
Towards a Theory of Extractable Functions

Ran Canetti1? and Ronny Ramzi Dakdouk2??

1 Tel Aviv University, Tel Aviv, Israel.
canetti@tau.ac.il

2 Yale University, New Haven, CT.
dakdouk@cs.yale.edu

Abstract. Extractable functions are functions where any adversary that outputs
a point in the range of the function is guaranteed to “know” a corresponding
preimage. Here, knowledge is captured by the existence of an efficient extractor
that recovers the preimage fromthe internal state of the adversary. Extractability
of functions was defined by the authors (ICALP’08) in the context of perfectly
one-way functions. It can be regarded as an abstraction from specific knowledge
assumptions, such as the Knowledge of Exponent assumption (Hada and Tanaka,
Crypto 1998).
We initiate a more general study of extractable functions. We explore two dif-
ferent approaches. The first approach is aimed at understanding the concept of
extractability in of itself; in particular we demonstrate that a weak notion of ex-
traction implies a strong one, and make rigorous the intuition that extraction and
obfuscation are complementary notions.
In the second approach, we study the possibility of constructing cryptographic
primitives from simpler or weaker ones while maintaining extractability. Results
are generally positive. Specifically, we show that several cryptographic reduc-
tions are either “knowledge-preserving” or can be modified to be so. Examples
include reductions from extractable weak one-way functions to extractable strong
ones, from extractable pseudorandom generators to extractable pseudorandom
functions, and from extractable one-way functions to extractable commitments.
Other questions, such as constructing extractable pseudorandom generators from
extractable one way functions, remain open.

1 Introduction

Extractability plays a central role in cryptographic protocol design and analysis.
In its basic form, it relates to two-party protocols where one of the parties (a
“prover”) has secret input, and tries to convince the other party (a “verifier”) that
it holds the secret. The idea is to argue that if the verifier accepts the interaction,
then the prover indeed “knows” the secret. More concretely, extractability makes
the following requirement: Given access to the internals ofany(potentially mali-
cious) prover, it is possible to explicitly and efficiently compute the secret value
as long as the verifier accepts an interaction. (Many variants of this notion exist,
of course. See e.g. [12].)

? Supported by NSF grant CFF-0635297 and US-Israel Binational Science Foundation Grant
2006317, a European Union Marie Curie grant, and the Check Point Institute for Information
Security.

?? Supported by NSF grant #0331548.

The notion ofextractable functionsextends the concept of extractability to the
more basic setting of computing a function. Here the task of “convincing a veri-
fier” is replaced by “outputting a value in the range of the function”. More specif-
ically, any machine that generates a point in the range “knows” a corresponding
preimage in the sense that a preimage is efficiently recoverable given the internal
state of the machine.
Extractable functions were coined in [8] for the specific goal of defining ex-
tractable perfectly one-way (EPOW) functions.3 These functions were demon-
strated to have some interesting applications, such as new ways to realize Ran-
dom Oracles and new three-round Zero-Knowledge arguments based on weaker
assumptions than previously known. Furthermore, it was demonstrated that ex-
tractable functions can be viewed as an abstraction from specific knowledge as-
sumptions, such as the Knowledge of Exponent (KE) assumption [16, 3] or the
Proof of Knowledge (POK) assumption [20], in much the same way as the notion
of one-way function is an abstraction of the Discrete Log (DL) assumption.
This work attempts to initiate a more general study of extractable functions.
Specifically, we address two goals: First, we try to understand exactly what ex-
traction means and how different notions of extraction (and lack of it) are related.
Second, we study the possibility of constructing complex primitives from sim-
pler ones while preserving extractability. We note that the latter approach may
help in basing cryptographic protocols that use or require specific knowledge as-
sumptions, on a general computational notion, which in turn may be concretely
realized by alternative assumptions.
Before discussing this work in more detail, we provide a high level overview of
the two versions of knowledge extraction defined in [8]: interactive and noninter-
active extraction.

Noninteractive extraction.Noninteractive extraction is an abstraction of spe-
cific knowledge assumptions as mentioned in the previous paragraph. Informally,
there is a family of functions and the adversary gets a description of a specific
function from the family, and tries to output a point in the range of this function.
This function family is considered noninteractively extractable if whenever the
adversary generates a point in the range, it knows a corresponding preimage. In
other words, for every such adversary there is a corresponding extractor that com-
putes a preimage from the private input of the adversary. One extreme example
of extractable functions is the identity function where the output itself reveals the
input. Obviously, such functions are of lesser interest to cryptographic applica-
tions than functions with computational hardness properties. On another extreme,
if the function is a one-way permutation, then it is easy to output a valid image
without knowing a preimage; specifically, output a random string in the range.
In this work, we concentrate on functions that enjoy both properties, namely, ex-
tractability and computational hardness.
Unlike proofs of knowledge [15, 2], this notion of extraction does notrequire
efficient verification. In other words, the range of the function is not necessarily
efficiently verifiable. Therefore, it may not be possible to decide if the adversary
generates a point in the range (and consequently, knows a preimage). However,
this notion guarantees the implication: If the adversary generates an image, it
knows a preimage. We mention that the construction in [8] has a range that is
efficiently verifiable in the presence of some auxiliary information (about the
function itself).

3 Informally, a probabilistic function is perfectly one-way if it hides all partial information about
the input [7].

Extraction can be studied with or without auxiliary information. We would like
to consider extraction in the presence of auxiliary information as this is a more
useful and meaningful notion. Auxiliary information can be either dependent or
independent [14] (here, the dependence is on the specific function under study).
We remark that dependent auxiliary information is inseparable from independent
auxiliary information when extraction is required for a single function,f . This is
so because it is not possible to prevent an adversary with access to auxiliary in-
formation from receiving dependent auxiliary information, e.g.,f(x). Moreover,
the notion of a single extractable function with auxiliary information is not real-
izable for one-way functions. Specifically, by the one-wayness assumption, there
is no extractor for the adversary that receivesf(x), for a uniformx, and simply
outputs it. Consequently, we relax the requirement to extraction for a family of
functions, i.e., a function is chosen uniformly from the family. Indeed, the KE
assumption is already formulated in terms of function families.
In this work, we focus on extraction with independent auxiliary information only.
Formulating and realizing extraction with dependent auxiliary information is tricky.
For instance, it is possible thatf(x) is hidden in the input in some clever way
such that it is easy to recoverf(x) but notx. For example, the input of the adver-
sary may look like(r1, u1), . . . , (rn, un), where theith bit of f(x) is 〈ri, ui〉.
[8] addresses this issue by restricting the dependency of auxiliary information so
that only a sequence of images underf can be part of dependent auxiliary infor-
mation. Moreover, Zheng and Seberry [25] follow the same approach under the
notion of “sole-samplability”.

