An Efficient Parallel Repetition Theorem

Johan Hastad! and Rafael Pass? and Douglas Wikstrom? and
Krzysztof Pietrzak?

! KTH, Stockholm, supported by ERC grant 226-203.

2 Cornell University, Ithaca, supported in part by a Microsoft New Faculty
Fellowship, NSFF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197,
and BSF Grant 2006317.

3 KTH, Stockholm
4 CWI, Amsterdam

Abstract. We present a general parallel-repetition theorem with an ef-
ficient reduction. As a corollary of this theorem we establish that paral-
lel repetition reduces the soundness error at an exponential rate in any
public-coin argument, and more generally, any argument where the ver-
ifier’'s messages, but not necessarily its decision to accept or reject, can
be efficiently simulated with noticeable probability.

1 Introduction

When the soundness error of an interactive proof [7] or interactive argument [3],
or more generally computationally-sound interactive proofs, is too large for appli-
cations, one might hope to prove a direct-product theorem which applies to the
protocol at hand. A direct-product theorem for some class of problems states
that if an adversary has some probability of succeeding in a single instance,
then his chance in solving many independent instances of the problem drops
exponentially. Running several independent instances of a protocol can be done
sequentially or in parallel. Sequential repetition means that the (i + 1)st exe-
cution of the protocol is only started after finishing the ith execution. Parallel
repetition means that all protocols are run simultaneously. It is well-known that
sequential repetition reduces the soundness error at an exponential rate for both
proofs and arguments. However, although parallel repetition is known to reduce
the soundness error in interactive proofs [1, 6], Bellare, Impagliazzo and Naor [2]
demonstrate the existence of argument systems where parallel repetition does
not reduce the soundness error, leaving open the following question:

For what computationally-sound proof systems does parallel repetition
reduce the soundness error?

There have been several works addressing this question. Yao’s [17] work
on hardness amplification of one-way functions can be viewed as establishing
that parallel repetition reduces the soundness error at an asymptotically opti-
mal rate in every “publicly-verifiable” two-round argument—mnamely arguments
where one can efficiently check if a transcript is accepting without knowing the

verifier’s internal randomness. Bellare, Impagliazzo and Naor [2] extended this
result to show that parallel repetition reduces the error for general (not neces-
sarily publicly-verifiable) arguments with at most three rounds. For two-round
protocols, Canetti, Halevi and Steiner [4] obtain a quantitatively better bound
(approaching Yao’s original bound for publicly-verifiable arguments), and Im-
pagliazzo, Jaswal and Kabanets [11] show a more fine-grained “Chernoff-type”
theorem. Finally, Pass and Venkitasubramaniam [13] show that parallel repeti-
tion also reduces the error for any constant-round public-coin protocol.

On the negative side, as shown by Bellare et al [2] and Pietrzak and Wik-
strom [14], parallel repetition does not decrease the error for general (non public-
coin) protocols with eight rounds; furthermore, black-box reductions cannot be
used to establish such a result even for general four round protocols.

Thus, given the current state of the art, it is unknown whether parallel-
repetition reduces the soundness error even in public-coin protocols with a super-
constant number of rounds, or any general classes of non public-coin protocols
with more than 3 rounds. The former of these questions was stated as an open
problem by Bellare et al [2]. In this work we identify a general class of compu-
tationally sound protocols for which parallel repetition reduces the soundness
error. This class encompasses—and significantly extends—all earlier classes of
computationally sounds protocols for which parallel repetition had been estab-
lished; in particular, it includes all public-coin protocols but also natural classes
of private-coin protocols.

1.1 Owur Results

We say that a verifier is d-simulatable if, roughly speaking, given the prover’s
view of any partial interaction, with probability §, the next-message function of
the verifier (excluding its verdict to accept or reject) can be simulated for all
remaining rounds (with a small statistical error). In other words, it is possible to
efficiently simulate a d-fraction of the verifier’s continuations without knowing
the verifier’s internal randomness.

Note that any public-coin or three-round protocol trivially is 1-simulatable,
but this notion captures many other protocols. For instance, public-coin pro-
tocols in the public-key model—where the verifier has a secret key and might
determine whether to accept or reject based on this key—are also 1-simulatable.

Our main result is an efficient parallel repetition theorem (i.e., a parallel
repetition theorem with an efficient reduction) for any p;ly—simulatable verifier.
More precisely, our main theorem says that for any protocol where the verifier
is d-simulatable, we can turn an arbitrary parallel prover P®*) for the k-fold
repetition of V with success probability € into a single instance prover P with
success probability 1 — O(2+/—log(e)/k + /mlog(mk)/vk) where 2m + 1 is
the number of rounds. Note that this implies that the error probability decreases
exponentially down to some negligible function when the number of repetitions
is sufficiently larger than the number of rounds. Following Impagliazzo et al. [11]
we can actually prove a more general “Chernoff-type” theorem, where one only

assumes that the parallel prover convinces a certain fraction (and not all) of the
individual verifiers.

As any public-coin protocol or three-round protocol satisfies 1-simulatability,
we get as corollaries parallel repetition theorems for three-round protocols [2] and
for public-coin protocols [13]. Note that whereas [13] only shows a parallel rep-
etition theorem for constant-round protocols, our theorem applies to protocols
with an arbitrary polynomial number of rounds. Our parameters are, however,
worse that those of [13], which establishes an essentially optimal error reduction
for the case of constant-round protocols.

