
Efficient Oblivious Pseudorandom Function with
Applications to Adaptive OT and

Secure Computation of Set Intersection

Stanisław Jarecki and Xiaomin Liu

University of California, Irvine

Abstract. An Oblivious Pseudorandom Function (OPRF) [15] is a two-party
protocol between sender S and receiver R for securely computing a pseudoran-
dom function fk(·) on key k contributed by S and input x contributed by R, in
such a way that receiver R learns only the value fk(x) while sender S learns
nothing from the interaction. In other words, an OPRF protocol for PRF fk(·) is
a secure computation for functionality FOPRF : (k, x)→ (⊥, fk(x)).
We propose an OPRF protocol on committed inputs which requires only O(1)
modular exponentiations, and has a constant number of communication rounds
(two in ROM). Our protocol is secure in the CRS model under the Composite
Decisional Residuosity (CDR) assumption, while the PRF itself is secure on a
polynomially-sized domain under the Decisional q-Diffie-Hellman Inversion as-
sumption on a group of composite order, where q is the size of the PRF domain,
and it has a useful feature that fk is an injection for every k.
A practical OPRF protocol for an injective PRF, even limited to a polynomially-
sized domain, is a versatile tool with many uses in secure protocol design. We
show that our OPRF implies a new practical fully-simulatable adaptive (and com-
mitted) OT protocol secure without ROM. In another example, this oblivious PRF
construction implies the first secure computation protocol of set intersection on
committed data with computational cost of O(N) exponentiations where N is
the maximum size of both data sets.

1 Introduction

PRF and Oblivious PRF. A pseudorandom function (PRF) [17] is an efficiently com-
putable keyed function fk(·) whose values are indistinguishable, for a randomly chosen
key k, from random elements in the function range. The oblivious PRF, or OPRF [15],
is a protocol that allows the sender S, on input the key k, to let the receiver R compute
the value fk(x) of a PRF fk(·) on any input x of R’s choice without releasing any other
information to R, and do so obliviously in the sense that sender S learns nothing from
the protocol, similarly as in oblivious transfer [28, 14] or oblivious polynomial evalua-
tion [24]. In other words, an OPRF protocol corresponding to a PRF function fk(·) is a
secure computation protocol for functionalityFOPRF : (k, x)→ (⊥, fk(x)). To enforce
consistency between several protocol instances it is helpful to extend the above fuction-
ality FOPRF to include verification whether k and x contributed by S and R correspond
to some previously committed values. We call this extended functionality a committed

OPRF, and in parallel to public-key primitives we refer to the commitment to a PRF key
k as a corresponding public key pk.

Examples of Oblivious PRF Applications: Keyword Search, Adaptive OT, SFE for
Set Intersection. An oblivious PRF has numerous exciting applications. It was intro-
duced as a primitive by Freedman et al. [15] with an application to privacy-preserving
Keyword Search. This protocol problem is otherwise known as symmetrically-private
Keyword PIR [12] or “Keyword OT”, and it can be defined as a secure computation
for the following functionality: Sender S contributes a set of (keyword,data) pairs
{xi, yi}i=1..N , where all xi’s are unique, receiver R contributes a keyword x, and the
functionality gives data item yi to R if xi = x, or a symbol ⊥ if all xi’s differ from
x. The reduction of Keyword OT to Oblivious PRF is very simple provided that fk is
an injection for every k and that the keyword domain is polynomial-sized: The sender
S picks two PRF keys k1, k2, publishes a set of pairs {(fk1(xi), fk2(xi) ⊕ yi)}i=1..N

together with commitments pk1, pk2 and a proof of knowledge of the corresponding
k1, k2. (The restriction that the keyword domain is polysized is needed for simulatabil-
ity because it enables extraction of sender’s inputs given keys k1, k2.) Then R computes
z1 = fk1(x) and z2 = fk2(x) via two instances of the oblivious PRF protocol, uses z1

to check if there exists an xi in S’s set s.t. xi = x, and if so then it uses z2 to recover
the corresponding yi.

Essentially the same protocol is also a solution to the Adaptive OT problem, intro-
duced by Naor and Pinkas [22]. A (fully simulatable) adaptive OT is a secure com-
putation protocol for a reactive functionality where S contributes a sequence of N
values Y = {yi}i=1..N , and then S and R can engage in any number of 1-out-of-N
OT protocol instances on these values and any index i contributed by R. An adaptive
OT can be implemented using oblivious (committed) PRF if S publishes a sequence
{fk(i)⊕ yi}i=1..N , a commitment pk and a ZK proof of knowledge of the correspond-
ing k, and for each OT instance the two parties run an OPRF protocol on S’s key k and
R’s adaptively chosen index i, which lets R compute fk(i) and thus retrieve yi. (This
protocol is related to the ROM-based adaptive OT scheme of Camenisch, Neven, and
Shelat [8], as we explain in subsection below.)

Another application of oblivious PRF’s was recently shown by Hazay and Lindell
[19], who use an oblivious PRF to construct a very simple protocol for a set intersection
function, where S and R contribute their respective sets of N data items, X and Y , and
the protocol lets R compute the intersection X ∩ Y without revealing anything else.
As in any secure function evaluation (SFE), if the protocol ensures that both parties
enter previously committed inputs then both parties can compute the output (without
guaranteeing fairness) if the SFE protocol is run in both directions. In Hazay-Lindell
protocol, S picks a PRF key k, sends to R a commitment pk to k and a set of outputs
of the PRF function fk(·) on all its inputs, X ′ = {fk(x)}x∈X . Note that these PRF
values are indistinguishable from n random values in f ’s range, and hence in particular
X ′ cannot be efficiently correlated with X . Players S and R engage then in n OPRF
instances on respective inputs k and y for all y ∈ Y , allowing R to compute the set
Y ′ = {fk(y)}y∈Y . If fk is an injection then R can conclude that y ∈ X ∩ Y iff
y ∈ X ′ ∩ Y ′. Moreover, if we use committed OPRF and S proves that values fk(x)

correspond to committed inputs x, the result is an SFE protocol for set intersection on
committed data sets.