Interactive extraction.This notion is geared towards probabilistic functions,
and can work for single functions as well as families. In interactive extraction,
the adversary engages in a3-round game with a challenger. The objective of
the game is to show that the adversary is capable of computing a function,f ,
on some point,x, that he chooses, but using random coins forf that the chal-
lenger chooses. In other words, the goal is to show that the adversary is capable
of computing a “large” fraction of the possible images ofx underf (recallf is
probabilistic). In more detail, the adversary,A, sends, in the first round, a point,
y0 = f(x, r0), wherex andr0 are chosen byA. The challenger responds with
random coins,r1, in the second round andA has to send backy1 = f(x, r1).
In this setting, consistency means thaty0 andy1 have a common preimagex.
Interactive extraction means if the adversary is able to answer consistently, then
it knows a common preimage. As in the noninteractive case, this form of knowl-
edge is captured computationally by the existence of an extractor that recovers a
preimage from the private input of the adversary. We emphasize that no verifica-
tion of consistency is assumed to occur. The knowledge requirement states thatif
the adversary is consistent, it must know a preimage.
Unlike noninteractive extraction, interactive extraction is required to work for any
function. In other words, the function is fixed once and for all, and any auxiliary
information is allowed to depend on this function. Intuitively, this is realizable
because the challenge in the second round forces the adversary to compute an
image “online”.
In interactive extraction, we focus mainly onprobabilistic functions because for
deterministic functions, this notion is equivalent to noninteractive extraction. (To
use the3-round game of interactive extraction on a deterministic function,f , view
f as a probabilistic function that simply ignores the random coins, i.e.f(x, r) =
f(x) for anyx andr.)
It is worth mentioning that noninteractive extraction can be viewed as a two-round
interactive extraction analogous to the three-round extraction discussed above.

Specifically, in the first round the challenger sends a random function from the
family and the adversary responds with a point in the range of this function. That
is, there is a fixed function,g, the challenger sends a randomr, and the adversary
responds withg(x, r) = fr(x).

1.1 Our work

We approach extractable functions from two different angles.
First, we attempt to address the question: What makes a function extractable?
Moreover, if a function is extractable with noticeable success, does this mean that
it is extractable in a strong sense? Towards answering these questions, we show
that every function satisfies either a “mild” form of obfuscation [1] or a “mild”
form of extraction. In other words, lack of extractability can be viewed as inability
to “reverse engineering” or obfuscatability. This is indeed what one might naı̈vely
expect - a function is either extractable or obfuscatable, and we show that this
näıve thinking is correct to some extent. We then address the second question
posed at the beginning of this paragraph. We find out that for a large class of
functions, notably, POW functions with auxiliary information, the answer to this
question is positive.
Second, we try to construct complex extractable primitives from simpler ones.
In general, extractable functions exist, e.g., the identity function. However, ex-
tractable functions are more useful in cryptographic applications if they satisfy
certain hardness assumptions. Thus, in the second line of work, we address the
question: Is it possible to build primitives with complex hardness properties from
weaker hardness assumptions while maintaining extractable properties? For in-
stance, suppose we have an extractable weak one-way function, can we build an
extractable strong one-way function? Results indicate that answers to such ques-
tions are mostly positive.

On the first line of work. We discuss interactive extraction before noninter-
active extraction.

On interactive extraction versus obfuscation.This line of work starts with
an observation that extraction and obfuscation complement each other in a natural
way. In other words, if a function is not extractable, then this lack of extractabil-
ity is some form of obfuscation. Specifically, we call a function weakly (and
interactively) extractable if for any adversary that is consistent in the interactive
game with noticeable probability, there is a corresponding extractor that recov-
ers a preimage with noticeable success. Moreover, the obfuscation mentioned
previously relates to inability to “reverse engineer” an obfuscated program that
produces images under the function. In other words, there is an obfuscated code
that receivesr as input and computesf(x, r) for somex “hidden” in the obfus-
cated code. In more detail, we callf weakly obfuscatable if the following holds.
There is an obfuscator that produces a program capable of correctly computing
the functionfx(r) = f(x, r) with noticeable probability, wherex is chosen ac-
cording to some well-spread distribution and then “hidden” in the program. Also,
the program is considered obfuscated in the sense that it is hard to recoverx
from the obfuscated program, whenx is drawn from the well-spread distribution
mentioned above. The corresponding theorem can be stated in words as:
Theorem 1: Every family of probabilistic functions is either weakly extractable
or weakly obfuscatable.

We emphasize that Theorem 1 is a general observation on any family of func-
tions and does not assume anything about the family, not even that it is efficiently
computable. Informally, this theorem can be argued for as follows. Suppose a
function,f , is not weakly extractable. Then, there is an adversaryA that answers
consistently in the3-round game of interactive extraction, and yet there is no ex-
tractor that recovers a preimagex. We useA to construct an obfuscation for the
functionfx. The obfuscation simply contains the description ofA and a corre-
sponding private input that causesA to answer consistently. To computefx(r),
simulateA, sendr in the second round of the extraction game, and output the
response ofA. Functionality of this obfuscation follows from consistency ofA
while the hiding property follows directly from the assumption that no extractor
is able to recoverx. We point out that finding an obfuscation offx may not be
efficient, however, the obfuscation itself is efficient becauseA is.