As can be seen from the expression above, the success probability of the
single-instance prover decreases linearly with the number of rounds in the pro-
tocol. If we restrict our attention to public-coin verifiers, or more generally,
1-simulatable verifiers with verdict—i.e., verifiers where the next messages func-
tion and its verdict to accept or reject—can be simulated with a small statistical
error—then we can show a stronger parallel repetition theorem, where the de-
crease in error probability is independent of the number of rounds.

Finally, we show using a simple argument that our results hold also for con-
current provers, which may schedule their interaction with the individual veri-
fiers arbitrarily.

1.2 Some history and related papers

An earlier version of this paper [9], where we established a parallel repetition
only for interactive arguments with (1 — ﬁ)—simulatable verifiers (and some
generalizations thereof), dates back to April 2008. Recent works extend it.

Most notably, Haitner [8] gave a modification of any interactive protocol by
introducing a “random-termination verifier” where the verifier decides to stop
and accept immediately with small but noticeable probability at each round.
Haitner proved that any interactive protocol modified in this way, satisfies a
parallel repetition theorem.

His construction is the main motivation of our study of d-simulatable verifiers
as it is easy to simulate a verifier that has halted. As a consequence our results
gives a new proof of Haitner’s theorem which is, in our eyes, simpler and which
gives better parameters.

In an even more recent paper Chung and Liu [5] improves the analysis of
our reduction. They manage to avoid the use of any lemma of the type obtained
by Raz getting optimal reduction of the error rate for the public-coin case and
almost optimal result in the case of 1-simulatable verifiers. It does not seem that
their result extends to the case of d-simulatable verifiers.

In a different direction, Pass, Tseng and Wikstrém [12] rely on our techniques
to show that parallel repetition of public-coin protocols also gives a qualitative
(rather than quantitative) improvement in soundness: any public-coin argument,
when sufficiently repeated in parallel, becomes sound also against a “resetting”-
attack if the verifier uses a pseudo-random function to pick its messages. As
a corollary of this result, they establish impossibility of public-coin black-box

zero-knowledge protocols (for non-trivial languages) that remain secure under
parallel repetition. Interestingly, [12] show that the dependence on m in our
security reduction for the main theorem is inherent in their setting; this stands
in contrast with our sharper reduction for the case of public-coin protocols.

1.3 Our Techniques

We show how to turn any parallel-prover P*) into a single-instance prover P;
furthermore, we require that P’s success probability is significantly higher that
of P*). Traditionally, P achieves this by internally incorporating P*), appro-
priately feeding it messages, while at the same time picking one of the parallel
executions that it feeds to an external verifier. In other words, out of the k in-
stances that P(¥) believes it is participating in, P controls k — 1 of them, while
one of them is externally forwarded.

The crux of this approach is how to determine the k — 1 messages sampled
in some particular round are good. In the public-coin case, in the work of Pass
and Venkitasubramaniam [13], the “goodness” of a message is determined by
estimating (using sampling) the probability with which P would be able to
complete the partial interaction if this message was fixed; and P selects the
message which leads to the highest success probability. This procedure requires
recursively sampling P and results in a blow-up of the running-time as a function
of the number of rounds and thus only a constant number of rounds can be
handled. In the case of private-coin protocols, another problem arises already
for the case of three-round protocols: we might not be able to determine if
the verifier V; accepts in a particular transcript as we do not know its random
tape. Bellare et al. [2] overcome this problem by “guessing” that V; accepts, if,
intuitively, “many” other verifiers accept; as we are internally running all the
other verifiers we know their random tapes and thus their decision.

A-priori, it would seem that a combination of these approaches would at least
give a parallel-repetition theorem for constant-round private-coin protocols as
long as it is possible to appropriately sample the next messages of the verifier.
The problem is that when selecting “good” messages, we might be biasing the
distribution of continued executions. It is, thus, no longer clear that the proce-
dure of “guessing” that V; accepts if many other verifiers accept, yields a good
estimate of whether V; actually accepts.

The key technique introduced in this paper is a method for selecting “good”
messages without biasing the distribution too much. We essentially choose the
first continuation that can be seen to lead to a good outcome. The fact that this
procedure does not bias the distribution of interactions by too much follows from
a powerful lemma of Raz [15] which was used in an essential way in the proof of
the parallel repetition theorem for two-prover interactive proofs. Additionally,
this approach does not lead to a blow-up in running-time and can be applied to
any polynomial number of rounds.

Let us first outline the idea for the case of public-coin protocols. Instead of
trying to recursively estimate how good a message is, we use the following simple

procedure to pick messages to forward to V;. Given a partial interaction, repeat-
edly sample random completions of this transcripts, until a successful transcript
is reached, i.e., one where all verifiers accept. When this happens, select the
next message to forward to the external verifier based on what that message was
in the sampled accepting transcript. In other words, sample a random message
conditioned on it leading to a successful transcript. To analyze why this works,
consider the following mental experiment, where messages from P are deter-
mined in the same way, but now also V;’s messages are selected conditioned on
them leading to an accepting execution. Clearly, in this mental experiment P
succeeds in convincing V; with probability 1. It is also not hard to see that the
expected number of samples required by P is not too high and that its running-
time is still polynomial. The problem is that the real external verifier does not
pick its messages conditioned on them leading to an accepting execution; rather,
it picks them uniformly at random. However, by relying on Raz’ lemma, we can
show, provided that 7 is picked uniformly at random from [k], that the distribu-
tion of messages actually sent by the real external verifier are statistically close
to those sent in the mental experiment, where we condition on them leading to
an accepting execution. By applying the union bound over each round in the
protocol, we conclude that also in the real execution, P succeeds which high
probability.

