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Abstract. We study efficient parallel repetition theorems for several
classes of interactive arguments and obtain the following results:

1. We show a tight parallel repetition theorem for public-coin interac-
tive arguments by giving a tight analysis for a reduction algorithm of
H̊astad et al. [HPPW08]. That is, n-fold parallel repetition decreases
the soundness error from δ to δn. The crux of our improvement is a
new analysis that avoid using Raz’s Sampling Lemma, which is the
key ingredient to the previous results.

2. We give a new security analysis to strengthen a parallel repetition
theorem of H̊astad et al. for a more general class of arguments. We
show that n-fold parallel repetition decreases the soundness error
from δ to δn/2, which is almost tight. In particular, we remove the
dependency on the number of rounds in the bound, and as a con-
sequence, extend the “concurrent” repetition theorem of Wikström
[Wik09] to this model.

3. We obtain a way to turn any interactive argument to one in the
class above using fully homomorphic encryption schemes. This gives
a way to amplify the soundness of any interactive argument without
increasing the round complexity.

4. We give a simple and generic transformation which shows that tight
direct product theorems imply almost-tight Chernoff-type theorems.
This extends our results to Chernoff-type theorems, and gives an
alternative proof to the Chernoff-type theorem of Impagliazzo et al.
[IJK09] for weakly-verifiable puzzles.

Keywords: parallel repetition, interactive argument, public-coin, Arthur-
Merlin, direct product theorem

1 Introduction

In an interactive protocol 〈P,V〉, the prover P wants to convince the verifier V
of the validity of some statement (e.g., x ∈ L for some language L). Two desired
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properties are completeness: for a valid statement, the honest prover can always
convince the honest verifier; and soundness: for an invalid statement, an honest
verifier, even when interacting with an adversarial prover, should accept with
bounded probability, namely at most some δ, where δ is called the soundness
error or error probability of the protocol. A protocol is called an interactive
proof if the soundness holds against computationally unbounded provers, and
an interactive argument if the soundness only holds against efficient provers.

When the soundness error of a protocol is too high, a natural way to decrease
it is by repetition. That is, a prover and a verifier run n copies of the protocol,
and the verifier decides whether to accept or not based on the outcomes of the n
executions. For example, a direct product verifier Vn,n accepts if all constituent
verifiers accept, and more generally the threshold verifier Vn,k accepts if at least
k constituent verifiers accept. Repetitions can be either sequential or parallel.
Sequential repetition decreases soundness error for all known settings, but in-
creases the round complexity, which is usually undesirable. Parallel repetition
does not increase the number of rounds and decreases soundness error for in-
teractive proofs. However, for interactive arguments, whether parallel repetition
decreases soundness error is a subtle question.

For three-message arguments, a sequence of works [BIN97,CHS05,IJK09,CLLY09,HS09]
shows that parallel repetition decreases the soundness error for the threshold
verifier Vn,k at the optimal, information-theoretic rate, namely, the probability
that n independent Bernoulli random variables with expectation δ have sum
at least k. In contrast, Bellare, Impagliazzo, and Naor [BIN97], and Pietrzak
and Wikström [PW07] construct some protocols where the soundness error does
not decrease at all under parallel repetition. Thus, parallel repetition theorems
for general arguments have been ruled out. (However, Haitner [Hai09] recently
showed that any interactive arguments can be slightly modified so that parallel
repetition decreases the error.) On the other hand, for public-coin arguments,
recent study shows that the soundness error decreases even for protocols with
an arbitrary (polynomial) number of messages.

1.1 Parallel Repetition for Public-coin Arguments

The first parallel repetition theorem for public-coin arguments is by Pass and
Venkitasubramaniam [PV07] for constant-round protocols. They give an efficient
transformation that converts a (cheating) parallel prover Pn∗ who interacts with
a direct product verifier Vn,n with success probability δn to a (cheating) prover
P∗ who interacts with V with success probability essentially3 δ, where the success
probability refers to the probability that Pn∗ (resp., P∗) successfully convinces
the verifier Vn,n (resp., V). This is essentially optimal since one can easily turn
a single-copy prover strategy P∗ with success probability δ to a parallel prover
strategy Pn∗ with success probability δn by applying P∗ independently to each
copy. However, their analysis is only efficient for constant-round protocols.

3 Throughout the introduction, we ignore the required negligible slackness for such
reductions in the discussion.



H̊astad, Pass, Pietrzak, and Wikström [HPPW08] give a more efficient reduc-
tion algorithm that allows them to prove parallel repetition theorem for public-
coin arguments with an arbitrary number of rounds. They actually proves a
more general threshold theorem which says that a (cheating) prover Pn∗ in-
teracting with a threshold verifier4 Vn,(1−ρ)n with success probability ε can be
converted to a (cheating) prover P∗ interacting with V with success probability
1 − ρ − O(m

√
log(1/ε)/n), where ρ ∈ [0, 1) and m is the number of rounds. In

the literature (e.g., [IJK09]), this type of theorems is often referred as Chernoff-
type theorems. In particular, when ρ = 0 (i.e., the direct product case), the
success probability is 1 − O(m

√
log(1/ε)/n), which is suboptimal in compari-

son to ε1/n ≈ 1 − O(log(1/ε)/n). Their analysis uses Raz’s Sampling Lemma
[Raz98] in every round, which is the reason for the factor O(m

√
log(1/ε)/n) in

the bound.5 An immediate question is whether the sub-optimality is inherent
for super-constant round protocols.

