Lcn and Rcn be subsets of L̂cn and R̂cn, respectively, consisting only of the li,

ri pairs that are separated by [α∗c , β
∗
c ]. Note that |Lcn| and |Rcn| are Ω(n

c/d

ε(n) ).
Furthermore, there is an algorithm A∗c that distinguishes Lcn from Rcn. It is

nonuniformly hardcoded with the value µ∗c = α∗c+β
∗
c

2 , and operates as follows.

Input: a vector v ∈ Fdρ(n)

1: run A(OG,d(Hv)) a total of 32n · ε(n)2 times using fresh randomness for A
and O each time

2: let τ denote the fraction of iterations that A accepts
Output: �Lcn� if τ ≤ µ∗c and �Rcn� otherwise

If the input to this algorithm is a vector l ∈ Lcn, then we know that Al ≤ α∗c .
By a Cherno� bound, the probability that the empirical acceptance rate τ is
greater than µ∗c = α∗c + 1

4ε(n) is at most e−n. The same is true for vectors in

Rcn, so this algorithm succeeds with probability 1− e−n. On the other hand, we
argued above that linear tests distinguish Lcn from Rcn with probability at most
d
|Lcn|

= O( ε(n)
nc/d

).
Finally, we construct the distributions L and R that break Assumption 5.

Recall that the negation of Lemma 13 yields a function n(c) as follows: for every
poly sc the lemma provides some value n of the security parameter where there
is a counterexample to the lemma. Furthermore, we note that as c → ∞, the
sequence {n(c)}c∈N → ∞ as well. This is due to the fact that if c > nd, then
the lemma considers sets V of size up to nnd > ρ(n)d, so the entire collection of
vectors in Fdρ(n) can �t in V and the lemma is obviously true in this case.

We form a sort of inverse to this function as follows: given n, let cn be the
biggest value of c such that the counterexample with c applies to n. Note that
cn is not well-de�ned for all values of n, but it is de�ned for in�nitely large set of
values which we will denote by N ⊆ N. It follows from the above argument that
as n→∞, the sequence {cn}n∈N →∞ as well. Hence, there exists an in�nitely



large subset N ′ ⊆ N such that {cn}n∈N ′ is monotonically increasing. We form
the families of distributions L and R such that Ln and Rn are uniform over the
sets Lcnn and Rcnn , respectively, for all n ∈ N ′. We set Ln = Rn arbitrarily for
all n /∈ N ′.

Consider the following uni�ed adversary A∗ that is nonuniformly hardcoded
with the values µ∗cn = 1

2 (α∗cn + β∗cn) for all n ∈ N ′ (and arbitrarily values of µ∗cn
for n /∈ N ′).
Input: a vector v ∈ Fdρ(n)

1: run A(OG,d(Hv)) a total of 32n · ε(n)2 times using fresh randomness for A
and O each time

2: let ξ denote the fraction of iterations that A accepts
Output: �Ln� if ξ ≤ µ∗cn and �Rn� otherwise

This adversary will succeed at distinguishing L from R with overwhelming
probability 1 − e−n for all n ∈ N ′ (and of course the adversary will fail on
all n /∈ N ′). On the other hand, any sequence of linear tests only succeeds with

probability O( ε(n)
ncn/d

) which is negligible since cn →∞ as n→∞. Hence, there is
no polynomial q(n) that bounds the ratio of success probabilities for the in�nitely
many n ∈ N ′, so Assumption 5 is false as desired. ut

5 Obfuscation of hyperplanes with multi-bit output

Given an obfuscator for the family of point functions, the work of [10] shows
how to construct an obfuscator for the family of point functions with multi-bit
output. This family also accepts a single point, but instead of just having a yes
or no output, it returns a hidden message on the correct input value. Such an
obfuscator can be used to create a strong symmetric-key encryption scheme that
satis�es leakage resilience and circular security [17]. Their construction applies
in our case too, so we can obfuscate the family of �hyperplanes with multi-bit
output,� with the nice property that the message is not revealed when the input
is the zero vector (the one vector that is known to be in every hyperplane).

Formally, let Ha,m be the circuit that has the vector a ∈ Fdρ(n) hardwired,

and on input a vector x ∈ Fdρ(n), outputs m if 〈a,x〉 = 0 but x 6= 0, and outputs

⊥ otherwise. Let Md
ρ,l = {Ha,m : a ∈ Fdρ(n),m ∈ {0, 1}

l(n)} be the family of

all such circuits. In particular, we can think of the hyperplanes family Fdρ as a
special case of this family where l = 0 (i.e. there is only one possible message).

We show how to obfuscate the familyMd
ρ,l given any d ∈ N and obfuscator

for hyperplanes OG,d that is (l + 1)-composable.

De�nition 14 (t-composable obfuscation [10]). A PPT O is a t-composable
obfuscator for the family C if functionality and polynomial slowdown hold as be-
fore, and the virtual black-box property holds whenever the adversary and simu-
lator are given up to t circuits in C. Formally, for every PPT adversary A and
polynomial δ, there exists a PPT simulator S such that for all su�ciently large



n, and for all C1, . . . , Ct ∈ Cn,

|Pr[A(O(C1), . . . ,O(Ct)) = 1]− Pr[SC1,...,Ct(1n) = 1]| < 1
δ(n)

,

where the �rst probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.