Note that the above argument directly applies also to 1-simulatable verifiers
with verdict; we only require it to be possible to 1) emulate continuations of
partial interactions with the external verifier, and 2) determine if the external
verifier would have accepted in those executions. To extend this analysis to 1-
simulatable verifiers without verdict, we augment the argument by first showing
that in the mental experiment it is sufficient to guess the decision of V; based
on the decisions of the other verifiers, in analogy with [2]. Now we can no longer
claim that the success probability in the mental experiment is 1, but it will still
be sufficiently high; the rest of the proof remains the same, and we conclude that
also in the real execution P succeeds with high probability. We mention that to
simplify the analysis, and to generalize it to handle “Chernoff-type” bounds, we
generalize the “guessing” procedure of [2].

Finally, consider the case of %y—simulatable verifiers. Here we can only em-
ulate continuations of the external verifier for a small, but noticeable, fraction
of its true continuations. Nevertheless, by another application of Raz’s lemma,
we can show that the distribution of messages sent to the internal prover does
not change by too much even if we condition the ith execution on a noticeable
subset of continuations, and thus %—simulatability suffices. More precisely, by
Raz’s lemma, it follows that the probability the external verifier chooses a con-
tinuation that we can simulate is not affected much if we condition on getting an
accepting interaction; this, in particular means that (on average) the probability
that a partial transcript leads to an accepting transcript does not change much
even if we condition on only continuations that we can simulate.

Note that in the above proof sketch we lose a factor of m, i.e., the number of
rounds in the protocol, by the application of the union bound. For the special

case of 1-simulatable verifiers with verdict, we go back to the underlying tool of
relative entropy used to prove Raz’s lemma, and use it to prove a generalization
that considers multiple rounds at once, without losing the factor of m.

1.4 Outline of Paper

We first introduce some basic definitions in Section 2. Then we give a definition of
d-simulatable verifiers in Section 3. In Section 4 we state the parallel repetition
theorem. Then in Section 5 we prove the general parallel repetition theorem,
leaving the sharper theorem for the full version. Finally, we explain in Section 6
how to generalize our results to concurrent provers.

2 Notation and Basic Definitions

We denote the set {1,...,m} by [m]. We use n to denote the security parameter.
All random variables are written in uppercase and usually we use the correspond-
ing lower case for outcomes of the variable. When we say that a random variable
X over a set X' is chosen randomly, we mean that it is uniformly and indepen-
dently distributed of all other variables. We use log a to denote the logarithm of
a in base 2. We write z «—pr X when z is chosen randomly from the set X.

If X is a random variable we write Px () = Pr[X = z] to denote the
probability that it assumes the value x, and we denote its support by [X]. If
X and Y are random variables we denote the conditional distributions of Y
given X by Py|x , and when we condition on a fixed value x € [X] we denote
the corresponding probability function by Py|x (-|z). Thus, Py|x (y|z) =
Pxy (z,y) /Px (z). When W is an event, we write P xy (z) = Pr[X =z |[W].

We often use the chain-rule for distributions and we use dots, when we are
interested in a specific conditional distribution, e.g., we write Pxy = PyP x|y
and ley ("y)

Definition 1. The statistical distance between two distributions Px and Py
over a set X is

1
[Px — Pyl = 3 Z IPx (z) = Py (z)] .
reEX

In a computationally sound protocol, soundness only holds against efficient
(i.e., polynomial-time) provers. In general, a computationally sound protocol
accepts a joint parameter A\ that may, or may not, contain an instance of a
language. We use P and V to denote the prover and verifier of a protocol, and we
write (P, V)(A) for the output of V after an interaction with P on common input
A. For notational convenience, we consider the security parameter n and any
additional advice to the prover as encoded into A. We denote the k-wise parallel
repetition of a verifier V by V. The repeated verifier simulates the individual
verifiers independently, except that their message rounds are synchronized. It
accepts if all the individual verifiers accept. The ith verifier is denoted by V;, but

all verifiers run the same program V. We are also interested in repeated threshold
verifiers, denoted by V,’;, that accept if at least (1 —~)k of the individual verifiers
accept.

The number of exchanges in the protocol is denoted by m, where one exchange
consists of two rounds, and the very first message of the prover is considered part
of the Oth exchange.

We denote the Ith message of the ith verifier V; by C); and its state after the
{th message has been computed by T; ;. We denote the [th message sent by the
prover to the ith verifier V; by A, ;, and we denote the state of the prover after it
has computed its [th message by .S;. The decision of V; is denoted by D;, i.e., 1 for
accept and 0 for reject. We define C; = (Cj1,...,Crx) and A; = (A1, ..., Aik)-
The variables are then related as follows given a random joint parameter A

Tos = A 1)
(So, Ag) = P™)(A)
(T141,i, Cry1,5) = VR, (Thi, Ai) for0<l<m
(Sl,Al)ZP()(51—1,05) for 0 <l <m

D; =V (T, Amyi)

where we think of both the prover and verifier as deterministic algorithms and
denote the random tape used by V; in round [by R; ;. The verifier may of course
“store” randomness from one round to be used in later rounds.

To collect random variables belonging to different exchanges we write, e.g.,
Cui = (Ciy,...,Cry) and Cpyyp = (C4,...,Cy). Sometimes we wish to exclude
only a single index 4. Then we write C; ;) = (Ci1,...,Cri-1,Clit1,...,Cri).
We mostly view V and P*) as deterministic functions, but when convenient and
clear from the context we drop the the random tape from our notation.