Amplifying knowledge extraction.Theorem 1 is not entirely satisfactory be-
cause extraction is guaranteed to occur only noticeably often. So, we address the
issue of amplifying extraction. We show how to do so under a necessary (for the
class of injective functions) and sufficient assumption on the function. Specifi-
cally, we assume what we call “weak verification”. Weak verification is a notion
introduced to show that some form of verification is necessary and sufficient for
knowledge amplification. Moreover, it is implied by common verification notions
such as public verification for probabilistic functions [7]. Informally, weak veri-
fication means for any adversaryA that outputs images in the range off , there
is a corresponding verifier,V , which given somex and the private input ofA,
decides whether the output ofA is a valid image ofx underf . In other words,
V has to decide whether there exists anr such thatf(x, r) = A(z, rA), where
z andrA are the auxiliary information and random coins forA. Moreover,V is
allowed to fail with some arbitrary small, yet noticeable probability. We use the
term “extraction (respectively, verification) with vanishing but noticeable error”
to mean that for every polynomial,p, there is an extractor (respectively, verifier)
that fails no more than1

p
fraction of the time. The corresponding theorem can be

stated in words as follows.
Theorem 2: Every weakly-verifiable family of probabilistic functions is either
weakly obfuscatable or extractable with vanishing but noticeable error. More-
over, if an injective family of functions is extractable with vanishing but notice-
able error, then it is weakly verifiable.
At a very high level, the proof of Theorem 2 uses a variant of Impagliazzo’s
hard-core lemma [19] to amplify weak extraction to extraction with vanishing
but noticeable error. Informally, we use the lemma to construct a family,U, of
machines that take the input ofA and attempt to extract a preimage,x, from
it. This family has the property that when all its members fail, no machine can
succeednoticeably. We then construct a family of distributions on the input ofA,
one distribution for each input lengthn, such that any member ofU succeeds only
negligibly often (asn increases). Consequently, ifU is not a family of extractors
with vanishing but noticeable error, then the distributions just mentioned have a
noticeable weight in proportion to the original one. Using Theorem 1 onA and
the new distributions imply the existence of an extractor with noticeable success.
However, this contradicts the amplification lemma.

Interactively-extractable POW functions.An important corollary to Theo-
rem 2 is that every POW function with auxiliary information is interactively ex-
tractable (see Corollary 2 for a more formal presentation). This supersedes the

corresponding transformation of [8] from POW with auxiliary information to ex-
tractable POW function. Moreover, the current result is more efficient in that the
challenger needs to send a single challenge instead ofn.

Towards negligible error.We can obtain negligible failure probability if we
relax the notion of extraction so that it applies only to “reliably-consistent ad-
versaries”. Intuitively, an adversary is reliably consistent if its consistency is no-
ticeable. In other words, disregarding input on which the adversary is consistent
only negligibly often, there is a fixed polynomial,p, such that1

p
is a lower bound

on the probability of consistency (here, the probability is taken over the random
challenge). The corresponding theorem can be stated as follows:
Theorem 3: Every weakly-verifiable family of probabilistic functions is either
weakly obfuscatable or extractable with negligible error for adversaries that
are reliably consistent.
Moreover, if an efficiently computable and verifiable family of functions is ex-
tractable with negligible error, then every corresponding adversary is reliably
consistent.
The proof this theorem is very similar to the previous one but it uses a stronger
amplification lemma in the uniform model. Informally, the lemma states that there
is a family of polynomial-time machine,U, such that no machine can succeed in
inverting a function where all members ofU fail. (Contrast this lemma with the
previous one, where the guarantee is that no machine can succeednoticeably
whereU fails.)

On noninteractive extraction versus obfuscation.Results similar to those
for interactive extraction hold in this case. However, they are weaker in the sense
that functions seem to be more likely to satisfy a weaker notion of obfuscation.
Informally, the obfuscated program receives a function description,k, as input
and outputsfk(x) for somex hidden in the program that may depend onk.
Moreover, it is hard to recoverx from the obfuscated code. The results and proofs
are similar. Two issues are worth highlighting. First, following the discussion at
the beginning of this introduction, the function is not fixed in advance. Rather, it
is sampled from a well-spread distribution and given to the adversary. Second, a
corollary to these results states that injective functions that are extractable with
vanishing but noticeable error are extractable with negligible error.

On the second line of research: Constructing extractable functions.
Taking another approach towards a theory of extractable functions, we study
knowledge-preserving reductions among cryptographic primitives. In other words,
we address the question: given a noninteractively extractable cryptographic prim-
itive, is it possible to construct another primitive while maintaining extraction?
We attempt to answer this question by reviewing the literature on cryptographic
reductions and investigating whether these reductions maintain extraction. Here,
we focus solely on noninteractive extraction because deterministic one-way func-
tions are not interactively extractable (Corollary 1). The results are positive: Most
reductions maintain extractability or can be modified to do so. The following is a
list of reductions that preserve extractability.

1. Extractable weak one-way functions=⇒ extractable strong one-way func-
tions.(This is the standard reduction [24, 12].)

2. Extractable pseudorandom generators=⇒ extractable pseudorandom
functions.This reduction uses the construction of [13]. We assume, in addi-
tion to the extractable pseudorandom generator,G1, another pseudorandom

generator,G2 that is not necessarily extractable but remains pseudorandom
in the presence ofG1, i.e.,G1(x), G2(x) is pseudorandom whenx is uni-
form.

3. Extractable one-way functions=⇒ extractable1 − 1 trapdoor functions.
This construction assumes, in addition, the existence of a1 − 1 trapdoor
function that remains one-way in the presence of the extractable function.

4. Extractable one-way functions=⇒ extractable public-key encryption.This
reduction, assumes, in addition, a trapdoor permutation. Here, extractable
public-key encryption is against passive adversaries and it means that it is
hard to generate a ciphertext without knowledge of the plaintext andwithout
seeing another ciphertext. On the other hand, extractability against active
adversaries, that is adversaries that can see other ciphertext is known in the
literature as plaintext-aware encryption [5, 18, 4, 11]. We mention that this
notion requires extraction with dependent auxiliary information and is left
for future work.

5. Extractable one-way functions=⇒ extractable2-round commitments.Ex-
tractable commitments means if the sender commits correctly (i.e., the com-
mitment can be opened) then it knows the message at the commit stage. This
reduction uses either the construction of [6] or of [21]. We note that [23]
independently constructs extractable2-round commitments from plaintext-
aware encryption.

The main reduction missing from this list is from one-way functions to pseu-
dorandom generators. Even though we give a reduction from the KE and DDH
assumptions to extractable pseudorandom generators, constructing such genera-
tors from extractable one-way functions remains open. In this work, we take a
step towards this goal by giving a reduction from a “strongly” extractable one-
way function, where extraction is required to hold even whenf(x) is represented
unambiguously in a different way. Refer to Section 4 for a detailed presentation
of all results regarding knowledge-preserving reductions.

Organization.We present the first approach in the context of interactive extrac-
tion in Section 3 (the corresponding results on noninteractive extraction can be
found in the full version of the paper), and the second line of research in Section
4. Formal definitions of extractable functions appear in Section 2. Due to space
limitation, formal proofs appear only in the full version of the paper.