Recently, Wikström [Wik09] strengthened the bound of H̊astad et al. [HPPW08]
by generalizing Raz’s Lemma and applying it only once instead in every round.
He improves the analysis of [HPPW08] and shows that the construction in
[HPPW08] actually achieves success probability 1 − ρ − O(

√
log(1/ε)/n) for

Chernoff-type case, and 1−O(
√

log(1/ε)/n) for direct product case. Removing
the dependency on m allows him to prove a more general “concurrent repetition”
theorem. The previous works give bounds on the rate at which the soundness
error decreases, but it remains open whether the bounds are tight for the parallel
repetition of public-coin arguments.

Our Result. In this paper, we prove a tight parallel repetition theorem for
public-coin interactive arguments. We show that n-fold parallel repetition de-
creases the soundness error of public-coin arguments from δ to δn. We use the
same reduction algorithm as [HPPW08], and the crux of our improvement is a
way to avoid using Raz’s Sampling Lemma.

Techniques. The constructions of P∗ from Pn∗ mentioned above share the fol-
lowing structure. Without loss of generality, let Pn∗ be a deterministic parallel
prover. The constructed prover P∗ simulates internally an interaction between
Pn∗ (given as a black-box) and n verifiers V1, . . . ,Vn, where one coordinate Vi for
some i ∈ [n] chosen by P∗ is played by the external verifier V. That is, through-
out the interaction, P∗ forwards the message that Pn∗ sends to Vi to the external
V, and forwards V’s message to Pn∗ as Vi’s message. Since Pn∗ is deterministic,
the interaction of Pn∗ and Vn,n is determined by the verifiers’ messages. In each
round, V selects a uniformly random message for Vi, and the task of P∗ is to
select good messages for the rest verifiers (denoted by V−i) that maximize the
probability of V = Vi accepting at the end of interaction.

For example, the prover P∗ of Pass and Venkitasubramaniam [PV07] uses
recursive sampling to select a good coordinate i ∈ [n] and good messages for V−i
such that Pn∗ could convince Vi with the highest probability among the samples

4 Recall that a threshold verifier Vn,(1−ρ)n accepts iff at least (1 − ρ)n constituent
verifiers accept.

5 We elaborate more detail in the Techniques paragraph below.



he sees. However, since P∗ recursively takes many samples in each round, the
number of samples grows exponentially in the number of rounds. Thus, this is
only efficient for constant-round protocols.

To cope with the inefficiency, the prover P∗ of H̊astad et al. [HPPW08] se-
lects coordinate i ∈ [n] uniformly at random, and uses rejection sampling to
select good messages for V−i. More precisely, let (v1,p1, . . . ,vm,pm) denote the
messages of 〈Pn∗,Vn,n〉, where vj = (vj,1, . . . , vj,n) and pj = (pj,1, . . . , pj,n) are
messages of Vn,n and Pn∗ in round j ∈ [m], respectively. In the j-th round,
when P∗ receives V’s message, P∗ considers the message as vj,i, and repeat-
edly samples random continuations from the current partial interaction of Pn∗

and Vn,n for a polynomial number of times. That is, P∗ samples messages
vj,−i = (vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n), and vj+1, . . . ,vm uniformly at random
to complete the interaction. Once the continuation is successful, i.e., Vn,n ac-
cepts, P∗ selects the vj,−i of this continuation as V−i’s messages, and forwards
Pn∗’s response pj,i to the external verifier V. If no successful continuations are
found in polynomially many samples, P∗ simply aborts.

To analyze the success probability, H̊astad et al. [HPPW08] consider an
“ideal” version of the procedure, where there is no external verifier, and the
prover P̃∗ simulates the interaction of Pn∗ and Vn,n alone by selecting each round
of all internal verifiers’ messages by rejection sampling, i.e., conditioning on a
successful random continuation. Since successful continuation always exists by
construction, P̃∗ can always complete a successful interaction (i.e., Vn,n accepts)
with probability 1. They then apply Raz’s Lemma [Raz98] for every round to
upper bound the statistical distance between the two experiments. Each applica-
tion of Raz’s Lemma incurs statistical distance O(

√
log(1/ε)/n). Thus, the con-

structed prover P∗ can succeed with probability at least 1−O(m
√

log(1/ε)/n),
where m is the number of the round. The analysis of Wikström [Wik09] follows
the same structure as H̊astad et al. [HPPW08]. He generalizes Raz’s Lemma
to a “multi-round” setting which allows him to bound the statistical distance
by one application of the generalized lemma, and hence remove the dependency
on m. However, to get a tight direct product theorem, we cannot afford the
O(
√

log(1/ε)/n) loss of applying the Raz’s Lemma. It is also not clear whether
the bound on the statistical distance of two experiments can be improved to
1− ε1/n.

We instead analyze the construction directly, avoiding the use of any form of
Raz’s Lemma. We lower bound the success probability of the constructed prover
P∗ by induction. Let ηi be the success probability of P∗ (i.e., the probability that
P∗ convinces V) when the external verifier V is embedded in the i-th coordinate,
and γ the success probability of Pn∗ (i.e., the probability that Pn∗ convinces



Vn,n). We essentially6 show by induction on the round j ∈ [m] that

n∏
i

ηi ≥ γ, when conditioning on any partial interaction (v1,p1, . . . ,vj ,pj).

The base case where j = m is trivial. The inductive step is proved by two
applications of Hölder’s Inequality. It follows that the success probability of P∗

when j = 0 is

1

n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥ γ1/n,

which is at least ε1/n by assumption.

1.2 Extension to Arguments with Simulatable Verifiers without
Verdict

The results of H̊astad et al. [HPPW08,HPWP10]7 extend to arguments with
simulatable verifiers without verdict defined in [HPWP10]. The model gener-
alizes both three-message arguments and public-coin arguments, and contains
other natural protocols. Roughly speaking, simulatability of a verifier means
that given only the prover’s view of any partial interaction (which thus excludes
the verifier’s internal state) one can efficiently simulate the verifier in the rest
of the interaction. However, since the verifier’s coins are not given, one may not
know the decision of the verifier in the end of the interaction. In such cases, it
is referred as simulatable verifiers without verdict.

