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Abstract. We show tight connections between several cryptographic primitives,
namely encryption with weakly random keys, encryption with key-dependent
messages (KDM), and obfuscation of point functions with multi-bit output (which
we call multi-bit point functions, or MBPFs, for short). These primitives, which
have been studied mostly separately in recent works, bear some apparent simi-
larities, both in the flavor of their security requirements and in the flavor of their
constructions and assumptions. Still, rigorous connections have not been drawn.
Our results can be interpreted as indicating that MBPF obfuscators imply a very
strong form of encryption that simultaneously achieves security for weakly-random
keys and key-dependent messages as special cases. Similarly, each one of the
other primitives implies a certain restricted form of MBPF obfuscation. Our re-
sults carry both constructions and impossibility results from one primitive to oth-
ers. In particular:

– The recent impossibility result for KDM security of Haitner and Holenstein
(TCC ’09) carries over to MBPF obfuscators.

– The Canetti-Dakdouk construction of MBPF obfuscators based on a strong
variant of the DDH assumption (EC ’08) gives an encryption scheme which
is secure w.r.t. any weak key distribution of super-logarithmic min-entropy
(and in particular, also has very strong leakage resilient properties).

– All the recent constructions of encryption schemes that are secure w.r.t. weak
keys imply a weak form of MBPF obfuscators.

1 Introduction
Symmetric encryption is an algorithmic tool that allows a pair of parties to communi-
cate secret information over open communication media that are accessible to eaves-
droppers. In order to achieve this goal, the communicating parties need to have some
shared secret randomness (a key). The classic view of symmetric encryption allows the
encryption scheme to determine the distribution of the key precisely (typically it is a
uniformly random string). It also assumes that the encryption and decryption algorithms
are executed in a completely sealed way, so no information about the key is leaked to
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the eavesdroppers. Finally, the classic model assumes that the parties only use the key
in the encryption and decryption routines and not for any other purpose. In particular,
their messages are never related to the key.

In recent years, much research has been done to investigate various relaxations of
this classic (and somewhat naive) model. One relaxation is to consider the case where
the key is chosen using a “defective” source of randomness that does not generate
uniform and independent random bits. (See e.g. [1, 14, 21, 2, 25] and the references
therein). Namely, the key is assumed to be taken from a distribution that is adversarially
chosen under some restriction. Typically the restriction is that the min-entropy of the
distribution of the secret key is at least α, for some value of α. In this case the scheme
is said to be secure w.r.t. α-weak keys.

A different relaxation of the classic model considers the case where the key is cho-
sen uniformly but some arbitrary information on the key is leaked to the adversary (see
e.g. [1, 25]). This models both direct attacks where the adversary gains access to the in-
ternal storage of the parties, such as the freezing attack of [18], and indirect information
leakage that occurs when the shared key is derived from the communication between
the parties, such as the information exchange used to agree on the key. Of course, all se-
curity is lost of the adversary learns the key in its entirety, and therefore some restriction
needs to be imposed on the amount of information that the adversary can get. One pos-
sibility is to require that the key has some significant statistical entropy left, even given
the leakage. We call this the entropic setting. Another, stronger, security notion only
insists that it is computationally infeasible to compute the secret key from the leaked
information, but allows the leakage to completely determine the key statistically. We
call this the computational setting.5 It turns out that encryption resilient to weak keys is
also resilient to a comparable amount of leakage in the entropic setting. Conversely, in
some settings there is a simple transformation from leakage resilient encryption to one
that withstands comparably weak keys.6

Yet another relaxation of the classic model considers the case where the messages
may depend on the shared key. Security in this more demanding setting was termed key-
dependent message security (KDM security) by Black, Rogaway and Shrimpton in [7].
In the last few years, the notion of KDM security has been extensively studied [19, 5,
9, 4, 20, 17, 8, 3], and several positive results emerged, most notably the results of [8, 3]
who showed how to obtain KDM security w.r.t. the class of affine functions (the former
under the DDH assumption and the latter under the LWE assumption). In contrast, [17]
show that there exist no black-box reductions from the KDM security of any encryption
scheme w.r.t. all efficient functions to “any standard cryptographic assumption”.

While the constructions for KDM-secure schemes and the constructions of schemes
that are secure w.r.t. α-weak keys bear significant similarities to each other (eg., see [8,

5 Many other models of leakage-resilience, such as the “only computation leaks information”
model [23, 15], place further restrictions on the type of information that may be leaked, and
are not considered in this work.

6 In the case of semantic security for symmetric-key encryption (without chosen-plaintext at-
tacks), we can use the following transformation: Given a scheme (Enc,Dec) that’s secure
against key leakage, construct the weak-key scheme (Enc′k(m) = (r, Enck+r(m)) for a
random |k|-bit r, Dec′k(r, c) = Deck+r(c)).



25], [14, 3], and [1, 3]), no formal connections between the problems have been made
so far.

Another recently studied primitive, which may seem unrelated at a cursory look,
is obfuscation of point functions (programs) with multi-bit output. Obfuscation is the
task of constructing an algorithm, called an obfuscatorO, that takes as input a program
p from a family P of programs and outputs a program q = O(p) that has essentially
the same functionality as p, but where the code of q gives no information (or, rather,
no computational ability) that cannot be determined given only oracle access to p. A
central point here is that O should work correctly and securely for any program in P .

A point function with multi-bit output (or a MBPF) is a function I(k,m) which, on
input x, outputs m if x = k and ⊥ otherwise. In the special case of point functions,
the value m is fixed to some constant, say 1. Obfuscators for point functions are con-
structed in [10, 26] under strong assumptions (and in [22] in the random oracle model).
Obfuscators for MBPF are only known based on very strong and specific assumptions
(specifically, the existence of fully-composable point function obfuscators) [11]. Differ-
ent constructions exist for restricted settings, such as the case where m is shorter than
k, or the case where m and k are distributed independently from each other [11, 14]. In
all of these constructions the obfuscator is given the values k and m explicitly.