2 Preliminaries

We define here interactive and noninteractive extraction. Note that these defini-
tions require negligible extraction error. In Section 3, we study weaker forms of
extraction, where the extractor succeeds noticeably or fails with vanishing but
noticeable probability.

Definition 1 (Noninteractive extraction). A randomized family ensemble,F =
{{Fk}k∈Kn}n∈N, is callednoninteractively extractableif for any PPTA, any
well-spread distribution,Kn, on the function description, any distribution,ZR =
{ZRn}n∈N, on auxiliary information and the private input ofA, there is polynomial-
time machines,K, such that:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) :

∃r, fk(x, r) = y or ∀x′, r′, y 6= fk(x′, r′)] > 1− µ(n).

Definition 2 (Interactive Extraction). A randomized family ensemble,F = {{Fk}k∈Kn}n∈N,
is called interactively extractableif for any PPTA, any distribution,ZR =
{ZRn}n∈N, on auxiliary information and the private input ofA, there is polynomial-
time machines,K, such that for anyk ∈ Kn:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fk(x, r0) = y0 or (∀x′, (∀r0, y0 6= fk(x′, r0)) or y1 6= fk(x′, r1))] > 1−µ(n).

3 On Obfuscation versus Interactive Extraction

We present the three theorems mentioned in the introduction concerning the con-
nection between obfuscation and interactive extraction with different extraction
rates. Recall, the first theorem says that every function is either weakly extractable
or weakly obfuscatable. The second theorem builds on the first one to imply that
every weakly verifiable function is either weakly obfuscatable or extractable with
vanishing but noticeable error. The final theorem states that negligible-error ex-
traction can be achieved if and only if certain conditions on the adversary are met.
These conditions, termed “reliable consistency” in the introduction, are discussed
and formalized in Section 3.2.
The statement that any function is either extractable or obfuscatable is to some
degree intuitive. After all, these two notions are complementary in some way. For
instance, suppose there is an obfuscated program that hides a license key inside it
and is able to compute a new hash of the key. If we look at such a program from
an extractability point of view, this means that there is a machine that simulates
this program and computes the functionality mentioned above. Moreover, no ex-
tractor can recover the license key by the assumption that the obfuscated program
hides it. Going in the reverse direction, it seems intuitive that the existence of
an extractor for every adversary implies the absence of an obfuscation of such a
functionality.
In the next theorem, we formalize and show that the intuition mentioned in the
previous paragraph is sound. In more detail, statement1 of this theorem (the
obfuscation clause) states that there is a well-spread distribution,X, on the input
(think of this as the license key of the previous example) and an obfuscator,Gn,
that takes a license key,x, and produces an obfuscated program,g(x). In turn,
g(x) takes an inputr and produces a new image ofx usingr as random coins
for the function, i.e.,g(x)(r) = f(x, r). Moreover,g(x) is required to be one-
way in x but not required to succeed in computing this functionality more than
noticeably often. In the theorem, we use the terminologyg(x)(⊥) to refer to a
fixed hash ofx available in the clear in the obfuscated program. On the other
hand, statement2 (the extraction clause) says that any adversary,A, with any
distribution on its input,z, rA (z is auxiliary information andrA is the random
coins forA), that is consistent in the3-round game discussed in the introduction,
there is a corresponding extractor that recovers a preimage. In more detail,A is
supposed to produce, with noticeable success, an image,y0 in the first round and
then againy1 in the third round, such that there is a preimage common to bothy0

andy1. Moreover, the extractor is supposed to succeed only noticeably often.

Theorem 1. Let F = {fn}n∈N be any randomized family of functions andR =
{Rn}n∈N be any distribution on the randomness domain ofF. Then, exactly one
of the following two statements should hold:

1. There is a well-spread distributionX on the input domain ofF, a proba-
bilistic function,G = {Gn} such that for any nonuniform polynomial-time
machine,A:
(Obfuscation)

Pr[x← Xn, g(x)← Gn(x), x′ = A(g(x)) : ∃r′, g(x)(⊥) = fn(x′, r′)] ≤ µ(n). 4

(Functionality)

Pr[x← Xn, g(x)← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) andg(x)(⊥) = fn(x, r′)],

is nonnegligible inn. Moreover,g(x)(r) is efficiently computable, for anyr.
2. For any probabilistic polynomial-time machine (PPT),A, any infinite subset

of security parameters,N′, any distribution,ZR = {ZRn}n∈N′ , on auxil-
iary information and the private input ofA, if:
(Consistency)

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) andy1 = fn(x′, r1))], (1)

is nonnegligible inn, then there exists a nonuniform polynomial-time ma-
chine,K, such that:
(Extraction)

Pr[(z, rA)← ZRn, (y0, s) = A(z, rA), x = K(z, rA) : ∃r0, y0 = fn(x, r0)],
(2)

is nonnegligible inn.

We emphasize that the previous theorem holds for any function. That is, it does
not assume anything about the function, not even that it is efficiently computable.
At a high level, the proof proceeds as follows. Iff is not extractable, we take an
adversary that violates this property and construct from it a distribution on the
input tof (for clarity, refer to this as the license distribution) and an obfuscation
on this distribution such that the obfuscation hides the license but is able to com-
pute new images of it. In more detail, the license distribution is the distribution
induced byA on preimages of its consistent output. For instance, ifA always
outputsfn(0, r0) in the first round andfn(0, r1) in the third round (in this case
there is a straightforward extractor), then the induced distribution always samples
0. Moreover, the corresponding obfuscation is simply the input ofA that causes
A to output valid images of the license. Observe that the license distribution is
well-spread because otherwise the nonuniform extractor can invert with notice-
able probability. Therefore, using this license distribution with the corresponding
obfuscation, statement1 follows from the negation of statement2. The other di-
rection is easier to see and has been referred to in the second paragraph of this
section.

Corollary 1. Any deterministic one-way function is not even weakly extractable.
That is, any deterministic one-way function satisfies statement1 of Theorem 1.
Moreover, this remains true if the function is not efficiently computable.