The argument of H̊astad et al. [HPPW08] extends to this model, and gives
parallel repetition theorems with the same parameters. That is, the constructed
prover P∗ achieves success probability 1−ρ−O(m

√
log(1/ε)/n) for Chernoff-type

case, and 1−O(m
√

log(1/ε)/n) for direct product case, where m is the number

of rounds. The bounds are further improved to 1 − ρ − O(
√
m
√

log(1/ε)/n)

and 1 − O(
√
m
√

log(1/ε)/n), respectively in the new version of H̊astad et al.
[HPWP10], which remain dependent on m.
Our Result. We give a new reduction algorithm that converts a parallel prover
Pn∗ for Vn,n with success probability ε to a prover P∗ for V with success proba-
bility ε2/n ≈ 1−O(log(1/ε)/n), which is almost tight.
Techniques. Recall that the prover P∗ of H̊astad et al. [HPPW08] selects good
messages of V−i by sampling and selecting a “successful” random continuation.
However, since the decision of the external verifier is not known, P∗ needs to
select a “successful” random continuation based only on the decisions of the

6 Technically, this is for a stronger prover who can sample random continuation for
unbounded number of times. For the real prover, we need to modify the inductive
hypothesis to take into account the fact that the prover may fail to find a successful
continuation and abort.

7 [HPWP10] is a new version of [HPPW08] that merges the paper [Wik09] and contains
additional results.



internal verifiers. A naive approach for P∗ is to choose a continuation where all
the internal verifiers accept. However, such naive P∗ cannot succeed with good
probability if the “success pattern” has certain bad correlations, as illustrated
by the following example.

Consider a two-message protocol 〈P,V〉, and a (deterministic) parallel prover
Pn∗ such that when interacting with Vn,n, (i) Pn∗ can convince the parallel
verifier Vn,n with probability ε, and (ii) for every i ∈ [n], Pn∗ can convince all
except the i-th verifier with probability (1−ε)/n. As there are only two messages,
the naive prover P∗ receives a message v from the external verifier V, and selects
a response as follows. P∗ randomly selects i ∈ [n], views v as vi, selects v−i such
that Pn∗ convinces V−i, and forwards the corresponding pi to V. Observe that
P∗ will select continuations in both cases but can only successfully convince the
external verifier V in case (i). It is possible that P∗ may succeed with probability
(i)/((i)+(ii)) = ε/(ε+ (1− ε)/n) for every external verifier V’s message v. Thus,
the success probability of P∗ may be only (i)/((i)+(ii)) ≈ nε� ε1/n.

Two techniques have been developed to handle this bad correlation issue since
the study of three-message arguments. Bellare et al. [BIN97] use the idea of soft
decision, namely, the more the number of accepting internal verifiers, the higher
the probability that the prover selects a random continuation. This approach is
taken in both Impagliazzo et al. [IJK09] and H̊astad et al. [HPWP10]. All these
results used Raz’s Sampling Lemma in their analysis.

To avoid the use of Raz’s Sampling Lemma, we adopt another technique
developed by Canetti et al. [CHS05] who prove a tight parallel repetition theorem
for three-message arguments. The key observation is that one can exploit such
a bad correlation to decrease the problem size: they present a transformation
that turns a badly correlated parallel prover Pn∗ (interacting with Vn,n) to a
parallel prover P(n−1)∗ (interacting with Vn−1,n−1) that still has good success
probability. To illustrate the idea using the above example, a such P(n−1)∗ can
simply interact with Vn−1,n−1 by simulating the interaction of Pn∗ and Vn,n

with the first coordinate played by an internal verifier and the rest coordinates
played by Vn−1,n−1. It is not hard to see that such P(n−1)∗ can succeed with
probability ε+ (1− ε)/n.

It follows that one can iteratively apply the transformation until either (i)
n = 1 or (ii) no such bad correlations exist. In case (i), we trivially obtain a
single-copy prover P∗ with good success probability, while in case (ii), Canetti et
al. manage to show that the naive approach works for three-message arguments.
We observe that this idea is generic and applicable to our setting, where our
analysis technique described in Section 1.1 can be generalized to prove that,
in out setting, the naive approach works in case (ii) as well, which leads to an
almost tight bound.

1.3 Reducing Soundness Error for Any Interactive Arguments

We obtain a way to turn any interactive argument 〈P,V〉 to an interactive argu-
ment 〈P′,V′〉 with simulatable verifier without verdict that preserves the com-
pleteness and soundness of the original protocol. As a consequence of the above



section, parallel repetition decreases soundness error of the modified protocol
〈P′,V′〉 in a nearly optimal rate.

The idea is to run the protocol 〈P,V〉 with all messages under the encryption
of a fully homomorphic encryption scheme [Gen09] using verifier’s public key,
which still allows the prover to simulate the original protocol with messages
under encryption. Intuitively, completeness and soundness are preserved since
the two parties effectively run the same protocol. Furthermore, since all the
messages are encrypted under the verifier’s key, they look random to the prover.
Therefore, the verifier is easy to simulate – simply generate the verifier’s message
by encrypting some junks.

We remark that our result in this section is incomparable to the result of Hait-
ner [Hai09] (subsequently improved by H̊astad et al. [HPWP10]), who also gives
a simple transformation that turns any interactive argument to one with com-
parable soundness where parallel repetition decreases the soundness error. Our
result achieves nearly optimal rate, while the result of Haitner [Hai09] and H̊astad
et al. [HPWP10] has the undesirable dependency on the number of rounds m.
In particular, the number of repetition is required to be at least Ω(m4) for
the soundness error to decrease. On the other hand, we use a relatively strong
cryptographic assumption of fully homomorphic encryption schemes while their
result holds unconditionally.