3 Simulatable Verifiers

Our parallel repetition theorem is applicable to d-simulatable verifiers. Roughly
speaking, we say that a verifier is J-simulatable if given only the prover’s view
of any partial interaction (which thus excludes the verifier’s internal state), we
can efficiently simulate a § fraction of the verifier’s actual continuations.

Recall that given a prover P and a verifier V, a partial transcript of length [is
denoted (A, apy, cpp), the Ith states of P and) are denoted s; and ¢; respectively,
and that these values are defined formally by Equation (1) in Section 2. Thus,
the prover’s view after producing its /th message a; is given by (sp, A, apy, cppp)-

Definition 2 (§-Simulatable Verifier). A verifier V is said to be é-simulatable
if there exists a PPT simulator S such that for every prover strategy P and ev-
ery partial history (s, ty), A, apy, cpy), there is a subset A of V's random tapes,
compatible with the history so far, of density § such that the output of S on input
(s[l],)\7a[l]7c[l]) 1s statistically close to the prover’s view of a continued interac-
tion between P and V, including V'’s verdict, when V’s random tape is chosen

uniformly from A. When the verdict of V is removed from consideration, we say
that V is d-simulatable without verdict, or simply §-simulatable.

Remark 1. Note that the definition requires the simulator to simulate a proba-
bility distribution that is allowed to be dependent on the state of the verifier and
that this state is unknown. This seems like an impossible task in general unless
we minimize the information contained in the state. In the early version of this
paper [9] this state was not included in the probability distribution but instead
we required that the next message of the internal, fully simulated verifiers could
be efficiently generated based on the conversation up to this point. If this is in-
deed possible then we can instead let the state be given by the messages already
sent and then use this generation process to replace the original verifier. With
the current definition we need no condition on the internal verifiers and hence
it is, in our eyes, preferable.

Remark 2. The property that we only demand the two distributions to be sta-
tistically close and not identical is only a technicality. In fact, when using the
definition in this abstract we assume that the two distributions are the same,
to avoid cumbersome notation to take care of the error terms given by a small
statistical distance.

Remark 3. A careful reading of the proof reveals that we can let the probability
¢ of successful sampling depend on the round but not on the partial history it
extends.

Remark 4. We can allow a weaker definition of simulatability where the ability
to simulate V also depends on the P’s messages. This leads to a more complicated
proof of Lemma 4 that either loses a factor of m in the error bounds or uses the
methods of [16] to get the same bounds. In order to keep this extended abstract
self-contained we use the weaker definition here.

Clearly, any public-coin protocol is 1-simulatable with verdict. It is also easy
to see that the “random-termination verifiers” of Haitner are ﬁ—simulatable
with verdict: the simulator simply aborts (accepting) with probability ﬁ. Fur-
thermore, public-coin protocols in a public-key model (where the verifier only
sends random messages, but bases is decision on its secret key), as well as three-

round protocols, are 1-simulatable without verdict.

4 The Parallel Repetition Theorem

We prove a parallel repetition theorem for any verifier that is J-simulatable
without verdict. The theorem implies that a (2m + 1)-round protocol when re-
peated k = Q(’(’;—;t) times in parallel reduces the error probability from 1/2
to 27 + negl(n) if we require that all parallel verifiers accept. In the general
statement we consider also repeated threshold verifiers fo that accept if at least
(1 —)k of the k parallel verifiers accept.

Theorem 1. Assume € < 1/2, let V € PPT be a verifier that is d-simulatable
without verdict, and let P%*) be a polynomial-time parallel prover. Then there ex-
ists a prover P running in time Poly (n, k,m,1/€) such that for every X € {0,1}*
where Pr[(P™) VEY(X) = 1] > €, for some threshold 0 < v <1,

Pr[(P V)N = 1] 2 1-7 -0 (5 V/=log(e)/k + vmlog(mk) /)

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

The constants hidden in the O (-)-notation in Theorem 1 are small and given
explicitly in our proof. It turns out that in the case of 1-simulatable verifiers we
can get a stronger theorem.

Theorem 2. Assume € < 1/2, let V € PPT be a verifier, and let P be q
polynomial-time parallel prover. Then there exists a prover P running in time
Poly (n, k,m, 1/€) such that for every A € {0,1}* where Pr[(P®)] VEY(A) =1] > ¢,
for some threshold 0 < vy < 1,

1. if V is 1-stmulatable with verdict, then

Pr [(75,1)}(/\) = 1} >1—~—2y/—log(e)/k — /1/k , and

2. if V is 1-stmulatable without verdict, then
Pr {(ﬁ,V}(A) = 1} >1—v—0(vVmy/—log(e)/k + \/ﬁlog(mk)/\/g) ,

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

Due to the lack of space the proof of Theorem 2 is omitted but can be found in
[16]. Tt relies on the notion of relative entropy (Kullback-Leibler distance) and
uses a lemma extending Lemma 1 below to treat multiple rounds.

Readers familiar with the recent result of Pass et al. [12], may find Case 1
of Theorem 2 surprising, since superficially it seems the same technique should
be applicable to remove the dependence on the number of rounds in [12], which
would contradict their results. The reason this is not the case is that in [12], the
reduction samples messages in a given round conditioned on two events: (1) that
“all verifiers accept”, and (2) that the “right” message is output by the embedded
“resetting” attacker. Thus, in each round a distinct event is considered. Another
way to say this is that the probability that the “right” messages are output in all
rounds in a straight-line execution of the resetting attacker is Poly (n)~". Thus,
we could apply this technique to simplify the proof in [12], but the dependence
on m would not disappear.