4 Here and in the rest of the paper,µ denotes a negligible function.

3.1 Amplifying Extraction

Theorem 1 says each function has a weakly extractable or weakly obfuscatable
property. Next, we investigate conditions that allow for amplifying knowledge
extraction in the interactive setting. In particular, the goal in this section is to
reach a vanishing but noticeable extraction error. Recall from the introduction,
this term means that for every polynomial,p, there is an extractor that may depend
on p and fails at most1

p
of the time. In Section 3.2, we address extraction with

negligible error.
Not surprisingly, functions that admit such a property require more than the nega-
tion of statement1 of Theorem 1. Recall that Theorem 1 holds for any function, in
particular, not efficiently-computable functions. However, to decrease the extrac-
tion error, efficient verification is needed. For the purpose of amplifying extrac-
tion, common notions of verification (e.g., Definition 3) are sufficient. However, a
weaker but contrived form of verification is also sufficient, and, in the case of in-
jective functions (i.e., for ally, there is no more than onex such thaty = fn(x, r)
for somer), is also necessary. Thus, we use this notion in the following theorem
for the purpose of achieving a characterization instead of an implication. Infor-
mally, weak verification means that there is a verifier tailored for every adversary,
A. It receivesx and the input ofA and determines whether the output ofA is a
valid image ofx. Moreover, the verifier is allowed to fail, whenA is consistent,
with noticeable probability.

Definition 3 (Efficient Verification, [7]).
A function family ,F = {fn}n∈N, satisfies efficient verification if there exists a
deterministic polynomial time algorithm,VF such that:

∀n ∈ N, x ∈ {0, 1}n, y ∈ range(fn), VF(x, y) = 1 iff ∃r, y = fn(x, r).

Definition 4 (Weak Verification).
A function family ,F = {fn}n∈N, satisfies weak verification if for every PPT,A
(with input z, rA), any distribution,ZR = {ZRn}n∈N′ , on auxiliary informa-
tion and the private input ofA, and any polynomialp, there exists a nonuniform
polynomial-time machine,VA,ZR,p, such that for sufficiently largen ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x, r0, VA,ZR,p(x, z, rA) 6= 1 andfn(x, r0) = y0 or ∃x, VA,ZR,p(x, z, rA) = 1 and∀r0, fn(x, r0) 6= y0)

and(∃x, r0, fn(x, r0) = y0 andfn(x, r1) = y1)] <
1

p(n)
.

Theorem 2. LetF = {fn}n∈N be any randomized function family that is weakly
extractable (satisfies statement2 of Theorem 1). IfF is weakly verifiable (as in
Definition 4), then for any PPTA, any distribution,ZR = {ZRn}n∈N′ , on aux-
iliary information and the private input ofA, there exists a family of nonuniform
polynomial-time machines,U = {Ui}i∈N such that for any polynomialp, there
is an indexip where for alli ≥ ip and sufficiently largen ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = Ui(z, rA) :

(∃r0, fn(x, r0) = y0 or (∀x′, (∀r0, y0 6= fn(x′, r0)) or y1 6= fn(x′, r1))] > 1− 1

p(n)
.

(3)
Moreover, this implication is an equivalence for injective functions.

The proof uses, in an essential way, an amplification lemma which is a version of
Impagliazzo’s hard-core lemma [19] applied to this setting. At a very high level,
this lemma asserts the existence of a family of machines,U, such that “no ma-
chine can succeed noticeably where all of these machines fail”. Using this lemma,
we then claim that for every polynomial,p, there is a memberUip ∈ U that fails
in extracting a preimage with a probability at most1

p
. If this were not to be the

case, then this means that there is some polynomialp, where every machine in
U fails with probability at least1

p
. This implies that there is a noticeable fraction

of the domain whereA is consistent yet all members ofU fail. Lets restrict the
distribution on the input ofA to those on which such an event occurs. We then
apply Theorem 1, in particular, statement2, to obtain an extractor with noticeable
success contradicting the lemma.
The following corollary is one of the main applications of this result.

Corollary 2. Every POW function with auxiliary information that is collision
resistant and has public randomness is extractable with vanishing but noticeable
error in the interactive setting (as in Theorem 2).

3.2 Towards Extraction with Negligible Error

The previous section underscores the conditions that are necessary (at least for
injective functions) and sufficient for extraction with vanishing but noticeable
error. Here, we address the question of obtaining extraction with negligible error.
As before, we show necessary and sufficient conditions to achieve this objective.
However, unlike the previous results, the conditions are on the adversary itself
and not on the function under study. Moreover, as we discuss later on, this result
is in the uniform setting only.

Conditions for extraction with negligible error.As we mentioned in the in-
troduction, extraction with negligible error requires “reliable consistency” on the
behalf of the adversary. Informally, we show that negligible extraction error is
possible for a particular adversary,A, if it can answer challenges consistently with
probability bounded from below by the inverse of some fixed polynomial. Infor-
mally, it may be the case thatA answers consistently with noticeable probability.
Yet, depending on its input, its corresponding consistency probability (taken over
the random coins of the challenger) can be arbitrary small though still noticeable.
In such a scenario, extraction can not achieve negligible error because as answers
are less likely to be consistent, extraction requires more effort and time to find a
preimage. On the other hand, if for almost all of its input,A answers consistently
with a probability bounded from below by an inverse polynomial, this bound can
be translated into an upper bound on the running time of the extractor.
We elaborate on these conditions through a toy example. Suppose there is a func-
tion, f and an adversaryA with the following properties.A outputs a consis-
tent pair(y0, y1) with probability 1

ni for every element in theith 2n

n
fraction

of the input domain forA. Here, the probability is taken over random coins
sent by the challenger in round2. Formally, we have for everyn, and every
(z, rA) ∈ [i2n

n
, (i+1)2n

n
]:

Pr[r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) : ∃x, r0, fn(x, r0) = y0

andfn(x, r1) = y1] =
1

ni
.

Now, it may be the case that extraction depends on how successfulA is in an-
swering challenges. If this is so, then extraction is proportional to consistency. In
other words, asA becomes less consistent (that is, as its input is chosen from the
upper fraction of the domain), extraction requires more time to achieve the same
success rate. In such a scenario, it turns out that overwhelming success requires
super-polynomial time. In other words, noticeable extraction error is unavoidable.
In the previous example, we assume thatA has a noticeable success in every
fraction of the input domain. Also, we assume thatA can not do any better. In
other words,A can not amplify its success rate. However, there are cases whereA
can indeed amplify its success, e.g.,A may provide wrong answers intentionally
even though it can easily compute the correct ones. In such a scenario, extraction
with negligible error is possible. As an example, consider an adversary,A, that
provides wrong answers intentionally.A receivesx as input, computesi such
thatx ∈ [i2n

n
, (i+1)2n

n
], and gives the correct answer only ifr1 ∈ [0, 2n

ni]. Even
thoughA satisfies the previous condition, an extractor can easily recoverx by
reading it from the input. So, we need a meaningful way to separate the notion
of “truthful” failure from “intentional” failure. In the next theorem, we capture
the notion of intentional failure through the existence of another machineA′ that
behaves similarly toA, yet it amplifies its consistency.