Previous Work on Oblivious PRF’s. The first oblivious PRF construction was given
by Naor and Reingold [25], based on the PRF construction given in the same paper,
fk(x) = g

Q
xi=1 ri , where key k is the sequence of T random elements r1, ..., rT in

Zq, q is the order of the group 〈g〉 in which the Decisional Diffie-Hellman assump-
tion holds, and T is the bitlength of elements x in the PRF domain. This first oblivious
PRF protocol required O(t) rounds. Freedman et al. [15], based on the previous work
of Naor and Pinkas [21, 22], improved this to a constant-round protocol, secure under
DDH. This protocol implements a “weak OPRF” notion (which is just as good in all the
applications listed above), where the receiver is allowed to learn additional information
about the PRF key as long as that information does not change the pseudorandomness
of the PRF function on any new inputs. This protocol uses T parallel OT instances, one
for each ri value, which using best known OT techniques, e.g. [23, 1], translates into
O(T) exponentiations. The OT-batching techniques of Ishai et al. [20] do not seem to
reduce this overhead in the case of a single OPRF instance if the PRF domain size is
smaller or equal to the security parameter. The Hazay-Lindell set intersection proto-
col implemented with this OPRF involves NT parallel OT instances, but it is an open
problem to efficiently use the OT-batching techniques of [20] in this context because
the case of malicious adversaries seems to require batching committed OT instances
and proving that the committed OT inputs correspond to the PRF key.

The ROM-based Adaptive OT construction from any unique blind signature scheme
given by Camenisch et al. [8] relies on a weak OPRF protocol for fk defined as fk(m) =
H(SIGk(m)), which is a PRF in ROM if the signature scheme is CMA-secure, where
the weak OPRF functionality on inputs (k,m) releases the signature SIGk(m) in ad-
dition to the proper PRF value H(SIGk(m)). However, for the resulting protocol to be
secure computation of this functionality we need a secure computation protocol for the
blind signature functionality, FBlSg(k,m) → (⊥,Sigk(m)). While there exist efficient
unique blind signature schemes, e.g. by Chaum [10] or Boldyreva [3], these schemes
rely on non-standard “one more” type of security assumptions, and it is an open prob-
lem to extend such blind signature protocols to secure computation of FBlSg, and to
ensure that the computation proceeds on committed receiver’s input m.

An Adaptive OT construction of Green and Hohenberger from blind IBE schemes
[18] can also be seen as variant of an OPRF protocol. Assuming the ROM model one
could define fk(ID) = H(skID) where k is the KDC’s master private key and skID

is the IBE decryption key corresponding to identity ID. If this is a blind IBE scheme
then we could use the blinded private-key retrieval protocol as an implementation of a
weak OPRF which releases skID in addition to the hash value H(skID). However, effi-
cient IBE’s seem to require bilinear maps, which are not needed for the OPRF protocol
we present, and moreover it remains an open problem to upgrade such construction to
secure computation of the ideal OPRF functionality, and to further extend it to compu-
tation on committed inputs.

Our Result: Efficient (Committed) Oblivious PRF. We propose an OPRF construc-
tion which requires only O(1) modular exponentiations, and has a constant number
of communication rounds (two in ROM). The secure computation protocol for func-

tionality FOPRF : (k, x) → (⊥, fk(x)) for our PRF function family fk(·) builds on
the Camenisch-Shoup [9] version of Paillier encryption [26], and it is secure in the
CRS model under the Composite Decisional Residuosity (CDR) assumption. The PRF
fk(·) itself is a variant of the PRF construction of Dodis-Yampolskiy [13] based on the
Boneh-Boyen signature [4], but moved to a group of a composite order, the safe RSA
modulus on which the Camenisch-Shoup encryption operates. As far as we know, this
OPRF construction is the first constant-round efficient OPRF which is actually a secure
computation protocol for the ideal OPRF functionality FOPRF.

This PRF has a useful feature that fk is an injection for every key k, and it secure
on a domain of bitstrings of length |q| under the Decisional q-Diffie-Hellman Inversion
(q-DHI) assumption on a group whose order is a safe RSA modulus. Consequently,
by positive hardness results of [9, 13] (see also related upper bounds on q-DHI hard-
ness given by Jung Hee Cheon [11]), the domain of this PRF is polynomially-sized,
but this restriction does not stop any of the OPRF applications we listed above. The
one application it constrains is the secure computation of set intersection, where the in-
puts must be encoded in a polynomially-sized domain. Note that in many applications
set intersection protocol might run on short inputs anyway, e.g. names, social security
numbers, etc. However, extending the domain of this OPRF construction would allow
secure computation of set intersection on larger input domains.

Another very useful feature of our OPRF construction is that it is an efficient com-
mitted OPRF, i.e. our secure computation protocol for extended version of the FOPRF

functionality which checks whether both parties contribute previously committed inputs
into the protocol.

Technical Roadmap: We give a brief intuition for constructing an OPRF protocol for
the Dodis-Yampolskiy PRF fk(x) = g1/(k+x) in group 〈g〉 of composite order n, and an
encryption scheme which is additively homomorphic on message domain Zn, like Pail-
lier encryption. We assume that this encryption allows for shared decryption. Namely,
one can form a “joint key” pk = pks · pkr from two public keys pks, pkr, and the cor-
responding private keys sks, skr allow for shared decryption of ciphertext encrypted
under pk. This is true of the Camenisch-Shoup version [9] of Paillier encryption. Us-
ing expressions like C

(r)
v , C

(s)
v , and Cv , to denote ciphertexts which encrypt variable

v under, respectively, pkr, pks, or pk, we have that partial decryption of Cv under skr

creates C
(s)
v , and a partial decryption of Cv under sks creates C

(r)
v .

The idea of our construction goes like this: Sender S and receiver R exchange public
keys pks and pkr and encrypt their inputs k and x under the joint key pk = pks · pkr

as Ck and Cx. Then by the homomorphism of the encryption Ck · Cx = Cα where
α = k+x. Player R then randomizes the encrypted value α by picking random a in Zn

and computing Cβ = (Cα)a, for β = a ·α. R also encrypts a under pk, as Ca, partially
decrypts Cβ into C

(s)
β , and sends (Ca, C

(s)
β) to S. Sender S decrypts C

(s)
β to get β and

computes Cσ = (Ca)1/β , for σ = a/β = 1/α = 1/(k+x). Finally, S picks an additive
share σs of σ, computes vs = gσs , encrypts it as Cσs

and computes Cσr
= Cσ/Cσs

,
for σr = σ − σs. S also partially decrypts Cσr

into C
(r)
σr and sends (vs, C

(r)
σr) to R. R

decrypts C
(r)
σr and uses σr to compute v = vs · gσr = gσs+σr = g1/(k+x).