The applicability of MBPF obfuscation to symmetric encryption has been pointed
out in [11], who proposed to encrypt a message m with key k by letting O(I(k,m)) be
the ciphertext. The fact that security holds for any k was used to suggest thatm remains
hidden even when k is taken from a distribution which is not uniform, as long as it has
sufficient min-entropy (i.e., it cannot be guessed in polynomial time.) Also, [14] show
that their construction of leakage resilient encryption can be used as a restricted variant
of MBPF obfuscation.

1.1 Our Results

We show tight relations between the above primitives. Specifically, we show that weak
key resilience, leakage resilience, and KDM security, each with its own variants, can all
be viewed as natural special cases of the MBPF obfuscation problem. In fact, a gener-
alized version of KDM security, which also withstands the case where the key is taken
from a weakly random distribution, is also a special case of MBPF obfuscation. In addi-
tion to providing some insight and intuition to these primitives, the drawn connections
provide new results — both constructions and hardness results — for the primitives
considered.

The remainder of the introduction overviews our results. We first present the gen-
eral connections between obfuscation and symmetric encryption; next we sketch some
conclusions and corollaries.

As a preliminary step towards drawing general connections, we set up a framework
for relaxing the standard notion of security of MBPF obfuscation. This notion, called
virtual black-box (VBB) security [6], essentially requires that for any adversary with
binary output there exists a simulator such that, for any k,m, the output of the adver-
sary given O(I(k,m)) is indistinguishable from the output of the simulator given oracle
access to I(k,m). We wish to consider the relaxed case where k and m are taken from
an unknown distribution from a given class. We capture this relaxation by replacing the



“for any k,m” requirement in the VBB definition with “for any distribution on k,m
from a given class of distributions”. Note that here the simulator knows the class of dis-
tributions, but not the distribution itself. This relaxation allows us to relate the different
classes of strong encryption to MBPF obfuscators for different classes of distributions.
Specifically:

Obfuscation vs. Weak-Key and Leakage Resilient Encryption: We say that an MBPF
obfuscator is α-entropic with independent messages if it is an MBPF obfuscator
for product distributions on k,m, where the distribution of k has min-entropy at least
α, and m is drawn independently of k, but need not have any entropy. We say that
the obfuscator is a fully-entropic IM MBPF if it has α-entropic security for all super-
logarithmic α. We show:

From IM MBPF obfuscators to encryption. Any α-entropic IM MBPF obfuscator with
independent messages allows us to construct semantically secure encryption scheme
with security for α-weak keys, via the transformation Enck(m) = O(I(k,m)).

From encryption to IM MBPF obfuscators. Conversely, any encryption scheme with se-
mantic security for α-weak keys allows us to construct α-entropic IM MBPF ob-
fuscators. The transformation is simple: To obfuscate a pair k,m, simply encryptm
with key k to obtain a ciphertext c; then, the obfuscated program simply has a hard-
coded ciphertext c, and on input x, runs the decryption algorithm on c with the key
x. Here, for the correctness of obfuscation, we require that the encryption scheme
can detect if it is decrypting a ciphertext with an incorrect secret key. We show
that this property can be added generically to any semantically secure encryption
scheme.

CPA security vs. self-composability. If we start with a CPA secure encryption for α-
weak keys, then the resulting IM MBPF obfuscator O is self-composable, in the
sense that security is preserved even if O is run multiple times on MBPFs with
the same input k and (possibly) different outputs mi. As was shown by [11], this
property is not, in general, implied by obfuscation alone. Conversely, if we start
with a self-composable IM MBPF obfuscator then we derive an encryption scheme
which is CPA secure for α-weak keys.

Fully-entropic obfuscation and fully-weak key security. If we start with an IM MBPF
obfuscator that has full-entropic security (i.e., it works for any distribution where k
is independent from m and has some super-logarithmic min-entropy) then we ob-
tain an encryption scheme with semantic-security for fully-weak keys. (i.e. security
for any key-distribution with super-logarithmic entropy).

Computational leakage vs. auxiliary information. If we start from a computational leak-
age resilient encryption then the resulting MBPF obfuscator is secure with respect
to dependent auxiliary input, as defined in [16]. Similarly, if we start from a MBPF
obfuscator that’s secure with dependent auxiliary input then the resulting encryp-
tion scheme is computationally leakage resilient.

KDM security: All of the above equivalence results in the preceding paragraph were
stated with respect to the restricted notion of obfuscation to independent messages.
Interestingly, the standard notion of MBPF obfuscation provides the additional (and
very powerful) security guarantee for encryption with key-dependent messages (KDM).



We say that O is a α-entropic (dependent) MBPF obfuscator if it withstands any
joint distribution on k,m where the projection distribution on k has min-entropy at
least α (and m may depend on k). We say thatO is a fully-entropic (dependent) MBPF
obfuscator if the above holds for all super-logarithmic α .

We also define α-KDM encryption schemes which provide security even when the
key is taken from any distribution of entropy α, and the message can be an arbitrary
function of the secret key. We show:
Obfuscation vs. encryption. Any α-entropic (dependent) MBPF obfuscator provides,

via the same transformation as before, an α-KDM semantically secure encryption
scheme.

Multi message resilience vs. self composability. If the encryption scheme we start with
is multi-message α-KDM secure, in the sense that it withstands the case where the
adversary obtains encryptions of any polynomial number of functions of the secret
key, then the resulting (dependent) MBPF obfuscator has α-entropic security and
is self composable. The converse implication holds as well.

To connect our new α-entropic definition to previous works, we show that any MBPF
obfuscator that is α-entropic for any super-logarithmic α also satisfies the virtual black-
box property, i.e., it works for any k,m. (We note that the proof of this result is trickier
than it might seem, the main difficulty being that in the case of α-entropic security the
simulator has the bound α, whereas in the VBB case no such bound exists.)