5 Proof of Theorem 1

We prove Theorem 1 in three steps. First we prove the theorem for public-coin
verifiers in the case where v = 0. This immediately generalizes to 1-simulatable
verifiers with verdict. Then we show how to generalize the proof to verifiers that
are only d-simulatable with verdict. Finally, we prove that the result can be
generalized to v > 0 and verifiers that are J-simulatable without verdict.

5.1 Proof of Theorem 1 in the Public-Coin Case

It is quite natural to simulate an interaction between the parallel prover P*)
and the repeated verifier V* and let the external verifier play the role of V; for
some 7. In other words any message to V; would instead be forwarded to the
external verifier and its reply is taken as the reply of V;. The question is how to
choose the index ¢ and how the other verifiers should be simulated. We solve this
in a simple way by picking a uniformly random ¢, simulating the other verifiers
by picking random messages and then taking the first answers that can be seen
to lead to making all verifiers accept. Let us discuss the intuition behind this
approach.

Consider the tree of all possible interactions between P®*) and V¥, where
each leaf encodes which verifiers accept and the edges on level [are labeled with
the random choices of the verifiers in exchange [. If we could sample a random
leaf such that all verifiers accept, then clearly V; also accepts for a any choice
of i. If the success probability of P(¥) is e we can efficiently sample from this
distribution in time polynomial in 1/¢ and the security parameter n as follows. In
exchange [we repeatedly choose the messages ¢; = (¢.1,...,¢%) of all verifiers
randomly and simulate a completion conditioned on the interaction so far and
our choice of messages in exchange [. If the completion gives a leaf where all
verifiers accept, then we take ¢; to be the messages of the verifiers in exchange
l. Clearly, if a suitable ¢; is found for each [, then all verifiers accept.

Suppose now that we pick a random index ¢ and in exchange [pick the
message ¢ ; of V; only once. The messages Cl iy = (Cls s Clim1Clitls - -5 CLE)
of all other verifiers are still repeatedly sampled, but now conditioned on ¢;; in
addition to the interaction so far. The key observation is that this modified
distribution is quite close to the original one, and that we may view V; as the
external verifier. Thus, we avoid sampling too much to stay close to the original
distribution on the leaves where all verifiers accept.

More Details. Denote by Complete the probabilistic algorithm that given a par-
tial interaction between P*) and V¥ returns a random sample from the distribu-
tion of the decisions of the verifiers, conditioned on the partial interaction given
as input. The detailed reduction is given by Algorithm 1 below. The parameter
u denotes the maximal number of samples generated by the prover in each round
to find a suitable reply from the parallel prover. For simplicity we assume that
the message of the verifier in each exchange is drawn from {0, 1}?("™) for some
polynomial p.

Algorithm 1. P,(z)

if x is a joint parameter A then
(s0,a0) — P™ (X)
i —r [K]
return ([i,so,)\7Q),a[0]] ,ao,i)

// Read joint parameter
// Compute prover’s first message
// Choose random index
// Output state and first message

else
Interpret x as ([z, sl_l,A,c[l,l],a[l,lﬂ ,cl’i) // Read state & verifier’s message
forv=1,...,udo
Cu iy <R {0, 1}P(n)><(k—1)
(st,a1) — P¥ (8,1, ¢1)
if Complete(\, cpj,ap)) =1 then
return ([i,sl,)\,c[l],am] 7a17i)
done
done
return (fail, fail) // Give up
end

// Sample verifiers’ messages
// Compute prover’s reply
// If messages are good,

// then output reply

Note that the prover keeps as its state the index ¢ corresponding to the exter-
nal verifier, the state of the simulated parallel prover, and a partial interaction.
We now consider the error probability of the constructed prover.

The sampling lemma of Raz [15] says that given independently distributed
random variables Uy, . . ., Uy, the distribution of U; does not change much on av-
erage over the index i by conditioning on an event F, provided that the probabil-
ity of F is not too small. (We mention that the sampling lemma was previously
used by Impagliazzo et al. [11] in the context of parallel-repetition of 2-round
arguments). We make use of the following variant that appears as Corollary 6
in Holenstein’s simplified proof of Raz’ theorem [10].

Lemma 1. [10] Let Pyyry = Py(l—[f:1 Pu.lv)PV|YUk be a probability distri-
bution and E an event. Then

1
%Z HPYUf,V|E — PYV|E PUi|Y H S k_l/Q\/lOg|V*| — logPr [E] .
i=1

where V* is the set of values of v that can occur conditioned on E occurring.

In our application, the variable Y represents the interaction so far and U;
are the messages of the verifiers in the current round. We let V' be a binary
variable such that PV‘YU,C (1 |y, w) is the probability that all verifiers accept in

a random completion, for every partial interaction (y,u) € [Y,U*]. The lemma
then implies for a random Y that most U; are, even if we condition on extending
Y to an accepting interaction, distributed very closely to their unconditional
distribution which in this case is the uniform distribution.

Thus, we can conclude that in any single round, if we have chosen Y up to
this point with the conditional distribution of a partial interaction leading to an
accepting leaf then if we, in this round, pick a random ¢, the distribution of U;

is likely to be close to uniform. A problem to be taken care of is that i is chosen
once and remains fixed for all rounds.