Our actual protocol streamlines these operations, and uses solely keys pkr, pks in-
stead of the joint key pk, but the above sketch is an idea behind our construction.

Related Concurrent Work: We note that independently from our work, Belenkiy et al.
[2] recently showed a different protocol for oblivious computation of the same function
fk(x) = g1/(k+x), also using Paillier encryption. Their protocol is somewhat similar to
ours but it uses multiplicative rather than additive sharing of the crucial exponent value
σ = 1/(k + x), and it is about twice faster than our protocol as a result. Moreover, the
protocol of [2] can work on groups with a 160-bit prime order unrelated to the RSA
modulus n, instead of a composite order we need, leading to further speed-ups in the
applications of this OPRF. While the initial version of this protocol published in [2] is
not a secure computation of the OPRF functionality, it is not difficult to modify this
protocol to secure computation in the CRS model using techniques similar to ours.

Organization: We introduce our notation, security assumptions, and important defini-
tions in Subsection 2.1. In Subsection 2.2 we show the main tool in our efficient OPRF
protocol construction, an additively homomorphic encryption scheme with verifiable
encryption and decryption, and in Subsection 2.3 we show an efficient instanciation of
such scheme, i.e. the Camenisch-Shoup encryption scheme. In Section 3 we present
our main contribution, a construction of an OPRF protocol. Finally we show two ap-
plications of a committed OPRF, to Adaptive OT and to secure computation of the Set
Intersection problem, in Sections 4 and 5 respectively.

2 Preliminaries and Tools

2.1 Notation, Definitions, and Security Assumptions

Notation. We use a ← A to denote that a is the output of the (randomized) algorithm
A and a ←R S if a is chosen uniformly at random from set S. If A is an algorithm
then we will sometimes use A(x) to denote a set of all possible outputs of A on input
x. We use P{b} to denote a zero-knowledge proof system that statement b holds, and
PoK{a | φ(a)} to denote a zero-knowledge proof of knowledge of value a that satisfies
a publicly computable relation φ. Finally, most numerical operations in the paper are
group operations unless specifically noted otherwise.

Factoring Assumption (Definition). Let RSAGen denote an algorithm that picks safe
RSA moduli with a given security parameter. Namely, RSAGen(1κ) chooses two ran-
dom primes p′1, p

′
2 s.t. |p′1| = |p′2| = κ and p1 = 2p′1 + 1 and p2 = 2p′2 + 1 are also

primes, and outputs n = p1 · p2. We say that factoring safe RSA moduli is hard if for
every efficient algorithm A the probability Pr[A(n) ∈ {p1, p2} | n← RSAGen(1κ)] is
a negligible function of κ.

Decisional q-Diffie-Hellman Inversion (q-DHI) Problem (Definition). The computa-
tional q-DHI problem in a group with generator g and order n is to compute g1/α given
the tuple (g, gα, . . . , g(αq)), for random α in Z∗

n. We define the hardness of the de-
cisional version of this problem for any fixed constant q as follows: Let gGen be an
algorithm which on input a security parameter κ picks a modulus n and a generator
g of a multiplicative group G of order n. For example gGen can be a composition of

RSAGen and an algorithm gGen′ which on input n output by RSAGen finds the first
prime p s.t. n|p − 1, and sets g as any element of order n in Z∗

p. We say that the Deci-
sional q-DHI Assumption holds on group (family) G, if for every efficient algorithm A
function εA(κ) = |RealA(κ)− RandomA(κ)| is negligible, where:

RealA(κ) = Pr
[
A(g, gα, . . . , g(αq), g1/α) = 1 | (g, n)← gGen(1κ); α← Z∗

n

]
RandomA(κ) = Pr

[
A(g, gα, . . . , g(αq), h) = 1

∣∣∣∣ (g, n)← gGen(1κ); α← Z∗
n;

h← G

]
Pseudorandom Function (Definition). For notational simplicity we consider a version
of the general PRF notion which is custom-made to fit the PRF implementation we
consider in this paper. Namely, the PRF function fk maps |q|-bit strings to elements
of group G. We say that function (family) fk defined by the key generation algorithm
KGen is a PRF if |RealA(κ)− RandomA(κ)| is a negligible function of κ, where:

RealA(κ) = Pr
[
Afk(·|¬x)(v, st) = 1

∣∣∣∣ (k, pk)← KGen(1κ);
(x, st)← Afk(·)(pk); v ← fk(x)

]
RandomA(κ) = Pr

[
Afk(·|¬x)(v, st) = 1

∣∣∣∣ (k, pk)← KGen(1κ);
(x, st)← Afk(·)(n, g, pk); v ← G

]
In the above experiments fk(·|¬x) denotes an oracle fk(·) modified to output ⊥ on x.

Dodis-Yampolskiy’s PRF and Boneh-Boyen’s Function in Composite-Order Groups.
Our OPRF construction relies on a variant of the PRF scheme of Dodis-Yampolskiy
[13], based on the Boneh-Boyen unpredictable function [4], with the sole modifica-
tion being a substitution of a prime-order group with a group whose order is a safe
RSA modulus. The Boneh-Boyen function [4] is fk(x) = g1/(k+x) where g generates
a group G of prime order p and k is a random element in Zp. This function is un-
predictable under the computational q-DHI assumption on G. Dodis-Yampolskiy [13]
considered the same function as a source of a verifiable pseudorandom function (VRF)
in a group with a bilinear map, and showed that it is secure under a decisional ver-
sion of the q-DHI assumption on the target group of the bilinear map. However, the
same argument also shows that the decisional q-DHI assumption on group G itself im-
plies that the Boneh-Boyen function is a PRF. Morevoer, the same arguments which
were done by [4, 13] for prime-order groups also imply that (1) the Boneh-Boyen func-
tion in a composite-order group remains a PRF under the decisional q-DHI assumption
on such groups (and hardness of factoring) and (2) the same generic-group argument
which motivated trust in the q-DHI assumption on the prime-order groups carries to
composite-order groups as well.

Specifically, for security parameter κ we define the following PRF function family:
The key generation algorithm picks n ← RSAGen(1κ), g ← gGen′(n), k ← Z∗

n, and
computes pk← gk. We define fk(x) for each x ∈ {0, 1}|q| as follows:

fk(x) =
{

g1/(k+x) if gcd(k + x, n) = 1
1 otherwise

Claim 1: The Decisional q-DHI Assumption holds on a generic group (family) with a
safe RSA order.