1.4 Extension to Chernoff-type Theorems

We give a simple and generic transformation which shows that tight direct prod-
uct theorems imply almost tight Chernoff-type theorems, and thus extend our
results to Chernoff-type theorems. Our transformation applies to various models
such as weakly-verifiable puzzles, and gives an alternative proof to the Chernoff-
type theorem of Impagliazzo et al. [IJK09] as a consequence of the tight direct
product theorem of Canetti et al. [CHS05].

The transformation converts a parallel prover Pn∗ for Vn,k to a parallel prover
Pt∗ for Vt,t for any given t ≤ k. The prover Pt∗ simply samples a random set of
coordinate S ⊂ [n] of size t, and interacts with Vt,t by simulating the interaction
of Pn∗ and Vn,k with coordinates S played by Vt,t and the remaining coordinates
played by internal verifiers. Clearly, Pt∗ convinces Vt,t if and only if Pn∗ convinces
verifiers Vi’s for i ∈ S of Vn,k. Let ε be the success probability of Pn∗. It is not
hard to show that Pt∗ has success probability at least ε ·

(
k
t

)
/
(
n
t

)
by an averaging

argument. Let k = (1 − ρ)n, and suppose a tight direct theorem holds, then
applying the reduction on Pt∗ with properly chosen t gives a prover P∗ with
success probability (ε ·

(
k
t

)
/
(
n
t

)
)1/t ≈ 1− ρ−O(

√
log(1/ε)/n).8

For public-coin arguments, the transformation extends our direct product
theorem to a Chernoff-type theorem with similar parameter to [Wik09]. For

8 Technically, for the reduction to be efficient, we cannot set the parameter t to
be too large. Thus, the reduction P∗ can only success with probability 1 − ρ −
max{α,O(

√
log(1/ε)/n)} for an arbitrarily small constant α, which suffices for most

applications.



arguments with simulatable verifiers without verdict, the transformation and
our improved direct product theorem yield a prover P∗ with success probability
(1 − ρ)2 − O(

√
log(1/ε)/n). This bound is incomparable to the bound 1 − ρ −

O(
√
m
√

log(1/ε)/n) of [HPWP10] in that our bound does not depend on m,
but has a slightly worse dependency on ρ.

As an additional contribution, we also prove that the reduction algorithm of
Pass and Venkitasubramaniam [PV07] for constant-round public-coin arguments
gives tight parallel repetition theorems for any threshold verifiers, i.e., if V has
soundness error δ, then Vn,k has soundness error essentially P (n, k, δ), where
P (n, k, δ) = Pr[

∑n
i=1Xi ≥ k] with Xi’s being i.i.d. binary random variables and

Pr[Xi = 1] = δ.

2 Preliminary and Notation

We introduce the following notation for an interactive protocol 〈P,V〉. Let x
denote the common input. We assume the verifier speaks first. One round con-
tains two message exchanges – from the verifier to the prover and back. Let
m denote the number of rounds. A transcript of an interaction is denoted
by (v1, p1, . . . , vm, pm) = 〈P,V〉(x). When V is public-coin, verifier’s messages
v1, . . . , vm are independent uniformly random strings.

Consider parallel execution of a protocol. We use 〈Pn,Vn,k〉 to denote a n-fold
parallel repetition of 〈P,V〉, where n copies of verifiers are denoted by V1, . . . ,Vn,
and Vn,k accepts iff at least k copies of Vi’s accept. A transcript of an interaction
is denoted by (v1,p1, . . . ,vm,pm) = 〈Pn,Vn,k〉(x), where vj = (vj,1, . . . , vj,n)
and pj = (pj,1, . . . , pj,n).

When a parallel prover Pn∗ is deterministic, the interaction 〈Pn∗,Vn,k〉 is
determined by the verifier’s messages (v1, . . . ,vm). Thus, we can skip prover’s
messages and describe an interaction by (v1, . . . ,vm). We refers to a partial
transcript as a history h̄ = (v1, . . . ,vj).

The main tool used in our analysis is Hölder’s Inequality.

Lemma 1 (Hölder’s Inequality[Dur04]).

– Let F,G be two non-negative functions from Ω to R, and a, b > 0 satisfying
1/a+ 1/b = 1. Let q be a uniformly random variable over Ω. We have

E
q
[F (q) ·G(q)] ≤ E

q
[F (q)a]1/a · E

q
[G(q)b]1/b.

– In general, let F1, . . . , Fn be non-negative functions from Ω to R, and a1, . . . an >
0 satisfying 1/a1 + . . . 1/an = 1. We have

E
q
[F1(q) · · ·Fn(q)] ≤ E

q
[F1(q)a1 ]1/a1 · · ·E

q
[Fn(q)an ]1/an .



3 Tight Direct Product Theorem for Public-Coin
Arguments

In this section, we prove a tight direct product theorem for public-coin interactive
arguments.

Theorem 1. Let V ∈ PPT be public-coin. There exists a prover strategy P∗

such that for every common input x, every n ∈ N, every ε, ξ ∈ (0, 1), and every
parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1− ξ).

We remark that the theorem also holds for interactive arguments with sim-
ulatable verifier with verdict defined in Section 4.

Without loss of generality we assume that Pn∗ is deterministic, since by
sampling, we can find a fixing of the coin tosses of Pn∗ with only a small loss
in the success probability. Let us first recall the common approach of such a
reduction algorithm. On input x, the constructed prover P∗ simulates the inter-
action of 〈Pn∗,Vn,n〉(x) internally, where P∗ simulates n− 1 internal verifiers by
himself, and lets the external verifier V play Vi for some coordinate i ∈ [n] by
forwarding the messages accordingly. Since Pn∗ is deterministic, the interaction
is determined by Vn,n’s message (v1, . . . ,vm). Let Ti(·) denote whether Vi ac-
cepts. That is, Ti(v1, . . . ,vm) = 1 iff Vi accepts in 〈Pn∗,Vn,n〉(x) with history
(v1, . . . ,vm).