1.2 Implications
We show some implications of the above correspondence results:

Secure encryption w.r.t. (fully) weak keys. Known constructions of encryption schemes
that are secure w.r.t. weak keys are parameterized by the min-entropy α tolerated.
That is, a bound α must be chosen in advance, and then a scheme is constructed
based on α. Using our transformations, we get that, under the strong DDH as-
sumption in [10], the [10, 11] MBPF obfuscator provides an encryption scheme
that is secure w.r.t. α-weak keys, for any super-logarithmic function α. The main
advantage is that the min-entropy α does not need to be chosen in advance. More
specifically, we obtain a single encryption scheme, parameterized only by the se-
curity parameter n (and not by α), which simultaneously achieves security for all
α(n) ∈ ω(log n).
We remark that the hardness assumption we use has a similar flavor - it explicitly
makes an assumption for every distribution with super logarithmic min-entropy.
The crucial point is however that the construction does not depend on α and so it
provides a tradeoff between the strength of the assumption and the strength of the
obtained guarantee. See Section 6.1 for further details.

Impossibility for MBPF Obfuscators and fully composable point function obfuscators.
Using our transformations, the negative result due to Haitner and Holenstein [17]
implies that there are no constructions of MBPF obfuscators that can be proven
secure via a “black box reduction to standard cryptographic primitives.” Since full
MBPF obfuscators can be constructed in a black-box way from fully composable
point function obfuscators [11], the impossibility carries over to this primitive as
well. See Section 6.2 for further details.



Constructing self-composable MBPF obfuscators with independent messages. Using our
transformations, we can use constructions of encryption schemes that are secure
w.r.t. α-weak keys, to get self composable MBPF obfuscators with independent
messages. More specifically, we construct self composable obfuscators for MBPFs
{I(k,m)} as long as the distribution ofm is independent of the distribution of k, both
distributions are efficiently sampleable, and the distribution of k has min-entropy α.
See Section 6.2 for further details.

Organization. Section 2 contains some basic definitions for obfuscation and encryption.
Section 3 draws connections between obfuscation and weak key and leakage resilient
encryption. Section 4 draws connections between obfuscation and encryption resilient
to key dependent messages. Section 6 states the corollaries that we draw from the gen-
eral connections. Many proofs are left out and appear only in the full version [12].

2 Definitions
2.1 Obfuscation of Point Functions with Multi-bit Output

Let I(k,m) : {0, 1}∗ ∪ {⊥} → {0, 1}∗ ∪ ⊥ denote the function

I(k,m)(x) =
{
m if x = k
⊥ otherwise

which outputs the messagem given the key k, and⊥ otherwise. Let I = {I(k,m) | k,m ∈
{0, 1}∗} be the family of all such functions, which we call the family of point functions
with multi-bit output or just multi-bit point functions (MBPF) for short.

Definition 1 (Obfuscation of Point Functions with Multi-bit Output). A multi-bit
point function (MBPF) obfuscator is a PPT algorithm O which takes as input values
(k,m) describing a function I(k,m) ∈ I and outputs a circuit C. We will abuse notation
and write O(I(k,m)), but will always assume thatO gets k and m as clearly delineated
inputs.
Correctness: For all (k,m) ∈ {0, 1}∗ with |k| = n, |m| = poly(n), all x ∈ {0, 1}n,

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] ≤ negl(n)

where the probability is taken over the randomness of the obfuscator algorithm.
Polynomial Slowdown: For any k,m, the size of the circuit C = O(I(k,m)) is polyno-
mial in |k|+ |m|.
Entropic Security: We say that the scheme has α(n)-entropic security if for any PPT
adversaryA with 1 bit output, any polynomial `(·), there exists a PPT simulator S such
that for all jointly-distributed {Xn, Yn}n∈N whereXn takes values in {0, 1}n, Yn takes
values in {0, 1}`(n) and H∞(Xn) ≥ α(n), we have:∣∣∣Pr

[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m)(·) (1n) = 1

]∣∣∣ ≤ negl(n)

where the probability is taken over the randomness of (k,m) ← (Xn, Yn), the ran-
domness of the obfuscator O and the randomness of A,S. We say that a scheme has
fully-entropic security if it has α(n)-entropic security for all α(n) ∈ ω(log(n)).



We relate the notion of fully-entropic security, defined above, to the standard secu-
rity guarantee provided by obfuscation called the virtual black-box property:

Definition 2 (Virtual black-box property [10, 6, 26]). For any PPT adversaryA with
1 bit output and any polynomials p(·), `(·), there exists a PPT simulator S such that for
all distributions {Xn, Yn}n∈N with Xn taking values in {0, 1}n and Yn taking values
in {0, 1}`(n), we have:∣∣Pr

[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m) (1n) = 1

]∣∣ ≤ 1
p(n)

.

The probability is taken over the randomness of (k,m)← (Xn, Yn), A, S, and O.

Note the difference between the fully-entropic definition and the VBB definition:
the former allows a different simulator for each entropy threshold α(·), but requires
a negligible error in simulation, while the latter allows a different simulator for each
simulation-error p(·), but requires the simulator to work for all distributions regardless
of entropy. Interestingly, we show that the fully-entropic definition implies VBB (but
don’t know whether the converse holds as well).

Theorem 1. IfO is a MBPF obfuscator that satisfies fully-entropic security (as in Def-
inition 1) then O also satisfies virtual black-box obfuscation (as in Definition 2).

The proof of this theorem appears in the full version of this paper [12]. The idea is
to extend the technique used in [10] to show that a distribution-based definition implies
the virtual black box property in the case of point functions. At a high level, the distribu-
tional definition there says that if a user chooses a key from a well-spread distribution,
then an adversary cannot learn anything from an obfuscated point function beyond the
fact that the key is from this distribution, so in particular the key is hard to determine.
We show how to extend the distributional definition to the MBPF setting and use this to
prove that fully-entropic security provides this distributional requirement, and therefore
the virtual black-box property as well.

Fully entropic security, as well as virtual black box security, are quite strong, and
difficult to satisfy. The notion of α(n)-entropic security, for some particular α(n) ∈
ω(log(n)), corresponds to a meaningful weakening of that notion where security is only
provided when the input comes from a reasonably random source. A similar weakening
of obfuscation, in the special case of point functions, was also considered by Canetti,
Micciancio and Reingold [13] in the context of perfectly one-way hash functions.