Argument Sketch: This claim can be verified by inspecting the generic-group argument
for the computational q-DHI problem on a prime-order group given in [4], because
generic arguments for decisional rather than computational problems are identical, and
all that this specific argument requires is that the group order has only large factors.

Claim 2: The function (family) fk defined above is a PRF on the domain of q-domain
strings if factoring safe RSA moduli is hard and if the Decisional q-DHI Assumption
holds on group (family) G.

Argument Sketch: Assuming decisional q-DHI holds in group G of order a safe RSA
modulus n, the argument why fk(x) in G is a PRF follows from the argument of The-
orem 1 in [13] and the fact that under the assumption of hardness of safe RSA moduli,
efficient algorithms can encounter elements v s.t. gcd(v, n) 6= 1 only with negligi-
ble probability. The reduction given in the proof of Theorem 1 in [13] uses inverses
(α − xi∗ + xi) in the exponent for all xi in the domain of fk, where xi∗ is the value
for which the adversary must distinguish fk(xi∗) from a random element in G. Note
that by the factoring assumption the probability that in this game there appears i s.t.
(α − xi∗ + xi) is not co-prime with n is negligible. Thus the argument for pseudo-
randomness of fk(x) = g1/(k+x) shown in [13] for prime-order groups extends to
groups whose order is hard to factor.

2.2 Additively Homomorphic Verifiable Encryption with Additional Properties

In order to construct an oblivious PRF, we need an additively homomorphic encryption
scheme with verifiable encryption and verifiable decryption.

– Setup(κ) on security parameter κ outputs the public parameter par to be used in all
subsequent algorithms. This par also defines the plaintext spaceM, a finite additive
group Zn for some n.
For notational simplicity, we omit explicit mention of par as the input to all the
following algorithms.

– KGen outputs a random public/secret key pair (pk, sk). Parameters par also defines
a relation KVal (for key validity) on all valid (pk, sk). We also require an efficient
proof system

PoK{sk | (pk, sk) ∈ KVal} (1)

– Encpk(m) on public key pk and message m outputs a ciphertext C which is a ran-
dom encryption of m under pk. We require an efficient realization of the following
proof system given a public key pk and ciphertext C

PoK{m | C ∈ Encpk(m)} (2)

– Decsk(C) is a deterministic algorithm on secret key sk and ciphertext C that out-
puts a message m. We require an efficient realization of the following proof system
given a public key pk and ciphertext C

P{∃ sk, s.t. m = Decsk(C) ∧ (pk, sk) ∈ KVal} (3)

Besides semantic security, we require the following properties of the above encryption
scheme:

– Additive Homomorphism: We require that there is an efficient operation on ci-
phertexts, which for convenience we denote as a multiplication, s.t. Encpk(m0) ·
Encpk(m1) ∈ Encpk(m0+m1). We can also define exponentiation and division op-
erations on ciphertexts, and by homomorphism of the encryption (Encpk(m))a =
Encpk(a ·m) and Encpk(m0)/Encpk(m1) ∈ Encpk(m0 −m1), for any a and any
m, m0, m1 inM.

– Verifiable Encryption: We require an efficient realization of the following proof
system, given public key pk, ciphertext C, and two elements g and y of some mul-
tiplicative group of order |M| = n:

PoK{m | C ∈ Encpk(m) ∧ y = gm)} (4)

In addition, we require an efficient realization of the following proof system, given
public keys pk and pk′ and ciphertexts C1, C2 and C ′, where C1 and C2 are sup-
posed to be ciphertexts under public key pk.

PoK{m | ∃m′ ∈ Zn, s.t. C ′ = Encpk′(m′) ∧ C2 ∈ (C1 · Encpk(m))m′
} (5)

– Verifiable Decryption: We require an efficient realization of the following proof
system, given public keys pk and pk′ and ciphertexts C, C1 and C2, where C is
supposed to be ciphertext under public key pk and C1 and C2 are supposed to be
ciphertexts under public key pk′:

P

{∃m,m′ ∈ Zn,m′′, sk s.t. m = Decsk(C) ∧ (pk, sk) ∈ KVal

∧ C1 ∈ (C2 · Encpk′(m′))m′′
∧ y = gm′ ∧ m ·m′′ = 1 mod n

}
(6)

2.3 Efficient Instantiation Using Camenisch-Shoup Encryption

The above encryption scheme can be efficiently instantiated with just the semantically
secure version of Camenisch-Shoup Encryption [9].

– Setup(κ) generates public parameter par = (g, n), where n is safe RSA modulo,
i.e. n = p1 · p2, p1 = 2p′1 + 1, p2 = 2p′2 + 1, and p1, p2, p′1 and p′2 are all primes,
and g is of order p′1p

′
2. Let h = n + 1 and n′ = p′1p

′
2. The message spaceM is the

additive group Zn.
– KGen(par) picks random x in [0, n

4], computes y ← gx, and sets pk = y and
sk = x.

– Ency(m) for m ∈ Zn, picks random r ∈ [0, n
4], and outputs a ciphertext C =

(u, e) = (gr, yrhm).
– Decx(u, e) computes m̂← (e/ux)2. If m̂ 6∈ 〈h〉 (i.e. if n does not divides m̂− 1),

it rejects the ciphertext. Otherwise, it sets m̂′ ← m̂−1
n (over integers), computes

γ ← β−1 mod n, and outputs m = m̂′/2 · γ mod n

Semantic security of this encryption holds under the Composite Residuosity As-
sumption on Z∗

n2 [9]. It also satisfies all other properties listed in Section 2.2.

– This encryption scheme is additively homomorphic. The corresponding operation
on the ciphertext is a pair-wise multiplication of the two components, i.e. if C1 =
(u1, e1) and C2 = (u2, e2) then C1 · C2 = (u1 · u2, e1 · e2). Similarly C1/C2 =
(u1/u2, e1/e2) and (C1)a = ((u1)a, (e1)a).

– All the proof systems listed in Section 2.2 can be realized for this encryption
scheme by proof systems requiring O(1) exponentiations from each party. We defer
description of these proofs to the full version of this paper, but all these proof sys-
tems are very similar to the verifiable encryption proof system given by Camenisch-
Shoup in [9]. Such HVZK proofs can be converted to ZK proof systems using
known compilation techniques, or into Non-Interactive ZK using the Fiat-Shamir
heuristic in the Random Oracle Model. We note that the proof systems resulting
from the last compilation are as efficient as the underlying HVZK proof systems,
and they remain zero-knowledge and simulation sound under parallel composition.