This can be viewed as a game G(Pn∗, x) played between P∗ and V as fol-
lows. At beginning, P∗ plays a move i ∈ [n]. Then for each round j ∈ [m],
V plays a random move vj,i, and P∗ plays a (carefully chosen) move vj,−i =
(vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n) alternately. At the end, P∗ succeeds if Ti(v1, . . . ,vm) =
1. Note that a node of the game tree is of the form either (i;v1, . . . ,vj), in which
case it is V’s turn to move, or of the form (i;v1, . . . ,vj−1, vj,i), in which case it
if P∗’s turn to move. Phrased in this way, the task is to design a strategy for P∗

such that if 〈Pn∗,Vn,n〉(x) accepts with probability at least ε, then P∗ can suc-
ceed with probability close to ε1/n in game G(Pn∗, x). We present the “rejection
sampling” reduction algorithm of Hastad et al. [HPPW08] as a strategy of P∗ in
this game:

Definition 1 (Strategy P∗rej). We define strategy P∗rej as follows. Let Pn∗ be a
deterministic parallel prover, x a common input, and G(Pn∗, x) the corresponding
game defined as above.

– In the first P∗-move, P∗rej selects a coordinate i ∈R [n] uniformly at random.
– On P∗-move node u = (i;v1, . . . ,vj−1, vj,i), P∗rej simulates a random con-

tinuation of G(Pn∗, x) (i.e., the interaction of 〈Pn∗,Vn,n〉(x)) at most M
def
=

O(mn/εξ) times. That is, P∗rej simulates the game from u with both parties



playing random moves vj,−i, . . . ,vm,i,vm,−i. A continuation is successful if
all verifiers accept, i.e., T`(v1, . . . ,vm) = 1 for all ` ∈ [n]. The first time a
successful continuation is found, P∗rej plays the corresponding move vj,−i. If
no successful continuations are found, P∗rej aborts.

Note that if P∗rej does not abort, P∗rej plays move vj,−i with the probability
proportional to the conditional success probability of Pn∗ given on the history
(v1, . . . ,vj).

Clearly, strategy P∗rej can be implemented in time poly(|x|, n, ε−1, ξ−1). We
next analyze the success probability of P∗rej by induction on the round j ∈ [m].
For the sake of clarity, below we first present the analysis of an ideal version
P∗ideal of P∗rej , where P∗ideal can simulate random continuations for unbounded
number of times. The analysis of P∗rej is presented in the full version of this
paper [CL09].

3.1 Analysis of P∗
ideal

In this subsection, we analyze the success probability of an ideal version P∗ideal
of strategy P∗rej , which is the same as P∗rej except that P∗ideal can simulate the
random continuations an unbounded number of times. Thus, P∗ideal will never
abort whenever there is a successful continuation from the current P∗-move node.
We will show that if Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε, then P∗ideal can succeed with
probability at least ε1/n in game G(Pn∗, x).

We first introduce the following notation to express the success probabil-

ity of P∗ideal. We define γ(h̄)
def
= Pr[〈Pn∗,Vn〉(x) = 1|h̄], where h̄ is a history

of the form either (v1, . . . ,vj) or (v1, . . . ,vj−1, vj,i). That is, γ(h̄) is the ac-
cepting probability of 〈Pn∗,Vn〉 conditioning on the history h̄. Note that γ =
Pr[〈Pn∗,Vn〉(x) = 1] ≥ ε by assumption. Next, for every i ∈ [n], we define

ηi(h̄)
def
= Pr[P∗ideal succeeds |u = (i; h̄)] to be the success probability of P∗ideal

conditioning on node u = (i; h̄) of the game tree. Note that the success proba-
bility of P∗ideal is (1/n) ·

∑n
i=1 ηi.

Claim. For every i ∈ [n] and full history h̄ = (v1, . . . ,vm), we have ηi(h̄) =
Ti(h̄). For every i ∈ [n], j ∈ [m], and history h̄ = (v1, . . . ,vj−1), we have9

ηi(h̄) = E
vj

[
γ(h̄,vj) · ηi(h̄,vj)

γ(h̄, vj,i)

]
.

Proof. The first part follows by definition. For the second part, recall that V
plays the random strategy and P∗ideal plays the rejection sampling strategy.
V plays each vj,i with probability Pr[vj,i], which corresponds to the expec-
tation operator over vj,i. P∗ideal plays each vj,−i with probability Pr[vj,−i] ·
(γ(h̄,vj)/γ(h̄, vj,i)), which corresponds to the expectation operator over vj,−i
with factor γ(h̄,vj)/γ(h̄, vj,i) in the expectation.

9 We use the convention that if γ(h̄, vj,i) = 0 (which implies γ(h̄,vj) = 0), then the
ratio is 0.



We now prove that the success probability of P∗ideal is at least ε1/n by in-
duction. In fact, we induct on a slightly stronger inductive hypothesis: for every
j ∈ {0, . . . ,m} and history h̄ = (v1, . . . ,vj),

∏n
i=1 ηi(h̄) ≥ γ(h̄).