Instead of restricting attention to distribution with α(n) min-entropy, one might
instead give the simulator the ability to ask its oracle more queries, by a factor of 2α(n)

(i.e. the simulator is no longer polynomial time). In the full version [12], we show that
this alternative relaxed notion is actually implied by α-entropic security.

We consider several additional variants of obfuscation throughout the paper. First,
we propose an additional weakening of the definition, which we call security for in-
dependent messages, and where we require that the distribution on the output m is
independent from that of the input k for a point function I(k,m).

Definition 3 (Independent Messages). We say that an obfuscatorO isα(n)-entropically
secure for independent messages if we restrict the definition of α(n)-entropic security



only to distributions {Xn, Yn} where Xn and Yn are independently distributed. We
define the notion of fully-entropic security for independent messages analogously.

We also define a stronger variant of plain obfuscation, which provides some com-
posability guarantees. There are two variants: For full composition we require that the
security of obfuscation is preserved even if the adversary gets (freshly and indepen-
dently) obfuscated circuits for many functions, where the various obfuscated functions
are related in arbitrary ways (i.e., both the keys and the messages may differ). For self
composition we require that all the obfuscated functions have the same value of the key
k. That is, one should obfuscate the functions I(k,m1), . . . , I(k,mt) with the same key k
but potentially different messages m1, . . . ,mt. (For point functions, self composition
boils down to the case of many obfuscated versions of the same function.)

Definition 4 (Composability). A multi-bit point function obfuscatorO withα(n)-entropic
security is said to be fully-composable if for any PPT adversary A with 1 bit output,
any polynomials t(·), `(·), there exists a PPT simulator S such that for all distributions
{(Xn, Yn)}n∈N, where Xn = X

(1)
n , . . . , X

(t)
n , Yn = Y

(1)
n , . . . , Y

(t)
n , and X(i)

n taking
values in {0, 1}n, Y (i)

n taking values in {0, 1}`(n) and H∞(Xn) ≥ α(n), we have:

|Pr[A(O(Ik1,m1), . . . ,O(Ikt,mt
)) = 1]−Pr[SI(k1,m1),...,I(kt,mt)(1n) = 1]| ≤ negl(n),

where the probabilities are over (k1, . . . , kt,m1, . . . ,mt) ← (Xn, Yn) and over the
randomness of A,S,O.

If the above holds only for the distributions Xn where Pr[k1 = k2 . . . = kt] = 1,
then we say that O is self-composable.

The notions of composability extend naturally to obfuscators with fully-entropic
security, where we require that the above definition holds for all α(n) ∈ ω(log(n)). It
also extends to obfuscators for independent messages, where we restrict the definition to
the case whereXn and Yn are independent. (It is stressed that there is no independence
assumption among the coordinates within Xn or Yn.)

2.2 Definitions for Encryption with Weak Keys

A symmetric encryption scheme consists of efficient algorithms (Enc,Dec).7 We say
that the encryption scheme is semantically secure for α(n)-weak keys if the usual notion
of semantic security holds even when the key comes from any weak-source of entropy
α(n). We propose the following definition of symmetric key encryption with weak keys.

Definition 5 (Symmetric Encryption with Weak Keys ). We say that an encryp-
tion scheme has CPA security for α(n)-weak keys if there exists an efficient algo-
rithm D(n, `) running in time poly(n, `), such that, for all PPT adversaries A and all
distribution-ensembles {Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n)

7 That is, the key generation algorithm is implicit and is assumed to always generate a uniform
n-bit string.



where the games CPAX,D
b (A, n) for b = 0, 1 are defined via the following experiment:

1. k ← Xn

2. Repeat: A submits a query m and receives a ciphertext c where:
In game CPAX,D

0 , the challenger sets c← Enck(m).
In game CPAX,D

1 , the challenger sets c← D(n, |m|).
3. The output of the game is the output of A.

The algorithm D(n, `) can keep persistent state during stage 2. We define semantic
security with α(n)-weak keys via the games SEMX,D

0 ,SEMX,D
1 , which are equivalent

to the CPA games except that step (2) is performed only once.
We say that an encryption scheme is CPA-secure (resp. semantically-secure) for

fully weak keys if it is CPA-secure (resp. semantically-secure) secure for α(n)-weak
keys for all α(n) ∈ ω(log(n)).

Note that, in case of α(n) = n (i.e. uniformly random secret keys), the above defini-
tion is equivalent to the standard notion of CPA/semantic security, since we can always
simply define D(n, `) to always output fresh encryptions Enck(0`), where k is initially
chosen uniformly at random and re-used for all queries. On the other hand, when con-
sidering α(n)-weak keys, the above definition is somewhat stronger than just requiring
that the adversary cannot distinguish between an encryption of m and that of some set
message, such as 0`. In particular, it requires that there is a single universal distribution
D on ciphertexts, which is indistinguishable from encryption with any key distribution
Xn of sufficient entropy. For example, consider an encryption scheme which, along
with the ciphertext, always outputs the first bit of the secret key. Although such scheme
might satisfy a natural definition where encryption of m0 and m1 are indistinguishable,
it could never satisfy the above definition, even for α(n) = n − 1. The reason is that
the ciphertext distribution is now different depending on whether the keys come from a
distribution that fixes the first bit at 0 versus one which fixes the first bit at 1. Although
our definition is stronger than one may need, we will show that it is necessary and suf-
ficient for our equivalence with obfuscation to hold. Moreover, all natural constructions
of encryption schemes with weak-keys that we know of achieve the above definition.

We also define a “wrong-key detection” property, which will be needed to achieve
correctness in obfuscation.

Definition 6 (Wrong-Key Detection). We say that an encryption scheme satisfies the
wrong-key detection property if for all k 6= k′ ∈ {0, 1}n, all m ∈ {0, 1}poly(n),
Pr[Deck′(Enck(m)) 6= ⊥] ≤ negl(n).