3 Construction of an OPRF Protocol
We show the construction of a secure computation protocol of the ideal OPRF func-
tionality for the PRF defined in the previous section, using the additively homomorphic
encryption scheme with verifiable encryption, decryption, and other useful properties
listed in Section 2.2. This protocol is illustrated in Figure 1, with all the proof systems
denoted non-interactively for notational simplicity.

Theorem 1. Assuming hardness of factoring of safe RSA moduli, a semantically secure
encryption scheme on Zn which satisfies the properties listed in Section 2.2, and assum-
ing that each proof (of knowledge) system in Figure 1 is zero-knowledge and (strong)
simulation-sound, the protocol in Figure 1 is a secure computation protocol for func-
tionality FOPRF.

Proof. Constructing an ideal-world sender SIMs from a malicious real sender S∗:
First, we show the construction of the ideal-world sender SIMs which interacts with the
real world sender S∗ and the ideal functionality FOPRF. SIMs proceeds as follows:

– If S∗ succeeds in the proof π1, then SIMs runs the extractor algorithm for π1 with
S∗ to extract k, s.t. pk = gk.

– Then SIMs simulates the real-world receiver R as follows:
1. (pkr, skr)← KGen

2. a←R Z∗
n, C

(r)
a ← Encpkr (a)

3. β ←R Z∗
n, C

(s)
β ← Encpks

(β)

4. C
(s)
β ← Encpks

(β)

5. Send (pkr, C
(r)
a , C

(s)
β) and simulate the proof π2.

– If the proof π3 verifies, then SIMs sends k to FOPRF. Note that FOPRF on SIMs’s
input k and ideal-world receiver R̄’s input x outputs fk(x) to R̄.

Let Z be a distinguisher that controls the sender S∗, feeds the input of the receiver R,
and also sees the output of R. Now we argue that Z’s view in the real world (S∗’s view
+ R’s output) and its view in the idea world (S∗’s view + ideal receiver R̄’s output) are

indistinguishable. This is done by showing a series of games Game0, . . . ,Game5, each
interacting with Z , where each Gamei+1 modifies Gamei slightly, and arguing that Z’s
views in Gamei and Gamei+1 are indistinguishable, where Game0 runs S∗ together
with the real receiver R’s protocol, while Game5 runs the above simulator SIMs (with
oracle access to S∗), which simulates an ideal world sender, the ideal functionality
FOPRF, and the ideal receiver R̄.

Game1: Same as Game0 except that instead of proving π2, R simulates it. By zero-
knowledge of the π2 proofs system, Z’s views in Game0 and Game1 are indistinguish-
able.

Common input: (n, g, pk, par)
S’s private input: k, s.t. gk = pk R’s private input: x

(pks, sks)← KGen, C
(s)
k ← Encpks(k)

π1 ← PoK

�
k

����C(s)
k ∈ Encpks(k)

pk = gk

�
pks,C

(s)
k

,π1 // If π1 verifies, then (pkr, skr)← KGen

a←R Z∗
n, C

(r)
a ← Encpkr (a)

C
(s)
β ←

�
C

(s)
k · Encpks(x)

�a

π2 ← PoK

(
x

�����∃ a, s.t. C
(r)
a ∈ Encpkr (a)

C
(s)
β ∈

�
C

(s)
k · Encpks(x)

�a

)

If π2 verifies, then β ← Decsks(C
(s)
β)

pkr,C
(r)
a ,C

(s)
β

,π2oo

If gcd(n, β) 6= 1, send ⊥ to R and abort
γ ← (β)−1 mod n, σs ←R Zn, vs ← gσs

C
(r)
σr ← (C

(r)
a)γ · Encpkr (−σs)

π3 ← P

8>>>><
>>>>:

∃ β, σs, γ, sks, s.t.
β = Decsks(C

(s)
β)

(pks, sks) ∈ KVal

C
(r)
σr ∈ (C

(r)
a)γ · Encpkr (−σs)

vs = gσs , β · γ = 1 mod n

9>>>>=
>>>>;

vs,C
(r)
σr ,π3 // Output ⊥ if receiving ⊥ from S, or if π3 fails.

σr ← Decskr (C
(r)
σr), vr ← gσr , output vs · vr

Fig. 1. Construction of an OPRF Protocol

Game2: Same as Game1 except that (a.) If S∗ succeeds in the proof π1, then Game2

runs the extractor algorithm for π1 with S∗ to extract k, s.t. pk = gk; and (b) If the
proof π3 verifies, then Game2 outputs fk(x) = g1/(k+x) as its final output (or ⊥ if
gcd(k+x, n) 6= 1). Note that Game2 knows both k and x. For (a), by strong simulation
soundness of the proof system π1, Game2 extracts k with non-negligible probability.
For (b), by simulation soundness of proof system π3, Z’s views in Game1 and Game2

are indistinguishable.

Game3: Same as Game2 except that as long as gcd(k + x, n) = 1, Game3 does the
following:

1. (pkr, skr)← KGen

2. β ←R Z∗
n, C

(s)
β ← Encpks

(β)

3. a← β/(k + x), C
(r)
a ← Encpkr

(a)
4. Simulate the proof π2.

Note that the probability that gcd(k + x, n) 6= 1 is negligible if factoring safe RSA
moduli is hard, and if gcd(k + x, n) = 1 then the tuple (pkr, C

(r)
a , C

(s)
β) is distributed

identically in Game2 and Game3, so Z’s view of these two games are indistinguishable.

Game4: Same as Game3 except that in line 3 above, value a is replaced by random
a′ ∈ Z∗

n. We claim that by semantic security of the encryption scheme, Z’s view in
Game3 and Game4 are indistinguishable. A reduction Red can be constructed as fol-
lows. Getting the challenger’s public key pk∗, it sets pkr = pk∗ and follows Game3

except that when Ca is to be computed, it sends (a, a′) to the challenger and gets back
the challenge C∗. It sets C

(r)
a ← C∗, and continue following Game3. If Z distinguishes

Game3 and Game4, then Red breaks the semantic security of the encryption scheme.

Game5: Game5 is the ideal world game between SIMs (with access to S∗), FOPRF, and
the ideal world receiver R̄. Instead of computing v = fk(x) as the last step of Game4

(this modification is shown in the description of Game2 Step b), in Game5, let SIMs

follow the protocol in Game4 until fk(x) is to be computed, then send k to FOPRF.
FOPRF computes v = fk(x) on k given by SIMs and x given by R̄, and sends v to R̄. It
is easy to see that Z’s view in Game4 and Game5 are identical.