Uniform Setting. The proof of Theorem 2 uses a diagonalization technique
to show that no machine can succeed “substantially” where the familyU fails.
The diagonalization is over machines that succeeds noticeably over inputs of
some lengthn. This technique works because this set of machines is enumer-
able. (Specifically, there are at mostn machines that each succeeds exclusively
with probability 1

n
and so on.) However, this technique fails when we try to use it

to achieve negligible error in polynomial time. Two factors seem to prevent this
technique from working. First, the set of nonuniform polynomial-time machines
is not enumerable and so we can not diagonalize over this set (as we discuss later
on, we use the enumeration of uniform machines to prove this result in the uni-
form setting). Second, if we instead consider machines that succeed exclusively,
as in the previous theorem, we need to take into account those that succeed with
negligible probability, yet the probability is not “very negligible”, say,1

nlogn .
However, this causesU to be slightly super-polynomial. Consequently, the next
theorem applies to the uniform setting only. It uses a uniform version of Theorem
1 which can be found in the full version of the paper.
In words, reliable consistency in the next theorem refers to a new machine,A′,
that replaces an adversary,A, with the purpose of undoing any intentional fail-
ure on behalf ofA. The conditions onA′ are as follows:(1) the output ofA′ is
equivalent toA in the first round,(2) the consistency ofA′ is not any worse than
that of A, and(3) there is a fixed polynomial,pA′ , such that almost all inputs
to A′ cause it to be either consistent negligibly or with probability at least1

pA′
.

If there is such anA′ then extraction with negligible extraction error is possi-
ble. Moreover, the converse is also true for efficiently computable and verifiable
functions.

Theorem 3. Let F = {fn}n∈N be any randomized function family that satisfies
the uniform version of statement2 of Theorem 1 and is weakly verifiable (as in
Definition 4, except with respect to uniform deterministic machines).
Let A be any PPT andZR = {ZRn}n∈N′ be any distribution on auxiliary in-
formation and the private input ofA. If there is another PPT,A′, satisfying the
following three conditions of reliable consistency:

1. A′(z, rA) = A(z, rA) for all z, rA.
2.

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) andy1 = fn(x′, r1))]

≥ Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) andy1 = fn(x′, r1))]− µ(n)

3. There exists a polynomialpA′ , such that for any polynomialq > pA′ :

Pr[(z,rA)←ZRn:

1
q(n)≤Pr[r1←Rn, (y0,s)=A′(z,rA), y1=A′(s,r1,aA′): ∃x′, r0, y0=fn(x′,r0) andy1=fn(x′,r1)]≤ 1

p
A′ (n)]≤µ(n)

then there is a deterministic polynomial-time machine,K such that forn ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fn(x, r0) = y0 or (∀x′(∀r0, y0 6= fn(x′, r0)) or y1 6= fn(x′, r1))] > 1−µ(n).
(4)

Moreover, ifF is efficiently computable and verifiable (as in Definition 3), then
the converse is also true.

The proof is similar to that of Theorem 2. There are two points worth highlight-
ing. The proof uses a uniform version of the amplification lemma. Informally, this
lemma provides a family of machines,U, such that any machine can not succeed
even negligibly where this family fails. At a high level, eachUi ∈ U contains
the firsti machines in an enumeration of uniform polynomial-time machine. This
ensures that every polynomial-time machine is eventually included in the family.
We claim that there is a member of this family that achieves negligible extraction
error. If this were not to be the case, then for every memberUi there is a polyno-
mial pi such thatUi fails with probability at least1

pi
. Note thatpi may increase as

i increases. However, by the third condition onA′, consistency ofA′ is bounded
from below by the inverse of a fixed polynomial which is independent ofpi. This
is important because when we restrict the input distribution to whereA′ is consis-
tent andU fails,A′ remains consistent with noticeable probability. Consequently,
we can apply Theorem 1 to get an extractor with noticeable success contradicting
the lemma.

Corollary 3. Any deterministic and efficiently-verifiable (i.e., givenx andy, it is
easy to decide whetherf(x) = y) function is extractable with negligible error if
and only if it is weakly extractable in the uniform setting.

4 Knowledge-preserving Reductions

In Section 3, we investigate the relationships among different notions of extrac-
tion. We address questions regarding the possibility that functions satisfy some
extractability properties, such as weak extraction, extraction with noticeable er-
ror, or extraction with negligible error. Results in this line of work show equiv-
alence among some notions of extraction, e.g., extraction with noticeable error
is equivalent to extraction with nonnegligible success for deterministic and effi-
ciently verifiable functions (Corollary 3).

Here, we take a different approach. Specifically, we investigate building extractable
functions with additional hardness properties from extractable functions with
simpler computational assumptions. In particular, we revisit the literature on re-
ductions among primitives to see if these reductions or variations of preserve
noninteractive extraction.
The results are mostly positive. In particular, reductions from weak one-way func-
tions to strong one-way functions, from one-way functions to2-round commit-
ments and public-key encryption scheme (assuming in addition a trapdoor permu-
tation) are knowledge preserving or can be easily modified to be so. Moreover,
extractable pseudorandom generators imply extractable pseudorandom functions
and extractable2-round commitments. One important open question is whether
extractable one-way functions imply extractable pseudorandom generators. In
pursuit of answering this question, we show that the HILL construction [17] is
not knowledge preserving. On the other hand, an extractable pseudorandom gen-
erator can be constructed from the KE and the DDH assumptions.
Next, we provide a detailed presentation of these results. They address nonin-
teractive extraction with negligible error only. Interactive extraction is primar-
ily useful for probabilistic functions because by Corollary 1, deterministic one-
way functions and pseudorandom generators are not interactively extractable. As
for probabilistic functions, [8] provides a transformation from POW functions
to interactively-extractable POW functions. Moreover, every POW function with
auxiliary information and public randomness is interactively extractable (Corol-
lary 2).