We note that a similar, but weaker, property called confusion freeness, was defined
in [24]. For confusion freeness, the keys k, k′ are random and independent, while we
consider a worst-case choice of k, k′ and the probability above is only over the random-
ness of the encryption scheme.

Lemma 1 (see the full version [12] for proof) shows that, in the case of semantic
security, wrong-key detection can always be achieved via a simple transformation. We
note, however, that this transformation no longer works in the case of CPA security.



Lemma 1. Let (Enc,Dec) be a semantically-secure encryption scheme for α(n)-weak
keys and let H be a pairwise-independent permutation family. Define an encryption
scheme (Enc′,Dec′) by:

Enc′k(m) ,
{

Choose: h← H, r ← Un
Output: 〈r, h, c = Ench(k)(r||m)〉

Dec′k(〈r, h, c〉) ,
{

Compute: (r′||m′) = Dech(k)(c)
Output: m′ if r′ = r and ⊥ otherwise

Then (Enc′,Dec′) is a semantically-secure encryption scheme for α(n)-weak keys, with
wrong-key detection. The above also holds if we replace “α(n)” with “fully”.

3 Encryption with Weak Keys and MBPF Obfuscation
3.1 Sem. Sec. Encryption and Obfuscation with Independent Messages

In this section, we show equivalence between semantically secure encryption with weak
keys and MBPF obfuscators for independent messages.

Theorem 2. Let α(n) ∈ ω(log(n)). There exist MBPF obfuscators with α(n)-entropic
security for independent messages if and only if there exist semantically secure encryp-
tion schemes with wrong key detection for α(n)-weak keys. Furthermore, the above also
holds if we replace “α(n)” with “fully”.

We prove the “if” and “only if” directions in Lemmas Lemma 2 and Lemma 3, respec-
tively.

Lemma 2. Let α(n) ∈ ω(log(n)) and letO be a MBPF obfuscator with α(n)-entropic
security for independent messages. Let Enck(m) , O(I(k,m)), Deck(C) , C(k)
where the ciphertextC is interpreted as a circuit. Then the encryption scheme (Enc,Dec)
is semantically secure with α(n)-weak keys and has the wrong-key detection property.

Proof. The correctness of decryption follows from the correctness of obfuscation. For
the security of the encryption scheme with α(n)-weak keys. Fix any adversary A and
any distribution {Xn}n∈N with H∞(Xn) ≥ α(n). The distribution {Yn} is defined
by running A(1n) and outputting the message m that A gives to its challenger. Define
the distribution D(n, `) = O(I(k,m)) where (k,m) ← (Un, U`). Then, by the α(n)-
entropic security of obfuscation, there must be a simulator S such that∣∣∣Pr[SEMX,D

0 (A, n) = 1]− Pr[SEMX,D
1 (A, n) = 1]

∣∣∣
=
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Un,U`)

[A(O(I(k,m))) = 1]
∣∣∣∣

≤
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[
SI(k,m)(·)(1n) = 1

]∣∣∣∣ (1)

+
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[
SI(k,m) (1n) = 1

]
− Pr

(k,m)←(Un,U`)

[
SI(k,m) (1n) = 1

]∣∣∣∣ (2)

+
∣∣∣∣ Pr
(k,m)←(Un,U`)

[
SI(k,m) (1n) = 1

]
− Pr

(k,m)←(Un,U`)

[
A(O(I(k,m))) = 1

]∣∣∣∣ (3)

≤ negl(n)



where (1),(3) follow by the definition of entropic security of obfuscation, and (2) fol-
lows since the only way that a PPT simulator can get anything from its oracle is by
querying it on the input k, which happens with negligible probability when k comes
from a source of super-logarithmic entropy α(n). �

Lemma 3. Let (Enc,Dec) be an encryption scheme with semantic security for α(n)-
weak keys and with the wrong-key detection property. We define the obfuscator O
which, on input I(k,m), computes a ciphertext c = Enck(m) and outputs the circuit
Cc(·) defined by Cc(x) , Decx(c). Then the obfuscator O has α(n)-entropic security
for independent messages.

Proof. First, we show the correctness property of the obfuscator. Fix k, x ∈ {0, 1}n
and m ∈ {0, 1}poly(n). If k = x then

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] = Pr[Deck(Enck(m)) 6= m] ≤ negl(n)

by the correctness of encryption. On the other hand, if k 6= x then

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] = Pr[Decx(Enck(m)) 6= ⊥] ≤ negl(n)

by the wrong-key detection of encryption.
The polynomial slowdown property of the obfuscator follows from the fact that the

size of the circuit is only proportional to the ciphertext size and the size of the decryption
circuit, which are polynomial in |k|, |m|.

Lastly, we show α(n)-entropic security for independent messages. Let D(n, `) be
the distribution defined by the semantic-security of the encryption scheme. For any
polynomial `(n) any PPT adversaryAwhich attacks the obfuscation scheme, we define
the simulator S which chooses a random ciphertext c from the distribution D(n, `(n))
and runs A on a circuit Cc constructed using the ciphertext c. Then∣∣∣∣ Pr

(k,m)←(Xn,Yn)

[
A(O(I(k,m))) = 1

]
− Pr

(k,m)←(Xn,Yn)

[
SI(k,m)(1n, 1`) = 1

]∣∣∣∣ (4)

=
∣∣∣∣Pr
[
A(Cc) = 1

∣∣∣∣ (k,m)← (Xn, Yn)
c← Enck(m)

]
− Pr [A(Cc) = 1 | c← D(n, `)]

∣∣∣∣
≤ negl(n) (5)

Where (5) follows by semantic-security. �

3.2 CPA Encryption and Composable Obfuscation for Indep. Messages

In this section, we show equivalence between CPA secure encryption with weak keys
and self-composable MBPF obfuscators for independent messages.

Theorem 3. Let α(n) ∈ ω(log(n)). There exist self-composable MBPF obfuscators
with α(n)-entropic security for independent messages if and only if there exist CPA
secure encryption schemes for α(n)-weak keys and the wrong-key detection property.
The above also holds if we replace “α(n)” with “fully”.