Let us consider a modified process where the external verifier V; instead of
choosing ¢; ; with the uniform distribution does a process similar to that of 75u It
samples complete interactions that extend the current interaction of all verifiers
until it finds a complete interaction where all verifiers accept and then chooses
the value of ¢;; in this interaction as its response. Furthermore, let us remove
the restriction that P, only makes u attempts to find a complete interaction
where all verifiers accept and let it sample until it finds a completion. Let D,y
be the distribution on interactions produced by P, interacting with V; and let
Djgeq; be the distribution on interactions in this modified process.

Clearly, D;geq; outputs a uniformly selected interaction in which all verifiers
accept. Thus, in this modified process V; always accepts. Below we estimate the
statistical distance between this process and the original process. This statistical
distance is an upper bound on the probability that V; rejects. Let us first see
that it is unlikely that the modified process ever needs to sample a large number
of times. This is intuitively not surprising. For the sampling to take a long time
we need to choose a partial interaction that is very unlikely to lead to a complete
accepting interaction. But as we are choosing partial interactions as part of an
accepting interaction we are very unlikely to choose such a partial interaction.
This is made formal by the following easy lemma, a proof of which is given below.

Lemma 2. Let Y be a random wvariable and let Xo, X1, Xo,... be identically
distributed binary random variables which are only dependent through Y, i.e.,
Py)XO,ij = Py Hg:()PXHY and PXi|Y = PXj|y fOT any Z,j Let J be the
random variable denoting the smallest nonzero index such that Xj; = 1. Then

Let us see how this lemma proves that the expected number of samples
needed to find an accepting completion is small. We let Y be a random partial
interaction which is chosen by picking a complete accepting interaction, i.e., ¥
is C}j_q) for some [, and we let X; be one if a particular random completion of
Y makes all verifiers accept. Then E [J | Xy = 1] is exactly the expected number
of attempts to complete the interaction Y to make all verifiers accept given that
Y was picked by first picking a complete interaction which makes all verifiers
accept and then truncating to the appropriate length.

Let 6 = \/—log (¢)/k + (eu)™!. We claim that the statistical difference be-
tween Djeq; and Djgeq; when truncated to ¢ rounds is bounded by td. This is
clearly true for ¢t = 0 and we proceed by induction using the following lemma.

Lemma 3. Let Xy and X, be two random variables over X, and let Z, and Z.,
be two families of random wvariables parameterized by x € X such that

||PX0—PX1||:51 and Em [HPZT_PZa/r] :52 5

where x is distributed according to Px,. Then

||PX07ZX(J - PXl,Zg(l || <1+ 09 .

Before we prove Lemma 3, let us see how it enables us to complete the
induction step. We let Xy be a (¢ — 1)-round interaction chosen according to
Digeal, X1 a (t — 1) round interaction chosen according to Diyeql, Zx, the next
round message chosen by the verifiers according to D;geq and ZS(O the next
round message chosen from D,.,;. We need to estimate the expected statistical
distance between Z' and Zx, over Xg.

We have two differences between the two distributions, how V;’s message
is chosen and the limited sampling. The latter is, by Lemma 2 and Markov’s
inequality, bounded by (eu)~! and we claim that former difference is bounded
by /—log (¢)/k. Let us see how this follows from Lemma 1.

As stated before, we let Y be the interaction up to the (¢ — 1)st round and
U; the message of V; in round ¢ and V a bit which is one with the probability
that a random completion of the given interaction accepts. The event FE is that
"V = 17. Then Djgea picks messages with the distribution given by Py, yve
while V; picks messages with the uniform distribution which in this case is Py, |y -
Lemma 1 now tells us exactly that for a random Y and ¢ the statistical distance
between these two distributions is at most /— log (¢)/k.

Finally, setting u = e "'m+/k completes the proof of Theorem 1 in the public-
coin case as claimed. The missing proofs of Lemma 3 and Lemma 2 are given
below.

Proof (Lemma 2). We can consider only values y such that Pr[Xg = 1Y =y] >0
and summing over those we have

E[J|Xo=1]=) Pr[Y =y[Xo=1]E[J|Y =yA X, =1]
Y
= Pr[Y =y|Xo=1]/Pr[X; =1|Y =y A X, = 1]
Yy

=Y Pr[Y =y[Xo=1]/Pr[X; =1[V =y]

Yy
_ZPr[Y:y/\Xlzl] PrY =y < 1
4 Pr[X, = 1] PriX; =1AY =y ~ Pr[Xg=1] ’

where the third equality follows from the conditional independence of the X;’s
and the fourth equality follows since the X;’s are also identically distributed. [

Proof (Lemma 3). We use the characterization that two distributions are at sta-
tistical distance ¢ if and only if there is a coupled way of choosing elements from
the two distributions such that the two samples are equal with probability 1 —4.
We need to choose coupled pairs (z,z) and (2, 2’) from the given distributions.
First choose a coupled pair (x,2’) distributed according to Px, and Px,, re-
spectively. If they are unequal, which happens with probability 01, we give up. If
they are are equal we choose a coupled pair (z, 2’) according to the distributions
Pz, and Pz . The probability that these are unequal (over the choice of 2 and
the second choice) is upper bounded by 5. This completes the proof. O

5.2 Proof of Theorem 1 for §-Simulatable Verifiers With Verdict

When the verifier is no longer public-coin and only §-simulatable for some § >
1/Poly (n), it may keep its state hidden from the prover inbetween exchanges.
To deal with this, we replace each call to Complete in Algorithm 1 by a call to
the d-simulator on input (7, sy, ¢y, iy, A, apg, apy)-

We consider a fixed round ! and all variables below depend on the value
of | but, for notational convenience, we omit this dependence. Let us define
Xi = (Ti—1,C)—1), C1i) and Y; = (T} (), C (5y)- Recall that Cy ;) denotes the
array (Ci1,...,Cri—1,Clis1,...,Clx) and similarly for Tj ;.