Constructing an ideal-world receiver SIMr from a malicious real-world receiver R∗:
We first describe the construction of SIMr:

– SIMr picks (pks, sks)←R KGen, random k′ inM, sets C
(s)
k ← Encpks(k

′), sends
pks and C

(s)
k to R∗, and simulate the proof π1.

– If the proof π2 verifies, SIMr runs the extractor algorithm of π2 with R∗ to extract
x and sends it to FOPRF.

– Getting v = fk(x) from FOPRF, which computes v on ideal-world sender S̄’s input
k and SIMr’s input x, SIMr does the following:
1. If fk(x) = 1, then SIMr sends ⊥ to R∗ and aborts.
2. σr ←R Zn

3. vs ← v/gσr

4. C
(r)
σr ← Encpkr (σr)

5. send (vs, C
(r)
σr) and simulate the proof π3.

Let Z be a distinguisher that controls the receiver R∗, feeds the input of the sender
S, and also sees the output of S. We still show a series of games to argue that the
environment Z’s view in the real protocol and its view in the ideal world protocol is
indistinguishable. Let Game0 be the protocol executed by the real world sender, and let
Game4 be the ideal world game.

Game1: Game1 is the same as Game0 except that S instead of proving π1 and π3, it
simulates the two proofs. By zero-knowledge (simulatability) of these proof systems,
Z’s view in Game0 and its view in Game1 are indistinguishable.

Game2: Game2 is the same as Game1 except that if the proof π2 verifies, Game2 ex-
tracts x from R∗ (The probability that Game2 extracts x is non-negligible because of
simulation soundness of the proof system π2). Z’s views in Game1 and Game2 are
indistinguishable.

Game3: Game3 is the same as Game2 except it does the following after extracting x:
1. v = fk(x); if v = 1, send ⊥ to R∗ and abort.
2. σr ←R Zn, vs ← v/gσr

3. C
(r)
σr ← Encpkr

(σr)
4. send (vs, C

(r)
σr) and simulate the proof π3.

Note that fk(x) = 1 if and only if gcd(k + x, n) 6= 1, and if gcd(k + x, n) 6= 1, then
β = a(k + x) for any a is not co-prime with n, i.e. gcd(β, n) 6= 1, so the real sender
(as well as Game2) in this case will also send ⊥ to R∗ and abort. If v 6= 1, the pair
(vs, C

(r)
σr) distributes identically in Game2 and Game3. Therefore, Z’s view in Game2

and Game3 are identical.

Game4: In Game4, we let the simulator SIMr to follow the protocol in Game3 except
that when v is to be computed, SIMr sends the extracted x to the ideal functional-
ity FOPRF which also gets input k from the ideal world sender S̄, and gets the value
v = fk(x) from the functionality FOPRF instead. Then SIMr continues following the
protocol in Game3. It is easy to see that Z’s view in Game2 and Game3 are identical,
and Game3 is in fact the ideal world game among ideal sender S, the ideal functionality
FOPRF and the ideal receiver SIMr who has oracle access to R∗ and simulates R∗ in the
ideal world.

Extension to secure computation of FOPRF on committed inputs. Note that in our
implementation of the OPRF functionality the sender’s input k is already committed
in the key pk = gk, but only a slight modification to the protocol is needed if we
extend the OPRF functionality so that the receiver’s input x is committed as well. The
receiver can commit to x using Pedersen commitment [27] in group 〈g〉 of order n, i.e.
Comx = gxhrx for random h ∈ 〈g〉 specified in the CRS (or picked by the sender) and
random rx ∈ Zn. The proof system π2 in receiver’s first step must then be extended
to a proof of knowledge of not just x but also rx s.t. Comx = gxhrx . Using the hiding
and binding properties of Pedersen commitment it is not difficult to extend our proof
of security of the basic OPRF protocol in Figure 1 to this case. Finally, such as proof
system is easy to realize because the order of group 〈g〉 is the same n which acts on
the plaintext in encryption Encpk(x). Using techniques for proving equality between
exponents in groups of different orders, e.g. [5, 7], one can extend it to accommodate
commitments to x using more standard groups of smaller (and prime) order.

Parallel composition and re-using sender’s first message. This OPRF scheme can be
composed sequentially because it is a secure computation protocol. This directly im-
plies security of the adaptive OT protocol based on such OPRF, as explained in Section
4 below. However, by inspection of the proof, using standard hybrid arguments one
can argue that this OPRF scheme can also be composed in parallel, provided that the
ZK proof systems it uses remain zero-knowledge and simulation-sound under parallel
composition. The resulting protocol is a secure computation of the “parallel OPRF”

functionality, where the receiver enters a sequence of data items (x1, . . . , xt) and gets a
sequence of PRF values fk(x1), . . . , fk(xn) in return. The secure computation for this
parallel OPRF functionality enables constant-round secure computation protocol for set
intersection, as we explain in Section 5.

It is also easy to see that one can reduce the round complexity and/or the sender’s
computation’s time in both of these applications if the sender re-uses the same pks,
sks, and C

(s)
k values in each instance of the OPRF subprotocol. One can think of this

as a case of sender’s re-using the same randomness when executing the first step of
the protocol. Since we cannot prevent a malicious sender from doing so anyway, such
modified protocol remains secure against a malicious sender. For malicious receiver,
one can see by inspection of the proof of Theorem 1 that this re-use does not change
anything in the security proof. Note moreover that in the ROM model one can realize
the proof π1 non-interactively as a tuple of a few group elements. Therefore in ROM
the sender’s first message can be included as a common input to the protocol, which
results in a 2-round OPRF protocol in ROM.

4 Adaptive Oblivious Transfer from an OPRF Scheme
In this section, we show a construction of t-out-of-N OT protocol from an OPRF pro-
tocol, where the sender takes N messages (m1, . . . ,mN) as input, while receiver takes
t indices (i1, . . . , it) as input. At the end of the protocol, receiver gets {mij

}j=1,...,t,
while sender gets nothing. An OT protocol is adaptive if receiver can query on indices
i1, . . . , it adaptively one after another. Using an OPRF protocol, we show below the
construction of an adaptive OT protocol and in Figure 2.