We prove the two sides of the “if and only if” separately. First we show that composable
obfuscation implies encryption (Lemma 4) and then we show that encryption implies
obfuscation (Lemma 5).

In the next lemma, going from obfuscation to encryption, it would be natural to
define Enck(m) = O(I(k,m)). However, we instead define Enck(m) = (O(I(k,r)),m⊕
r) for a uniform r. The reason for this is that the messages m chosen by the adversary
in the CPA game can depend adaptively on prior ciphertexts. However, for composable
obfuscation, the distributions Yi of the messagesmi are independent of prior obfuscated
circuits. We get around this by making sure that the obfuscation is applied to a random
value.

Lemma 4. Letα(n) ∈ ω(log(n)) be an arbitrary function. LetO be a self-composable
MBPF obfuscator with α(n)-entropic security for independent messages. We define
(Enc,Dec) by

Enck(m) , (O(I(k,r)),m⊕ r) , Deck(C, y) , C(k)⊕ y

where r is uniformly random, and C is interpreted as a circuit. The resulting encryption
scheme is CPA secure with α(n)-weak keys.

The other direction is shown via the same construction as in the case of semantic
security:

Lemma 5. Let (Enc,Dec) be an encryption scheme with CPA security for α(n)-weak
keys and having the wrong-key detection property. We define the obfuscator O which,
on input I(k,m), computes a ciphertext c = Enck(m) and outputs the circuit Cc(·)
defined by Cc(x) = Decx(c). Then, O is a self-composable MBPF obfuscator with
α(n)-entropic security for independent messages.

4 KDM Encryption and MBPF Obfuscation

First, we define the notion of semantically-secure encryption with key dependent mes-
sages (KDM) and α(n)-weak keys.

Definition 7 (Semantic KDM Encryption with Weak Keys).
A symmetric encryption scheme (Enc,Dec) is semantically secure for key depen-

dent messages (KDM) and α(n)-weak keys if there exists a distributionD(n, `), which
is efficiently sampleable in time poly(n, `), such that for all functions f , all PPT adver-
saries A, and all distribution-ensembles {Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[KDMX,D
0 (A, n) = 1]− Pr[KDMX,D

1 (A, n) = 1]| ≤ negl(n), (6)

where KDMX,D
b (A, n) is defined via the following experiment:

k ← Xn

c0 ← Enck(f(k)), c1 ← D(n, `) where ` is the output size of f .

Output: A(cb)



We now show that semantically secure encryption with KDM and security for weak
keys is equivalent to MBPF obfuscation.

Theorem 4. Let α(n) ∈ ω(log(n)). There exist MBPF obfuscators with α(n)-entropic
security for the standard notion of dependent messages if and only if there exist
semantically-secure KDM encryption schemes with α(n)-weak keys and the “wrong-
key detection” property. In particular, the above also holds if we replace “α(n)” with
“fully”.

The proof of the above theorems follows from essentially the same arguments as in
Lemma 2 and Lemma 3. We simply observe that allowing the adversary to get encryp-
tion of a value f(k) in the proofs of those lemmas, corresponds to having a distribution
Yn that depends on Xn, that it Yn = f(Xn). Conversely, for any joint distribution
{Xn, Yn}, we can define some (probabilistic, and possibly inefficient) function f so
that Yn = f(Xn).

In the full version of this paper [12], we also explore a notion of CPA security with
KDM and weak-keys. We essentially show results analogous to those in Section 3.2
connecting CPA encryption (without KDM) to obfuscation with independent messages,
but only if we restrict ourselves to a non-adaptive attacker who chooses the function f
of the secret key prior to seeing any ciphertexts.

5 Encryption/Obfuscation with Auxiliary Input

In the full version of this work [12] we also define encryption with semantic/CPA se-
curity with auxiliary input family F , where the adversary gets to learn f(k) for any
f ∈ F . 8 Similarly, we define (self-composable) MBPF obfuscation with auxiliary in-
put family F , where the adversary and simulator both get f(k) for some f ∈ F and
the obfuscated point k (we only consider this notion for obfuscation with independent
messages). Both notions can be defines for α(n)-weak keys as well as fully weak keys.

We show that all of the results of Section 3 extend naturally to the auxiliary input
setting. That is:

– We extend Theorem 2, to show an equivalence between semantically secure en-
cryption with auxiliary-input family F and wrong-key detection, and obfuscation
of MBPF with auxiliary-input family F and independent messages. The equiva-
lence holds for α(n)-weak keys or “fully weak” keys. The constructions are the
same as those of Lemma 2 and Lemma 3.

– We similarly extend Theorem 3 showing a similar equivalence for CPA secure en-
cryption and self-composable onfuscation with auxiliary input. The constructions
are the same as those of Lemma 4 and Lemma 5.

8 This is only interesting for families F where each f ∈ F is hard to invert, as otherwise f(k)
completely reveals k and no security is possible. Often, it makes sense to restrict F much
further, such as requiring that f(k) is exponentially-hard to invert . . .



6 Implications

We now show how to use the above equivalence results between encryption with weak
keys and obfuscation of multi-bit point functions to derive new results in both direc-
tions.

6.1 Encryption with Fully Weak Keys

Encryption with α(n)-weak keys vs. fully-weak keys. Prior work on leakage-resilient
encryption and encryption with weak-keys has given results of the following form:

1. Fix any constant ε > 0 and let α(n) = nε.
2. Construct an encryption scheme, which depends on ε, and achieves security for
α(n)-weak keys.

We note that there are several issues with the above two-step approach. Firstly, we
may not know the exact level of key-entropy, or correspondingly the value of ε, at
design time. Therefore, in practice, it may be difficult to decide on what ε to use when
choosing the encryption scheme. A scheme which is designed for some specific ε does
not provide any security guarantees for key-distributions whose entropy is strictly less
than nε, and so we may be tempted to be conservative with the choice of ε at design
time. On the other hand, when taking an excessively small value of ε in the above
constructions, we are forced to reduce the exact-security of the system (e.g. working in
a group of description-length nε) or reduce the efficiency of the system proportionally
with n1/ε, leading to poorer security or performance even if the system is later only used
with uniformly random keys! Secondly, none of the prior results generalize to allow for
specific super-logarithmic entropy thresholds such as α(n) = log1+ε(n), even if ε is
specified a-priori.