By d-simulatability, there is a subset, A of the external verifiers possible
random tapes for which we can simulate V;.

Let W be an indicator variable of the event D = 1 (that all verifiers accept).
Then define 5;,7! as the probability that the prover’s view of a random comple-
tion of (z;,¥;), conditioned on the event W = 1, is an output from the simulator.
Furthermore, let (5;1 be the expected value of 5;1% over y;, where y; is chosen
according to the distribution Py, x, w (|7 1). Due to the conditioning on
W =1, é-simulatability does not immediately say anything about these quanti-
tities, but for any fixed x; the distribution of Y; conditioned on both W =1 and
the event that the output is from simulator is given by the probability function
i
ZiYi

i
oL,

Py, x,w (Wilzi,1)

We want to prove that this, for a uniformly random 4, is statistically close to the
distribution Py, x, w (- |zs,1) and thus we should estimate

. .
1 O, s
%Z Y Pxovaw (@iyil1) |1 - %

=1 ;,y;

(2)

The following lemma is the key to estimating this distance.

k
%Z S Py @yl |0, — 6| <O(V/—log@/k) . (3)

=1 x;,y;

We postpone the proof of the lemma until we have seen how it is used. Fix ¢ and
x; and consider the contribution to the sums in (2) and (3) over a random Y; con-
ditioned on W = 1. Define a random variable Z which takes the value (5;;,/ /oL,
with probability Py, x, w (yi|z:,1). Then the contribution to Equation (3) is
at most § E[|1 — sZ|] with s = &,/ while the contribution to Equation (2) is
E[|1 — Z|]. Now consider the following lemma.

Lemma 5. Assume that Z is a positive random variable with E[Z] = 1. Then
for any s > 0 we have E[|1 — Z|] < 2E[|1 — sZ|].

Again, we postpone the proof until we have completed the argument. Since
E[Z] = 1, we see that Equation (2) is bounded by O(§~1/—1log(¢)/k). Thus the
additional statistical distance between the ideal distribution and that obtained
by our parallel prover introduced in round [is bounded by this quantity.

Using coupling and the union bound as in Section 5.1, we conclude that
replacing the 1-simulator by a d-simulator introduces an additional error of at
most O(%+/—log(e)/k).

Finally, let us prove the two lemmas above, completing the proof of Theo-
rem 1 in this case.

Proof (Lemma 4). We apply Lemma 1 with U; representing V;’s random tape
compatible with the interaction up to this point. We need to analyze the proba-
bility that we can simulate V; conditioned upon all verifiers accepting. Without
conditioning this probability is statistically close to & by the definition of §-
simulatability (for notational convenience we assume here that this probability
equals 0). The deviation from this is bounded by the statistical distance of the
conditioned distribution from the uniform distribution. The lemma now follows
from Lemma 1. O
Proof (Lemma 5). Note that >, ., Pz (2) (1—2) = $ E[|1 — Z|], since E[Z] = 1
and |1 — z| is symmetric around 1. If s < 1, then |1 — z| < |1 — sz| for every
z <1 and the claim follows. If s > 1, then we instead consider the partial sum
for z > 1 and apply the corresponding argument. O

5.3 Proof of Theorem 1 For /-Simulatable Verifiers Without Verdict

First we note that it is easy to generalize the above result to the case with a
repeated threshold verifier that accepts if at least (1 —)k verifiers accept. Re-
place the definition of the indicator variable W such that it is one if and only
if Zle D; > (1 — 4)k. Then in the corresponding “modified process” discussed
in Section 5.1 the probability that V; accepts is at least 1 — ~, since ¢ is chosen
uniformly in [k] and independently of the “modified process”. A trivial modifi-
cation of the analysis above then gives the same additional statistical error due
to having an external verifier, the use of limited sampling, and a §-simulatable
verifier.

To generalize the theorem to d-simulatable verifiers without verdict, starting
from the result established in Section 5.2 for d-simulatable verifiers with ver-
dict, we modify the reduction by redefining W using “soft” decisions as was
already done in [2]. Suppose that instead of accepting only samples where at
least (1 — 7)k verifiers accept, we define a binary random variable W that is one
with probability min(1,2"("*=2)) where z is the number of rejecting verifiers,
and accept a sample if W = 1. Then it turns out that, provided that, we choose
v small enough, this acceptance criteria can be approximated well even if we do
not know the verdict of the external verifier V;. Let us start with the key lemma,
of which the proof is postponed to the end of this section.

Lemma 6 (Soft Decision). Let Dy,..., Dy be binary random variables such
that Pr[SSF Dy > (1 =)k > €, let Z=k—Y" D, lety>0,v >0, and
m > 1, and let W be a binary random variable such that Pr[W =1|Z = z] =
min(1,2"O*=2)). Then

4

k
1
;Pr[Di:mW: 1] S’Y+E(logm+logk—loge)+m i

El

Remark 5. Although setting v = 1 and v = 0 recovers the decision procedure in
[2], our analysis differs from theirs. They implicitly use Raz’s lemma to argue
that the variables W; and W are close in distribution on average over i. We need
the stronger statement that these variables are close in distribution for any i.
This is why we need the additional parameter v.