From extractable weak one-way to extractable strong one-way functions.
The standard reduction from weak one-way functions to strong one-way func-
tions [24, 12] is knowledge preserving. Specifically, letF = {{fk}k∈Kn}n∈N be
a family of weak functions with1

p
as a lower bound on the failure probability

of all polynomial-time machines. Furthermore, suppose thatF is extractable with
negligible error with respect to some well-spread distribution,K, on the function
description. Then, the family,G = {{gk}k∈Kn}n∈N, wheregk(x1, ..., xnp(n)) =
fk(x1), ..., fk(xnp(n)), is also extractable with respect toK.
Let A be any adversary that receivesk, z, rA as input (wherez andrA are auxil-
iary information and random coins ofA, respectively) and outputsy in the range
of Gk. LetB be a machine that receivesk, z, rA, i as input and outputsyi, where
i is uniform andA(k, z, rA) = y1, ..., ynp(n). Note thatB outputs a valid image
underfk with at least the same probability asA outputs a valid image undergk.
Therefore, there is a corresponding extractor,KB , for B. LetKA be an extractor
for A that runsKB on k, z, rA, i for i = 1 to np(n). Except with negligible
probability, if A outputs a valid image,KB computes the correct images for all
fk(xi). Thus,KA is a negligible-error extractor forA.

From extractable one-way functions to extractable pseudorandom gen-
erators. First, we point out that the HILL construction [17] of pseudorandom
generator from even injective one-way functions is not knowledge preserving.
Specifically, the family,G, is not extractable, whereGk(x, h) = h(fk(x)), h, p(x),
fk is an extractable,1−1 one-way function,h is a hash function, andp is a hard-
core predicate forfk. This is so because the adversary, that receives and outputs
a random string, succeeds with noticeable probability in producing a valid image
underGk. On the other hand, no extractor can recover a preimage becauseGk is
pseudorandom.
Constructing extractable pseudorandom generators from extractable one-way func-
tions remains open. The obstacle seems to be that somehow,fk(x), should be

easy to compute from the output of the generator so that it is possible to use the
original extractor to recoverx. Consequently, forG to be a pseudorandom gen-
erator, it should also be easy to computefk(x) from a random string, for some
x. However, the range off may be distinguishable from uniform, e.g., the firstn
bits may always be0. So, it is not clear how to putfk(x) in the output without
compromising pseudorandomness.
A point worth mentioning here is that it is possible to construct extractable pseu-
dorandom generators from a stronger knowledge requirement on the one-way
function. The original knowledge assumptions states that any adversary that out-
puts fk(x) as a sequence of bits“knows” x. Consider the following stronger
version. Informally, if an adversary outputsfk(x) specified in another represen-
tation, it should still knowx. In particular, the type of representation,R, we are
interested in is a randomized representation of strings, whereR(y, r) is indistin-
guishable from uniform and everyR(y, r) has a unique preimage (except with
negligible probability). We give a concrete example: Letπ be a one-way per-
mutation andb be a corresponding hardcore predicate. Then,R(y, r1, ..., r|y|) =
π(r1), ..., π(r|y|), y⊕b(r1), ..., b(r|y|). Note thatR is pseudorandom and unam-
biguous, in that there is a singley as a valid preimage of any output. Now, iffk

is extractable with respect to this representation, then the following construction
is an extractable family of pseudorandom generators.

Gk(x, r1, ..., r|fk(x)|) = R(fk(x), r1, ..., r|fk(x)|), G
′(x)⊕ r1, ..., r|fk(x)|,

whereG′ is another pseudorandom generator with a suitable expansion factor
that remains pseudorandom in the presence off (butG′ is not assumed to be ex-
tractable). In other words,f(x), G′(x) is assumed to be indistinguishable from
f(x), U|G′(x)| (in this section,Ul denotes a uniform variable over strings of
lengthl).5

Finally, we mention that the knowledge of exponent assumption [16] (with the
DDH assumption) imply the existence of extractable pseudorandom generators,
specifically,Gg,ga(x) = gx, gax, whereg is a generator for the group for which
these assumptions apply.

From extractable pseudorandom generators to extractable pseudoran-
dom functions.The notion of extractable pseudorandom functions is slightly
different from the notions considered so far. Informally, a pseudorandom function
is extractable if any adversary that computesfk(x, r), for anyr that a challenger
chooses, has a corresponding extractor that recoversx.
Formally, for any PPTA, any well-spread distribution,Kn, on the function de-
scription, any distribution,ZR = {ZRn}n∈N′ , on auxiliary information and the
private input ofA, there is polynomial-time machines,K, such that:

Pr[(z, rA)← ZRn, k ← Kn, x = K(k, z, rA) :

∃r, fk(x, r) 6= A(k, z, rA, r) and∃x′,∀r′, fk(x′, r′) = A(k, z, rA, r′)] ≤ µ(n).

The construction of extractable pseudorandom functions uses the construction of
[13] on all input, except0. On input0, the output is exactly that of the extractable
generator in order to allow for successful extraction. Formally, letG1 be any in-
jective and extractable pseudorandom generator with a2n2 (or more) expansion

5 Note that the machine that outputs a random string as a possible representation offk(x) under
R does not succeed considerably better than the machine that output a random string as a
possiblefk(x).

factor. Letb a hardcore bit forG1 andG2
k(x1, . . . , xn) = G1

k(b(x1), . . . , b(xn)),
where|x1| = · · · = |xn| = n. W.l.o.g. assumeG2 has a2n expansion factor,
otherwise, trim the output to a suitable length. LetF′ be the family of pseudo-
random functions obtained by applying the construction of [13] onG2. Then, the
extractable family of pseudorandom functions,F = {{fk}k∈Kn}n∈N, is defined
as follows:

fk((x1, . . . , xn), r) =

{
G1

k(x1), . . . , G
1
k(xn) if r = 0

f ′k((x1, . . . , xn), r) otherwise

Let A be any PPT that receivesk, z, rA, r and outputsfk(x1, . . . , xn, r) for
somex1, . . . , xn. Let B be a machine that receivesk, z, rA, i (wherei is uni-
form), computesA(k, z, rA, 0) = G1

k(x1), . . . , G
1
k(xn) and outputsG1(xi).

SinceG1 is extractable, there is a machine,KB that recovers the corresponding
xi on inputk, z, rA, i. Then, the extractor,KA, for A andF, simulatesKB on
inputk, z, rA, i, for i = 1, . . . , n, and outputsx1, . . . , xn.