In contrast, an encryption scheme with security for fully-weak keys provides the
corresponding advantages. More specifically, the order of quantifiers now requires that
there is a single encryption scheme, parameterized only by the security parameter n (but
not by ε), which simultaneously achieves security for all α(n) ∈ ω(log(n)). The exact-
security of the scheme may depend on α(n) (since there is always a way to break the
scheme in time 2α(n)), but this relationship is now more fluid, with the exact-security
gracefully degrading for smaller α(n). In particular, the security guarantees are mean-
ingful even for α(n) = log1+ε(n), and there is no single threshold above which the
scheme is secure and below which it is insecure. This is a significant advantage, as it
does not require one to decide at design time on the tradeoff between allowed entropy
levels and achieved security/efficiency.

New construction of encryption with fully-weak keys. We now describe the point-
function obfuscation scheme of Canetti [10], and notice that it yields a self-composable
MBPF obfuscator with fully-entropic security for independent messages. It is based on
a strengthened version of the DDH assumption, which we describe shortly. Using this
simple observation and our connection between obfuscation and encryption (Lemma 4),
we get the first symmetric-key encryption scheme with CPA security for fully-weak
keys (albeit under a strong assumption). We begin by defining the strengthened DDH
assumption for a prime-ordered group G.



Definition 8 (Strengthened DDH Assumption [10]). Let G be a group of prime order
p = 2poly(n) and let g be a random generator of G. The strengthened DDH assumption
states that, for any distribution {Xn} over Zp with entropy H∞(Xn) ≥ ω(log(n)), we
have 〈ga, gb, gab〉 ≈ 〈ga, gb, gc〉 where a←R Xn, and b, c←R Zp.

We now define the function F : Zp → G × G by F (k) = 〈r, rk〉 where r ←R G.
In [10], this was shown to be a secure point-function obfuscator (with fully-entropic
security) under the strengthened DDH assumption. In addition, this point-function ob-
fuscator is self-composable since, given a (random) obfuscation 〈g1, g2〉 of some point
x, it is easy to generate freshly random (and independent) new obfuscation of x by tak-
ing 〈gu1 , gu2 〉 for a random u ∈ Zp. We use the construction of Canetti and Dakdouk [11]
to turn a point-function obfuscator into a multi-bit point-function obfuscator. Define the
function:

O(I(k,m)) =


Sample r0, r1, . . . , r` ←R G for ` = |m|.

Set g0 = rk0
For each i ∈ {1, . . . , `} : if mi = 1 set gi = rki else gi ←R G.

Output: c = (〈r0, g0〉, . . . , 〈r`, g`〉).

Using the techniques of [11], it is easy to show that O is a self-composable obfusca-
tor with fully-entropic security for independent messages under the strengthened DDH
assumption. Combining this with Lemma 4, we get the following theorem.

Theorem 5. Under the strengthened DDH assumption, there exists a CPA-secure sym-
metric encryption scheme with security against fully-weak keys. In particular, this
means that there is a single scheme, parameterized only by the security parameter n,
such that security of the scheme is maintained when the key is chosen from any distri-
bution of entropy α(n) ∈ ω(log(n)).

The strengthened DDH assumption is indeed a strong one. A potentially weaker
formulation would be to limit the min-entropy of Xn to be at least some specific super-
logarithmic function α(n). This way, we would obtain a parameterized version of Theo-
rem 5 that relates the strength of the security guarantee to the strength of the assumption.
It is important to note that the construction itself is independent of the parameter α. That
is, we obtain a single encryption scheme that provides a range of security guarantees,
depending on the strength of the assumption.

6.2 Obfuscation

Entropically Secure Obfuscation for Independent Messages: It is fairly simple to con-
struct α(n)-entropically secure obfuscation for independent messages, when α(n) =
nε for some constant ε ≥ 0. First we construct a semantically secure encryption scheme
with α(n)-weak keys. This can be done by simply extracting a sufficient amount of
uniform randomness from the key k, using a strong randomness extractor Ext, and then
using the result as a one time pad to encrypt the message. For variable-length mes-
sages, we also need to expand the extracted randomness to an appropriate size, using a
pseudo-random generator PRG. In particular, we define

Enck(m) = 〈r,PRG(Ext(k; r))⊕m〉



where r is a uniformly random seed for the extractor. The output length of Ext and the
input length of PRG are set to some value v which is sufficiently small that the outputs
of the extractor is (statistically) close to uniform, and sufficiently large that the output
of the PRG is pseudo-random.9

One can use this encryption scheme to construct one which also has the wrong-key
detection property using Lemma 1. Such a scheme yields an multi-bit point function
obfuscator with α(n)-entropic security for independent messages, by Lemma 3.

Self-Composable Entropically Secure Obfuscation for Independent Messages: One
problem with the above construction of semantically-secure encryption using extrac-
tors, is that it does not generalize to CPA security. In fact, achieving CPA secure en-
cryption with weak keys seems to be a much harder problem, which has received much
attention in recent works [1, 14, 25]. We now show how to use these results to achieve
self-composable entropically secure obfuscation for independent messages. On a high
level, we would simply like to just apply our result connecting such encryption and ob-
fuscation (Lemma 5) “out of the box”. However, there are several issues that we must
deal with first.

– Efficiently-Sampleable Distributions: The works of [1, 14, 25] are concerned with
“key leakage”, where the adversary gets to learn some (short) function of the secret
key, whose output length is bounded by λ bits. Conditioned on such leakage, the
key can be thought of as being derived from a (special type) of weak source with
entropy α(n) ≈ n− λ. It turns out that the constructions are also secure when the
key is chosen from an arbitrary, but efficiently-sampleable weak source of entropy
α(n) [25]. Therefore, our results for obfuscation will only translate to the case
where the distribution obfuscated program is efficiently sampleable.