– Let (g, n) be the common input.
– Sender picks random k ∈ Zn, sets pk = gk, and then computes ci = mi · fk(i) for

every i = 1, . . . , N . It sends pk, {ci}i=1,...,N to the receiver.
– For j = 1, . . . , t:
• Sender and receiver interacts in an OPRF with sender’s input k and receiver’s

input ij ;
• Receiver gets vij = fk(ij) and recovers mij by computing cij /vij .

As we point out at the end of Section 3, the OPRF protocol of that section takes
only two-rounds in ROM if the sender re-uses the first message of the OPRF protocol
in each instance. Therefore the combination of these two protocols results in an optimal
two-round adaptive OT.

Common input: (g, n)
S’s private input: R’s private input:
{mi}i=1,...,N {ij}j=1,...,t

k ←R Zn, pk = gk

∀i∈{1,...,N}, ci = mi · fk(i) pk, {ci}i=1,...,N //

secure computation of fk(i1) // output m′
i1 = ci1/fk(i1)

. . .

secure computation of fk(it) // output m′
it

= cit/fk(it)

Fig. 2. Adaptive OT Protocol from an OPRF Protocol

Theorem 2. The above construction of OT is a secure computation of the ideal t-out-
of-N OT functionality

FOT ({mi}i=1,...,N , {ij}j=1,...,t) = (⊥ , {mij
}j=1,...,t)

.Proof. We argue this theorem in the hybrid model using the secure computation of
OPRF as a blackbox.

Constructing ideal world sender SIMs from a malicious sender S∗ in the real world:
Getting k from S∗, SIMs computes vi = fk(i) for each i = 1, . . . , N , and sends
{m̄i = ci/vi}i=1,...,N to FOT, which on {m̄i}i=1,...,N from SIMs and {ij}j=1,...,t

from the ideal world receiver R, outputs {m̄ij
}j=1,...,t to the receiver. In the real world,

what the receiver R outputs is {cij /fk(ij)}j=1,...,t, which is also {m̄ij}j=1,...,t. S∗

learns nothing either interacting with the real world receiver R via the ideal functionality
FOPRF or interacting with SIMs in the ideal world. Therefore, the environment Z’s
views in the real world and ideal world are indistinguishable.

Constructing ideal world receiver SIMr from a malicious receiver R∗ in the real world:
SIMr first sends to R∗ a random pk′ in 〈g〉 as well as a tuple of {ri}i=1,...,N where each
ri is random in the range of FOPRF. On getting each ij for j = 1, . . . , t, SIMr sends
{ij}j=1,...,t toFOT and gets back {mij}j=1,...,t. Then SIMr sends {rij /mij}j=1,...,t to
R∗. AsFOPRF is a pseudorandom function, R∗’s view in the real protocol ({ci}i=1,...,N ,
{fk(ij)}j=1,...,t) is indistinguishable from ({ri}i=1,...,n, {rij

/mij
}j=1,...,t) for each

ri chosen at random in the range of FOPRF. Since both the real world sender S and ideal
world sender S̄ output a⊥, the environment Z’s views in the real world and ideal world
are indistinguishable.

5 Secure Computation of Set Intersection from an OPRF Scheme
Using the Hazay-Lindell construction [19] one can easily convert a secure computation
protocol for OPRF functionality into secure computation of the set intersection prob-
lem. Let Ms = {m(s)

i }i=1,...,N and Mr = {m(r)
i }j=1,...,N denote, respectively, the

sender’s and the receiver’s data sets. The secure set intersection protocol should allow
the receiver to compute Ms ∩Mr while the sender gets nothing from the interaction.
Using a secure computation protocol for parallel OPRF functionality for the PRF from
Section 3), the construction goes as follows, on common inputs (g, n):

– Sender picks random k ∈ Zn and sets pk = gk. Then it computes v
(s)
i = fk(m(s)

i)
for every i = 1, . . . , N , sets Vs = {v(s)

i }i=1,...,N and sets V ′
s = Π(Vs), where Π

is a random permutation. It sends pk and V ′
s to the receiver.

– Sender and receiver interact in a parallel OPRF protocol with sender’s input k and
receiver’s inputs (m1

(r), ...,mN
(r)). Let (v1

(r), ..., vN
(r)) be receiver’s outputs;

– Receiver outputs the set
{

m
(r)
j s.t. v

(r)
j ∈ V ′

s

}
Theorem 3. The above construction is a secure computation protocol for functionality

FSI(Ms, Mr) = (⊥, Ms ∩Mr)

Proof. We argue this theorem in a hybrid model, where the sender and receiver com-
municate using the ideal functionality FOPRF when they invoke the OPRF protocol.

Common input: (g, n)
S’s private input: R’s private input:
{m(s)

i }i=1,...,N {m(r)
j }j=1,...,N

k ←R Zn, pk = gk

∀i∈{1,...,N}, v
(s)
i ← fk(m

(s)
i)

V ′
s ← Π({v(s)

i }i=1,...,N) pk, V ′
s //

secure computation of
n

v
(r)
j =fk(m

(r)
j)

o
j=1,...,N // output

n
m

(r)
j s.t. v

(r)
j ∈ V ′

s

o

Fig. 3. Computing Set Intersection from an OPRF protocol

Constructing ideal world sender SIMs from a malicious sender S∗ in the real world:
SIMs first gets pk and the set V ′

s = {v(s)
i }i=1,...,N from S∗. Then when getting the

key k from S∗, SIMs tries every possible input in the range of the PRF to reconstruct
the set M̄s = {m̄(s)

i }i=1,...,N from V ′
s = {v(s)

i }i=1,...,N , and sends M̄s to FSI, which
computes M̄s ∩Mr on SIMs’s input M̄s and the ideal world receiver R̄’s input Mr, and
sends M̄s∩Mr to R̄. The real world receiver R in the hybrid model gets v

(s)
i = fk(m(s)

i)
for every m̄

(s)
i ∈ M̄s as well as v

(r)
j = fk(m(r)

j) for every j = 1, . . . , N . So R’s output
is also M̄s ∩Mr. S∗ learns nothing either interacting with the real world receiver R via
the ideal functionality FOPRF or interacting with SIMs in the ideal world. Therefore,
the environment Z’s views in the real world and ideal world are indistinguishable.