From extractable one-way functions to extractable public-key encryp-
tion. Before we discuss extractable public-key encryption, we briefly mention
that private-key encryption with a “strong” extraction property (that is, plaintext-
aware [5]) can be easily constructed from standard computational assumptions
without knowledge assumptions. However, we emphasize that not all private-
key encryption are extractable, e.g., a random string is a valid ciphertext under
Esk(m, r) = r, m ⊕ fsk(r) [12], wherefsk is a pseudorandom function. How-
ever, the previous construction can be easily modified to become extractable.
Specifically,Esk=(sk1,sk2)(m, r) = r, m ⊕ fsk1(r), fsk2(m, r) has the prop-
erty that without knowledge ofsk, it is hard to find anewciphertext even if the
adversary sees encryption of multiple messages.
Extractable one-way functions can be used with a trapdoor permutation to con-
struct public-key encryption schemes with the property that any adversary that
computes a ciphertextwithout seeing another ciphertext“knows” the correspond-
ing plaintext. This notion is similar to plaintext-aware encryption [5, 18, 4, 11].
Informally, the latter notion says that no adversary, with access to ciphertext of
messages it may not know, can produce a ciphertext without knowing the corre-
sponding plaintext. In this work we focus on extraction with independent auxil-
iary information only. So, we leave the study of constructing plaintext-aware en-
cryption from extractable functions to future work as it requires extraction with
dependent auxiliary information [8]. We note that [8] constructs plaintext-aware
encryption from extractable POW functions with dependent auxiliary informa-
tion.
Let F = {{fk}k∈Kn}n∈N andΠ = {{πpk}pk∈PKn}n∈N be families of ex-
tractable one-way functions and trapdoor permutations, respectively. Moreover,
suppose thatF andΠ remain one-way with respect to each other, specifically, for
a uniformr, k, pk, fk(r), πpk(r) is one-way. Letb be a hardcore predicate for
the functiongk,pk(r) = fk(r), πpk(r). Note thatg is extractable and injective.
Let Ek,pk(m, (r1, . . . , rn)) = gk,pk(r1), . . . , gk,pk(rn), m⊕ b(r1), . . . , b(rn).
It can be show that for any adversary that computes a valid ciphertext, without
seeing another ciphertext, there is an extractor that recoversr1, . . . , rn and con-
sequently,m.

From extractable one-way functions to extractable1 − 1 trapdoor func-
tions. Observe thatg, as defined above, is an extractable1−1 trapdoor function
if F andΠ remain one-way with respect to each other. Moreover, the same result
holds whenΠ is a family of1− 1 trapdoor functions.

Extractable commitments.Informally, an extractable commitments guaran-
teeat the commit stagethat the sender knows the secret if the commitment is
valid (that is, it can be opened). Even though in a stand-alone protocol, this ad-
ditional property may seem irrelevant (because the sender reveals the secret in
the decommit stage and nothing happens between these two stages), it is one of
several important properties that come into play in more complex protocols with
stronger security requirement. Thus, extractable commitments in the CRS model
were introduced and studied in [22, 9, 10] as part of zero-knowledge proofs and
universally-composable commitments.
We show that known commitments constructions from injective one-way func-
tion [6] and from pseudorandom generators [21] can be easily modified into2-
round extractable commitments if the underlying primitives are extractable. We
note that Ventre and Visconti [23], independently construct2-round extractable
commitments from plaintext-aware encryption schemes (with additional assump-
tions).

Extractable commitments from1− 1 extractable, one-way functions.Let
F be a family of injective and extractable one-way functions. The2-commitment
starts with the receiver sending a random function description,k, and the sender
responds withfk(u1), . . . , fk(un), m⊕ b(u1), . . . , b(un), whereb is a hardcore
bit for fk. Note that it is essential for the hiding property that the family,F be
one-way with respect toanyfunction in the family.

Extractable commitments from extractable pseudorandom generators.We
modify the2-round commitment scheme of [21] to make it extractable. In the
first round, the receiver sends random stringsr1, . . . , rn and the description,k,
for the pseudorandom generator. In the second round, the senders responds with
gk(u1)⊕ rm1

1 , . . . , gk(un)⊕ rmn
n , wherermi

i = ri if mi = 0 andrmi
i = 03n,

otherwise. As in the previous construction, every function in the family is as-
sumed to be pseudorandom.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs.Crypto, 2001.

2. M. Bellare and O. Goldreich. On defining proofs of knowledge.Crypto,
1992.

3. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols.Crypto, 2004.

4. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption
without random oracles.Asiacrypt, 2004.

5. M. Bellare and P. Rogaway. Optimal asymmetric encryption.EuroCrypt,
1994.

6. M. Blum. Coin flipping by phone.IEEE Computer conference, 1982.
7. R. Canetti. Towards realizing random oracles.Crypto, 1997.
8. R. Canetti and R. R. Dakdouk. Extractable perfectly one-way functions.

ICALP, Track C, 2008.
9. R. Canetti and R. Fischlin. Universally-composable commitment.Crypto,

2001.
10. Giovanni Di Crescenzo. Equivocable and extractable commitment schemes.

SCN, 2002.

11. A. Dent. The cramer-shoup encryption scheme is plaintext aware in the stan-
dard model.Eurocrypt, 2006.

12. O. Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

13. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33, 1986.

14. S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with
auxiliary input.FOCS, 2005.

15. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems.STOC, 1985.

16. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge proto-
cols. Crypto, 1998.

17. J. Hastad, L. Levin. R. Impagliazzo, and M. Luby. Construction of a pseudo-
random generator from any one-way function.SIAM Journal on Computing,
1999.

18. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration.
Crypto, 2003.

19. R. Impagliazzo. Hard-core distributions for somewhat hard problems.FOCS,
1995.

20. M. Lepinski. On the existence of3-round zero-knowledge proofs.M.S.
Thesis, 2002.

21. M. Naor. Bit commitments using pseudorandom generators.Journal of
Cryptology, 1991.

22. A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient
assumptions for non-interactive zero-knowledge proofs of knowledge for all
np relations.ICALP, 2000.

23. C. Ventre and I. Visconti. Message-aware commitment schemes.Unpub-
lished manuscript, 2008.

24. A.C. Yao. Theory and application of trapdoor functions.FOCS, 1982.
25. Y. Zheng and J. Seberry. Immunizing public key cryptosystems against cho-

sen ciphertext attacks.Journal on Selected Areas in Communication, 1993.