– Public Keys/Parameters: Only the scheme of [14] is explicitly designed for the
symmetric key setting. The schemes of [1, 25] are public-key encryption schemes.
As noted, such schemes are secure when the key-generation procedure uses ran-
domness that comes from a weak source. Therefore such schemes naturally trans-
late to the symmetric key setting, where the randomness of the key-generation al-
gorithm is the shared secret key. Unfortunately, these schemes also rely on public
parameters which are chosen uniformly at random, and are available to the key-
generation algorithm. Therefore, we will only get an obfuscator in the presence of
public parameters. Note that in the context of standard obfuscation, public parame-
ters are never needed since the obfuscatorO could always sample fresh parameters
each time it runs. However, when considering composable obfuscation, this equiv-
alence does not hold since future uses of the obfuscator might compromise secu-
rity of prior uses. Therefore, having randomness in the form of public parameters,
which are re-used for all invocations of the obfuscator, can be useful in this context.

– Uniform Ciphertexts: Recall that our definition of CPA security is slightly different
than the standard (we require that the ciphertexts of any message are indistinguish-

9 For example, if we choose v = nε/2, then an extractor based on universal-hash functions will
produce an output which is 2−v/2 = negl(n)-close to uniform, and the output of the PRG is
negl(nε/2) = negl(n)-pseudorandom. However, this does not generalize to smaller values of
α such as, α(n) = log2(n).



able from some universally specified distribution) and has not been explicitly ana-
lyzed by these schemes. However, in all of these schemes explicitly show in their
proofs that the ciphertexts are indistinguishable from uniform, which satisfies our
definition.

– Wrong-Key Detection: The wrong-key detection property is explicitly analyzed in
[14]. For the schemes of [1, 25], we get the property that, given the public param-
eters it is computationally difficult to find k, k′ such that Deck′(Enck(m)) 6= ⊥.
This translates to a computational-correctness property for the obfuscator where,
given the public parameters, it is computationally difficult to find k,m, x such that
O(I(k,m))(x) 6= I(k,m)(x).

Using our connection between CPA-secure symmetric key encryption and self-
composable obfuscation with independent messages, we get the following new con-
structions of obfuscators as a corollary of Lemma 5, using the schemes of [1, 14, 25].

Theorem 6. For any constant ε > 0, there exists a self-composable MBPF obfuscator
with independent messages under any of the following assumptions:

1. Decisional Diffie-Hellman (DDH) with nε-entropic security, based on [25]. (∗,†).
2. Learning With Errors (LWE) with nε-entropic security, based on [1]. (∗,†).
3. Learning Subspaces with Noise (LSN) with εn-entropic security, based on [14]. (∗).

where the restrictions are:
* Only works for efficiently sampleable key-distributions.
† Requires public parameters and only achieves computational-correctness.

Difficulty of Achieving Obfuscation with Dependent Messages. The connection between
encryption and obfuscation also yields new negative results for the more standard no-
tion of obfuscation that allows for dependent messages, and in particular for the stan-
dard VBB notion. We rely on a recent result of Haitner and Holenstein [17], which
shows that there can be no black-box reduction from a semantically secure encryp-
tion scheme with security against key-dependent messages to, essentially, any standard
cryptographic assumption. The notion of “cryptographic assumption” is formalized in
[17] as (essentially) any game between an attacker and a challenger in which we as-
sume that all PPT attackers have a negligible success probability. In particular, this in-
cludes all standard assumptions such as existence of Trapdoor One-Way Permutations
or Claw-Free Permutations, as well as specific algebraic assumptions like the hardness
of factoring, DDH, Learning with Errors and many others.10 Since, by Theorem 4, we
have a reduction from a semantically secure encryption schemes with security against
key-dependent messages to obfuscation of multi-bit point functions with n-entropic se-
curity (i.e. even uniformly random keys), we see that this latter notion of obfuscation
cannot be realized from essentially any cryptographic assumption under black-box re-
ductions.
10 On the other hand, the impossibility result does not exclude proofs of security in the Random

Oracle model, reductions to non-standard assumptions (which cannot be formulated as a game
between an adversary and a challenger) such as “Knowledge of Exponent”, or non-black-box
reductions.



Theorem 7. No construction of an MBPF obfuscator with α(n)-entropic security for
dependent messages can be proven secure via a black-box reduction to any “standard
cryptographic assumption”, even for α(n) = n (i.e. even uniformly random keys).

We note that Canetti and Dakdouk [11] showed that composable obfuscation of
point functions (with no output) (i.e. functions Ik(x) which output 1 when x = k and⊥
otherwise) implies multi-bit point function obfuscators with dependent messages. Thus
we get the following as a corollary.

Corollary 1. No construction of a composable obfuscator for single-value point func-
tions with α(n)-entropic security can be proven secure via a black-box reduction to
any “standard cryptographic assumption”, for any α() (even for α(n) = n, namely
uniformly random keys).

We note that the impossibility result of [17] only considers semantically secure
encryption with variable length messages and does not rule out KDM security when
the message size is shorter than the key. Correspondingly, the work of [11] constructs
MBPF obfuscators with α(n)-entropic security (for some α(n) � n) and for depen-
dent messages in this special case, where the message size is (significantly) smaller
than the key size (i.e. functions I(k,m) where |m| < |k|). These constructions only re-
lied on standard cryptographic assumptions such as collision-resistant hash functions.
The above theorem shows that such constructions do not generalize to variable-length
messages, where the message size can exceed the key size. Alternatively, in this work
we show how to leverage prior results on leakage-resilient cryptography to construct
self-composable MBPF obfuscators with α(n)-entropic security (for some α(n)� n),
under standard assumptions, in the special case of (variable-length) independent mes-
sages. It seems that there is little hope in generalizing this approach to the standard
notion of obfuscation, which also allows key-dependent messages.
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