Unfortunately, we do not know how to prove from Assumption 5 that OG,d is
even 2-composable. All we can show is that the composability of OG,d is related
to the length of messages that we can obfuscate. Let ÕG,l,d be an obfuscator for
the familyMd

ρ,l that operates as follows.

Algorithm 2 Obfuscator ÕG,l,d for the familyMd
ρ,l

Input: vector a ∈ Fdρ(n)

1: set C0 = OG,d(a)
2: for i = 1 to l do
3: if mi = 1 then

4: set Ci = OG,d(a)
5: else

6: choose a′ U← Fdρ(n) and set Ci = OG,d(a′)
7: end if

8: end for

Output: circuit that hardwires C0, . . . , Cl and operates as follows on input x ∈ Fdρ(n):
output ⊥ if C0(x) rejects or if x = 0, otherwise output the string s formed by
si = Ci(x) for i = 1, . . . , l

Theorem 15. Suppose that the obfuscator OG,d is (l + 1)-composable for some

l = poly(n), and let ρ(n) = |Gn|. Then, ÕG,l,d is an obfuscator for the family of
hyperplanes with multi-bit outputMd

ρ,l with approximate functionality.

The proof of this theorem is similar to the one in [10].

Proof. The approximate functionality and polynomial slowdown of ÕG,l,d are
clear from the construction and the corresponding properties of OG,d. For i = 1
to l, let ai be the vector such that ai = a if mi = 1 or ai is uniformly chosen
otherwise. By the (l + 1)-composable virtual black-box property, we know that
there exists a simulator S such that the output of

A(ÕG,l,d(a)) = A(OG,d(a1), . . . ,OG,d(ad))

can be simulated by SHa1 ,...,Had . Furthermore, the oracles Ha1 , . . . ,Had
can be

simulated by the oracle Ha,m up to a negligible simulation error in the following
manner: if Ha,m(x) = ⊥, then we say that Hai

(x) = 0 for all i. Otherwise
Ha,m(x) = m, in which case we say that Hai(x) = mi. Hence, the simulator
THa,m that runs SHa1 ,...,Had and emulates the oracle queries in this manner
satis�es the virtual black-box property for ÕG,l,d. ut



6 One-time signature schemes

We can use an obfuscator for the family of planes in three-dimensional space
to form a one-time signature scheme. Informally, the secret and public keys are
a hidden plane and an obfuscation of the plane membership testing program,
respectively. A signature of a message is a point on the hyperplane that is related
to the message, and the veri�cation procedure runs the obfuscated hyperplane
testing circuit to verify signatures.

More formally, let ρ be a prime sequence, and O be an obfuscator for the
family of hyperplanes over F3

ρ (such as the obfuscator OG,d constructed in Section
4). Consider the following three algorithms.

KeyGen(1n): Choose �eld elements sk1, sk2, c
U← Fρ(n) \ 0. Form the vector

sk = (sk1, sk2, 1) in F3
ρ(n) and the obfuscated plane P = O(sk). The secret

key is (sk1, sk2), and the public key is (P, c).
Sign(m ∈ Fρ(n)): Let σ2 be the unique �eld element such that the inner product
〈sk, (cm, σ2, 1)〉 = 0. The signature is (cm, σ2).

Verify(m, (σ1, σ2)): Accept if and only if σ1 = cm and P (σ1, σ2, 1) accepts.

This signature scheme is unforgeable in a weak sense, described in [14] and
other works, in which the forger must choose the message on which she requests
a signature before being shown the public key. The techniques in [14] allow
us to transform this scheme into one that is existentially unforgeable under
chosen message attacks (the standard security notion for signature schemes).
The transformation requires a chameleon hash function whose seed can be chosen
with public coins. It is known how to construct such a hash function under the
DDH assumption [18].

Furthermore, our one-time signature scheme is resilient to any leakage func-
tion whose output length is less than half as long as the secret key.

Theorem 16. Let ρ be a prime sequence and O be an obfuscator for the fam-
ily of hyperplanes over the vector space F3

ρ. Then, the above algorithm leads to
an existentially unforgeable one-time signature scheme that is resilient to any
leakage function whose output length is bounded by

l(n) = n− ω(log(n)) .

In particular, leakage of l(n) = γn bits for any γ < 1 is permitted.

This theorem is proved in [16]. We note that the leakage bound in the theorem is
tight. Consider the following leakage function that has a message m hardcoded:
use the secret key to form a signature associated to m, and output σ2. This
leakage function has n bits of output, and permits a forgery of the message m
by the signature (cm, σ2).

The secret key consists of two elements of Fρ(n), so it is 2n bits long. Thus,
our signature scheme permits leakage of up to half of the length of the secret
key. This matches the leakage bound attained in [15] for schemes that do not
use general non-interactive zero-knowledge proofs (albeit under a much stronger
assumptions).
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