The base case j = m is trivial. For every full history h̄ = (v1, . . . ,vm),
γ(h̄) = 1 iff ηi(h̄) = Ti(h̄) = 1 for every i ∈ [n]. Assuming that the inductive
hypothesis holds for j and every h̄ = (v1, . . . ,vj), we want to prove the inductive
hypothesis for j − 1 and every h̄ = (v1, . . . ,vj−1). More precisely, for every
h̄ = (v1, . . . ,vj−1), we want to show that

n∏
i=1

ηi(h̄) =

n∏
i=1

E
vj

[
γ(h̄,vj) · ηi(h̄,vj)

γ(h̄, vj,i)

]
≥ γ(h̄),

provided that for every vj ,
∏n
i=1 ηi(h̄,vj) ≥ γ(h̄,vj). For notational simplicity,

we abstract the above statement as the following lemma.

Lemma 2. Let γ, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-valued functions over a prod-
uct space Ωn such that

∏
i ηi(q) ≥ γ(q) for every q = (q1, . . . , qn) ∈ Ωn. Let

γ = Eq[γ(q)]. For every i ∈ [n], let

γ(qi) = E
q−i

[γ(q)] and ηi = E
q

[
γ(q) · ηi(q)

γ(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have

n∏
i=1

ηi =

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]
≥ γ.

Proof. The trick is to apply Hölder’s Inequality to “swap the operators”. We
present the whole computation first, and then explain how Hölder’s Inequality
is applied.

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]

≥ E
q

[(
γ(q)n ·

∏n
i=1 ηi(q)∏n

i=1 γ(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
q

[(
γ(q)n+1∏n
i=1 γ(qi)

)1/n
]n

(by inductive hypothesis)

≥

[(
Eq[γ(q)]n+1

Eq[
∏n
i=1 γ(qi)]

)1/n
]n

(by Hölder’s Inequality)

= (γn+1/γn) = γ.

We now explain the application of Hölder’s Inequalities.



– The first inequality uses E[Xn
1 ]1/n · · · · · E[Xn

n ]1/n ≥ E[X1 · · · · ·Xn] with

Xi =

(
γ(q) · ηi(q)

γ(qi)

)1/n

.

– The third inequality uses E
[
Bn+1

]1/(n+1) ·E
[
(A/B)(n+1)/n

]n/(n+1) ≥ E[A],
or equivalently,

E

[(
An+1

Bn+1

)1/n
]
≥
(

E[A]n+1

E[Bn+1]

)1/n

with {
A = γ(q),

Bn+1 =
∏n
i=1 γ(qi).

Remark 1. One might worry about the legitimacy of the manipulation when
the denominators are zeros. One way to justify it is by adding some µ in the
denominators before the manipulation. Formally, we have

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]
≥

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi) + µ

)]
≥ · · · ≥ (γn+1/(γ + µ)n),

which is valid for arbitrary µ > 0. Taking µ→ 0, we obtain the desired result.

Applying the above lemma directly completes the proof of the induction. It
follows that the success probability of P∗ideal is

1

n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥ γ1/n ≥ ε1/n.

The next step is to analyze P∗rej in a similar way as above. The challenge is
that P∗rej may abort due to the failure of finding a successful continuation in M
trials, which makes the success probability a more complicated formula. Details
of the analysis of P∗rej can be found in the full version of this paper [CL09].

4 Arguments with Simulatable Verifier without Verdict

In this section, we present a new reduction algorithm that extends our results
to interactive arguments with simulatable verifiers defined by H̊astad et al.
[HPWP10]. Roughly speaking, a verifier is simulatable if given only the prover’s
view of any partial interaction (which thus excludes the verifier’s internal state),
one can efficiently simulate verifier in the rest of the interaction. In terms of the
terminology in [HPWP10], our results holds for arguments with “1-simulatable
verifiers without verdict,” which we refer to as just simulatable verifiers below
for simplicity. For the sake of completeness, we repeat their definition in this
special case. For a more general definition of simulatability, we refer the reader
to [HPWP10].



The definition requires the following notation. Recall that we use pj and vj
to denote the prover and verifier’s j-th messages, respectively. We let sj and
tj be the states of the prover and verifier after computing the j-th messages,
respectively. We think of the verifier as using independent random tape Rj for
computing j-th message. Namely, V computes message vj from its previous state
tj−1, prover’s message pj , and fresh randomness Rj . Note that the verifier’s state
tj implicitly contains the content of the random tapes r1, . . . , rj (generated in
the previous rounds) of V. For convenience, we use p[j] to denote p1, . . . , pj , and
the same rule applies to other variables.

Definition 2 (Simulatable Verifier [HPWP10]). A verifier V is said to
be simulatable without verdict, or just simulatable, if for every PPT prover
strategy P∗ there exists a PPT simulator S such that for every partial interaction
(s[j], t[j], x, p[j], v[j]), the distribution of P∗’s view of an interaction with V (not
including the decision bit of V), starting from states sj and tj and message
pj, is computationally indistinguishable to the distribution of P∗’s view of an
interaction with S starting from states sj and [s[j], x, p[j], v[j]] and message pj.
When the decision bit of V is included in the consideration, we say that V is
simulatable with verdict.

Remark 2. In the above definition, we only require the distributions to be com-
putational indistinguishable, as opposed to the statistical closeness defined in
[HPWP10]. H̊astad et al. requires statistical closeness since they need to han-
dle a general notion of “δ-simulatability.” On the other hand, for the case
of 1-simulatability, it can be shown (e.g., in the old version of H̊astad el al.
[HPPW08]) that the requirement can be relaxed to computational indistin-
guishability. The relaxation to computational indistinguishability is essential to
our application of fully-homomorphic encryption in Section 5.

Remark 3. Another deviation from [HPWP10] is that, in the above definition,
our simulator S interacts with P∗, as opposed to generate the view by himself
in [HPWP10]. This difference is not essential. We adopt to the above definition
since it makes the simulation of the random continuation described below more
intuitive.