Now set v = \/—% \/—log(€)/k and suppose now at first that we did know the
verdict of V;. The old argument carries over and we end up at a random point
where W = 1. Before we could conclude that V; accepted while currently by
applying Lemma 6, we see that the probability that V; rejects is at most

1
’Y+E(logm+logk—loge)+m
m 1
=~ 4+ —————(log(mk) — log(¢)) + ——
o og(mk) ~log(0) + i

< v+ vmlog(mk) /VE + v/my/=log(e) [k + 1/k ,

and this is enough to prove Theorem 1.

The key to case the case when we do not know the verdict of V; is that if v
is small then the decision of an individual verifier is does not affect the behavior
very much. In fact, let us simply approximate Z by assuming than D; = 1 and
let us run our parallel prover using this approximation. Compare a run of this
modified prover and a run of an ideal prover that uses the correct value of Z
using the same randomness.

These two provers only behave differently when the the modified prover ac-
cepts a history that the ideal prover would have rejected. To be precise, each
time the modified prover accepts a history the probability that the ideal prover
would have rejected the same history is 1 — 27" < v.

As the modified prover only accepts m histories over the course of a run,
the statistical difference between the behavior of modified prover and the ideal
prover is bounded by vm.

This gives a total additional error from using soft decisions when sampling of
(m+1)v < (y/m+1)\/—log(e)/k. Combined with the proof of Lemma 6 below,
this concludes the proof of Theorem 1 in its full generality.

Proof (Lemma 6). Let p; = Pr[Z = j]. We know by assumption that

ky
ij >e€ . (4)
j=0

We know that Pr[Z = j |W = 1] is proportional to p;2~ ™*(0:¥(G=7k)) This im-
plies that the expected number of D,’s equal to zero is
Z_];:O jpj27 min(0,v(j—vk))

Z?:O pj27 min(0,v(j—~k))

E[Z|W=1]=

()

The denominator is lower bounded by Z;’io p; 27 min(O(G=7k)) = Z;io p; and
is thus, by Equation (4), at least €. Let ¢ be a parameter to be determined, then
the numerator is bounded by

k
Zmax('yk + t7j)pj2—min(0,y(j—fyk))
j=1
k k—(vk+t)
< (vk+1) Y p 2O L N 27 (6)
j=1 j=1

It is not difficult to see that > oo, j277 < 4 and thus the upper bound in
Jj= %
Equation (6) is at most

k
—min(0,v(j—~k —vt
(vk+t)j§:1pj2 e L

Setting t = %(logm +log k —log €) and using that the denominator of Equa-
tion (5) is at least € we see that

1
E[Z|W =1] <~k + —(logm + logk —loge) + ———- .
v vimk
The proof is concluded by remembering that ¢ is chosen uniformly at random
from [k]. O

6 Concurrent Repetition

Although verifiers repeated in parallel perform their computations independently
and use independently generated randomness, their communication is synchro-
nized. It is natural to consider a more general form of repetition where this
restriction is removed, i.e., the prover may arbitrarily schedule its interaction
with the individual verifiers.

Only minor modifications are needed to generalize Theorem 1 and Theorem 2,
with the same parameters, to the setting where a concurrent prover interacting
with the k-wise concurrent repetition of V is converted into a prover P interact-
ing with V. The key observation for this extension is that a concurrent prover
only sends m + 1 messages to V;. Thus, P need only sample completions at m
points during an interaction with V), and Lemma 1 is only applied m times. Fur-
thermore, the d-simulator and soft decisions are only used at each point where
P samples completions, i.e., exactly m times. More details will be given in the
full version of this paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

L. Babai. Trading group theory for randomness. In 17th ACM Symposium on the
Theory of Computing (STOC), pages 421-429. ACM Press, 1985.

M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the error
in computationally sound protocols? In 88th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 374-383. IEEE Computer Society Press, 1997.
G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156-189, 1988.

R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In 2nd Theory of Cryptography Conference (TCC), volume 3378 of Lecture
Notes in Computer Science, pages 17-33, 2005.

K-M. Chung and Feng-Hao Liu. Parallel repetition theorems for interactive argu-
ments. these proceedings.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer-Verlag, Algorithms and Combinatorics, 1998.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186—208, 1989.

I. Haitner. A parallel repetition theorem for any interactive argument. In 50th
IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 2009.

J. Hastad, R. Pass, Pietrzak, and D. Wikstrom. An efficient parallel repetition
theorem. Manuscript, April 2008.

T. Holenstein. Parallel repetition: simplifications and the no-signaling case. In
39th ACM Symposium on the Theory of Computing (STOC), pages 411-419. ACM,
2007.

R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theo-
rems. In Advances in Cryptology — Crypto 2007, volume 4622 of Lecture Notes in
Computer Science, pages 500-516. Springer, 2007.

R. Pass, D. Tseng, and D. Wikstrom. On the composition of public-coin zero-
knowledge protocols. In Advances in Cryptology — Crypto 2009, volume 5677 of
Lecture Notes in Computer Science, pages 160-176. Springer Verlag, 2009.

R. Pass and M. Venkitasubramaniam. An efficient parallel repetition theorem
for arthur-merlin games. In 39th ACM Symposium on the Theory of Computing
(STOC), pages 420-429. ACM, 2007.

K. Pietrzak and D. Wikstrom. Parallel repetition of computationally sound proto-
cols revisited. In TC'C, volume 4392 of Lecture Notes in Computer Science, pages
86-102, 2007.

R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763—
803, 1998.

D. Wikstrom. An efficient concurrent repetition theorem. http://eprint.iacr.
org/, 2009.

A. C. Yao. Theory and application of trapdoor functions. In 23rd IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 80-91. IEEE Computer
Society Press, 1982.