We observe that for arguments with simulatable verifier, in the corresponding
game G(Pn∗, x), P∗ can still simulate a random continuation from any P∗-move
node u. Each internal verifier’s next message is easy to generate since the message
depends only on the verifier’s state, the prover’s message, and fresh randomness.
For the external verifier V, although P∗ does not know V’s state, P∗ can invoke
the simulator to generate the verifier’s message. However, P∗ is not able to know
the decision of the external verifier. Thus, P∗ needs to select a “successful”
random continuation based only on the decisions of the internal verifiers. As
illustrated in the example in Section 1.2, there is an issue of “bad correlations.”
We resolve this issue in the spirit of Canetti et al. [CHS05], where we iteratively
exploit bad correlations to decrease the problem size in a preprocssessing stage,
and use a modified rejection sampling strategy when no such bad correlations



exist. Our reduction turns a parallel prover Pn∗ for Vn,n with success probability

δn
def
= ε to a prover P∗ for a single simulatable verifier V with success probability

δ2 = ε2/n ≈ 1−O(log(1/ε)/n).10 Formally, we obtain the following theorem.

Theorem 2. Let V ∈ PPT be simulatable without verdict. There exists a prover
strategy P∗ such that for every common input x, every n ∈ N, every ε, ξ ∈ (0, 1),
and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗,V〉(x) = 1] ≥ ε2/n · (1− ξ).

Detailed description of the reduction algorithms and analysis can be found
in the full version of this paper [CL09].

5 Reducing Soundness Error for Any Arguments

(The ideas in this section were obtained in discussions with Boaz
Barak, Yael Tauman Kalai, and Salil Vadhan.)

In this section, we present a way to turn any interactive argument 〈P,V〉
to an interactive argument 〈P′,V′〉 with simulatable verifier that preserves the
completeness and soundness of the original protocol. It follows that parallel
repetition reduces soundness error of the modified protocol 〈P′,V′〉 in a nearly
optimal rate by Theorem 2.

Recall that the idea is to run the protocol 〈P,V〉 with all messages under the
encryption of a fully homomorphic encryption scheme. Roughly speaking, a fully
homomorphic encryption scheme is a public key encryption scheme with the ad-
ditional property that given a public key pk, and an encryption Encpk(m), one
can homomorphically evaluate any function f (described by a poly-size circuit
C) on the underlying message to obtain an encrypted function value Encpk(f(m))
without knowing the message m. That is, in addition to the standard functions
(KeyGen,Enc,Dec) in public key encryption schemes, a fully homomorphic en-
cryption scheme has an additional efficient function Eval that on inputs a public
key pk, a description of a poly-size circuit C(·), and a cipher text c that is a valid
encryption of m, outputs a cipher text c′ which is a valid encryption of C(m).

Recently in a breakthrough, Gentry [Gen09] showed the first construction of
a fully homomorphic encryption scheme under reasonable hardness assumptions
on ideal lattice problems and sparse subset sum problems. We refer the reader
to [Gen09] for the formal definitions and constructions.

Let 〈P,V〉 be any interactive argument. Recall our notation, P and V receive
some common input x and alternately send to each other messages denoted as
(v1, p1, v2, p2, . . . , vm, pm) where m is the number of the rounds. We define a

10 It is more convenient to present our proof using parameter δn instead of ε in this
section.



modified protocol 〈P′,V′〉 that executes the protocol 〈P,V〉 under a fully homo-
morphic encryption of the verifier’s key as follows. For simplicity, we assume
that V always makes his decision in the end of the protocol, and all messages
of 〈P,V〉 have some fixed length. We also assume that the encryption scheme
has perfect correctness and the decryption algorithm Dec always outputs some
messages (perhaps junks).

– In the first round, the verifier V′ generates (pk, sk) ← KeyGen(),11 prepares
V’s first message v1, and sends the public key pk and the encrypted message
v′1 = Encpk(v1) to P′.

– The prover P′ on the received message v′1, homomorphically computes p′1,
a valid encryption of the first message p1 of P. Namely, let C1(x, v1) be
the next-message function of P. The prover P′ uses Eval to compute p′1 =
Evalpk(v

′
1, C1(x, ·)).

– In general, in the `-th round, the verifier V′ receives message p′`−1. V′ first
decrypts the message p′`−1 to obtain p`−1 = Decsk(p

′
`−1). V′ simulates V

to generate the next message v`, and sends the encrypted message v′` =
Encpk(v`) to P′.

– The prover P′ on the received message v′`, homomorphically computes p′`, a
valid encryption of the first message p` of P. Namely, let C`(x, v[`], p[`−1])
be the next-message function of P. The prover P′ uses Eval to compute
p′` = Evalpk((v

′
[`], p

′
[`−1]), C`(x, ·)).

– At the end, V′ decrypts the last message p′m. V′ accepts iff V accepts.

We first observe that 〈P′,V′〉 has exactly the same completeness and sound-
ness as 〈P,V〉 suppose the homomorphic encryption scheme has perfect correct-
ness. The completeness is trivially the same, since 〈P′,V′〉 simply simulates 〈P,V〉
under a fully homomorphic encryption. For the soundness, note that for every
(cheating) prover strategy P′∗ for 〈P′,V′〉 , we can construct a (cheating) prover
strategy P∗ that interacts with V by simulating the interaction of P′∗ and V′ as
follows. P∗ first generates (pk, sk) by himself and forwards pk to P′∗. P∗ then
simulates the interaction of P′∗ and V′ by (i) encrypting the messages of V and
forwarding them to P′∗, and (ii) decrypting the messages of P′∗ and forwarding
them to V. It follows that P∗ can convince V with the same probability as P′∗

convincing V′. Similarly, for every P∗, there is a P′∗ that applies the same strat-
egy as P∗ (homomorphically) and convinces V′ with the same probability as P∗

convincing V.
It remains to show that V′ is simulatable. To argue this, we need to specify

the random tape used by V′ in each round, since this affects the states t`’s of
the verifier. For convenience, we define m+ 1 random tapes R0, R1, . . . , Rm for
V′, where both R0 and R1 are generated in the first round. We let R0 be the
random tape that contains all the randomness used in V. For ` ∈ [m], we let R`
be the randomness that V′ uses to encrypt the `-th round message. Note that
defined in this way, given the state t′`−1 of V′ and prover P′’s message p′`, the
underlying verifier V’s message vi is deterministic, and the randomness of V′’s

11 For simplicity, we omit the security parameter throughout this section.



message v′i comes only from the encryption. Now it is trivial to simulate V′. A
simulator S simply ignores the prover’s message, and sends a fresh encryption
of junks in each round. By the semantic security of the encryption scheme, the
prover’s view when interacting with V′ is computationally indistinguishable from
that when interacting with S.

We summarize the above discussion in the following theorem.

Theorem 3. Let 〈P,V〉 be any interactive argument with soundness error δ.
Suppose there exists a fully homomorphic encryption scheme with perfect cor-
rectness, then the modified interactive argument 〈P′,V′〉 defined above satisfies
the following properties.

– 〈P′,V′〉 has exactly the same completeness and soundness as 〈P,V〉.
– V′ is simulatable without verdict, and thus n-fold parallel repetition reduces

soundness error from δ to δn/2 + ngl.

6 Extension to Chernoff-type Theorems

In this section, we present a generic transformation that converts a parallel
prover Pn∗ that has good success probability against a threshold verifier to a
parallel prover Pt∗ that has good success probability against a direct product
verifier for some t ≤ n. The transformation can be used to show that tight
direct product theorems implies Chernoff-type theorems. For example, using
our transformation with the direct product theorem of Canetti et al. [CHS05]
yields an alternative proof of the Chernoff-type theorem of Impagliazzo et al.
[IJK09] for weakly-verifiable puzzles. The transformation also extends our direct
product theorems to Chernoff-type theorems.

The transformation is defined as follows. Pt∗ first selects a set S ⊂ [n] of size
t uniformly at random, and then interacts with Vt,t by simulating the interaction
of 〈Pn∗,Vn,k〉 with Vt,t playing the coordinates of Vn,k in S and the remaining
n− t coordinates played by internal verifiers. The following simple lemma easily
follows by the definition.

Lemma 3. Let 〈P,V〉 be an interactive protocol, and t, k, n ∈ N such that 1 ≤
t ≤ k ≤ n. Let Pn∗ be a parallel prover strategy, and Pt∗ the induced parallel
prover strategy defined as above. For every common input x, we have

Pr[〈Pt∗,Vt,t〉(x) = 1] ≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .
When V is public-coin, the above lemma and Theorem 1 implies that for every

parallel prover Pn∗, every t ≤ k and ξ ∈ (0, 1), there exists a prover P∗ such
that for every x with Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ ε, we have Pr[〈P∗,V〉(x) = 1] ≥(
ε ·
(
k
t

)
/
(
n
t

))1/t
· (1−ξ). However, P∗ runs in time poly(|x|, n,

(
n
t

)
/
(
k
t

)
, ε−1, ξ−1),

which may not be efficient12 for large t. Nevertheless, we can obtain the following

12 Here, by efficient we mean the running time is polynomial in |x|, n, ε−1, ξ−1.



Chernoff-type theorem by setting the parameters properly. We state the theorem
in a similar form to [HPPW08] and [Wik09].

Theorem 4. Let α, ρ ∈ (0, 1) be any constants such that α+ρ < 1. Let V ∈ PPT
be public-coin. There exists a prover strategy P∗ such that for every common
input x, every n ∈ N, every ε, ξ ∈ (0, 1) with n ≥ 4 log(1/ε)/α2, and every
parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,(1−ρ)n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ 1− ρ− α.

In comparison, the simple reduction and tight direct product theorem yields
a Chernoff-type theorem with a slightly restricted parameter range where α and
ρ are constants. Nevertheless, it suffices for conceivable applications and achieves
almost tight bound 1− ρ− 2

√
log(1/ε)/n in this regime.

Similarly, when V is simulatable, we can extend Theorem 2 to the following
Chernoff-type theorem.

Theorem 5. Let α, ρ ∈ (0, 1) be any constants such that α+ρ < 1. Let V ∈ PPT
be exteandable and simulatable. There exists a prover strategy P∗ such that for
every common input x, every n ∈ N, every ε, ξ ∈ (0, 1) with n ≥ 16 log(1/ε)/α2,
and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,(1−ρ)n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ (1− ρ)2 − α.

Detailed proofs of Lemma 3, Theorem 4, 5 can be found in the full version
of this paper [CL09].

7 Constant-Round AM Arguments Systems

In this section, we prove a tight parallel repetition theorem for threshold veri-
fiers Vn,k for constant-round public-coin arguments, which generalizes the direct
product theorem of Pass and Venkitasubramaniam [PV07]. We state the the-
orem and further details of the proofs can be found in the full version of this
paper [CL09].

Theorem 6. Let m ∈ N be an arbitrary constant, and V ∈ PPT be m-round
and public coin. There exists a prover strategy P∗ such that for every common
input x, every n, k ∈ N with k ∈ [n], every δ, ξ ∈ (0, 1), and every parallel prover
strategy Pn∗,

1. P∗(x, n, k, δ, ξ) runs in time poly(|x|, n, δ−m, P (n, k, δ)−m, ξ−m) given oracle
access to Pn∗(x).

2. Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ)⇒

Pr[〈P∗(n, k, δ, ξ),V〉(x) = 1] ≥ δ · (1− ξ).
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