Constructing ideal world receiver SIMr from a malicious receiver R∗ in the real world:
SIMr first sends to R∗ a random pk′ in 〈g〉 as well as a tuple of {ri}i=1,...,N where each
ri is random in the range of the pseudorandom function. On getting Mr = {m(r)

i }j=1,...,N

from the receiver R∗, it sends Mr to the ideal functionality FSI, which computes Ms ∩
Mr on the ideal world sender S’s input Ms and SIMr’s input Mr, and sends Ms ∩Mr

to SIMr. For each m
(r)
j ∈ Mr, if m

(r)
j ∈ Ms ∩Mr, then SIMr sets v̄

(r)
j = ri for some

(previously not picked) i; otherwise it sets v̄
(r)
j at random in the range of the pseudoran-

dom function. SIMr sends {v̄(r)
j }j=1,...,N to R∗. Because of FOPRF is a pseudorandom

function, R∗’s view in the real protocol ({Π(v(s)
i }i=1,...,N), {v̄(r)

i }i=1,...,N) is indistin-
guishable from ({ri}i=1,...,n, {v̄(r)

i }i=1,...,N) in the simulated game above. Since both
the real world sender S and ideal world sender S̄ output a⊥, the environment Z’s views
in the real world and ideal world are indistinguishable.
Extension to computing on committed inputs: As in the OPRF protocol in Section
3, it is easy to extend this protocol so both parties execute on committed inputs. The
receiver can be forced to execute on committed inputs if we replace the basic OPRF
functionality by the committed OPRF, as sketched as the end of Section 3. And if
{Comi}i=1,...,N are Pedersen commitments on the sender’s inputs in the same group
〈g〉 of order n, then it is easy to extend the sender’s first message with a ZK proof of
knowledge of values mi, for each i, s.t. v(s)

i = fk(mi) = g1/(k+mi) where pk = gk and
mi is committed in Comi. Note that since we use the same commitment for sender’s and
receiver’s inputs, both parties can securely (but not fairly) compute the set intersection

if they run the same protocol twice, with the roles reversed. Another use of computing
on committed data is for the sender to be able to verify that the receiver holds some au-
thorization on the values it enters into the computation, e.g. in the form of a signature,
or an unlinkable credential [6], on the commitments to these values.

Extension to transfer of associated data, or “Index OT”: In addition to letting the
receiver discover any item mi

(s) which it shares with the sender, the receiver can also
get some data di which the sender associates with this item. If the receiver has only a
single item then this protocol problem is known as “index OT”. The advantage of the
protocol given here is that it has O(N) complexity if both parties contribute N items.
Assume that each di is an element of group 〈g〉. The sender generates two PRF keys k1

and k2 and publishes (fk1(mi
(s)), fk2(mi

(s)) ∗ di) for each i. For each receiver’s item
mj

(r) the two parties engage in two instances of the OPRF protocol, on two sender’s
keys k1 and k2. The receiver then uses fk1(mj

(r)) to decide if there exists mi
(s) =

mj
(r), and fk2(mj

(r)) to retrieve the data di associated with mi
(s).

5.1 Efficiency Estimation of the Set Intersection Protocol

It is interesting to compare the set intersection protocol resulting from the oblivious
PRF protocol of Figure 1 with the FNP protocol by Friedman et al. [16], both in the
honest-but-curious and the malicious models. We compare only straightforward imple-
mentations of both schemes, and summarize this comparison in table 4. Clearly, it is
possible that either algorithm can be further optimized.

Let Ns, Nr denote the number of entries in, respectively, the sender’s and the re-
ceiver’s data sets, and let k be the number of bits needed for representing each entry.
Assume that the FNP protocol is implemented using ElGamal encryption over a 160-bit
subgroup of Z∗

p′ for a 1024-bit prime p′. Note that multiplications in the OPRF protocol
in Figure 1 are either modulo a 2048-bit Paillier modulus n2 or modulo the first prime
p s.t. n divides p− 1. Therefore if m is the cost of a single multiplication (or squaring)
modulo a 1024-bit modulus then we can assume that these two different mults in our
scheme cost about 3m and m, respectively.

In the honest-but-curious model the main bottleneck of the FNP protocol is the
oblivious evaluation of the receiver’s encrypted polynomial, with Nr coefficients, on
Ns points in the sender’s database. Using Horner’s rule, this would take 2NsNr of k-bit
exponentiations, i.e. 3kNsNrm. In the malicious model, using standard commitments
and zero-knowledge proofs of arithmetic relationships between committed values, it
seems that each k-bit exponentiation would have to be replaced by at least two 160-bit
exponentiations, so the total cost would grow by at least a factor of 320/k.

In the set intersection protocol of Figure 3, using the OPRF of Figure 1, the sender’s
costs in the honest-but-curious model consist of Ns evaluations of the PRF (Ns fixed-
base 1000-bit exponentiations, contributing 500Nsm), Nr Paillier decryptions (Nr 1000-
bit exponentiations mod n2, contributing 4500Nrm), and Nr computations of vs values
(500Nrm) and C

(r)
δr

values (this is a mixture of variable and fixed-base exponentiations
which we estimate to amount to under 13000Nrm), for the total cost of 18000Nrm.
For the receiver we have Nr computations of C

(r)
a and C

(s)
β values and Nr Paillier de-

cryptions and computations of vr values. This is a mixture of variable and fixed-base
exponentiations modulo n2 and p, for the estimated total cost of 14000Nrm. Thus we

estimate the total cost of this protocol in the passive model as (500Ns + 32000Nr)m.
In the malicious model this cost grows by only a factor of 2.

FNP [16] our protocol
honest-but-curious model 3kNsNrm (500Ns + 32000Nr)m

malicious model ≥ 960NsNrm (1000Ns + 64000Nr)m

Fig. 4. Comparison of Efficiency between the FNP protocol [16] and the one proposed here.

Summarizing these estimations, it seems that if Ns and Nr are comparable then the
new protocol is faster than FNP in the honest-but-curious model for Ns on the order of
11000/k, while in the malicious model the new protocol should be faster for Ns ≥ 67.

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, 2001.

2. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Hovav Shacham. Delegatable anonymous credentials. Cryptology ePrint Archive, Report
2008/428, 2008.

3. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In Public Key Cryptography, 2003.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT,
2004.

5. Fabrice Boudot and Jacques Traor. Efficient publicly verifiable secret sharing schemes with
fast or delayed recovery. In ICICS, 1999.

6. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In SCN,
2002.

7. Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature
schemes. In CRYPTO, 1999.

8. Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious transfer.
In EUROCRYPT, 2007.

9. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO, 2003.

10. David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.
11. Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In EUROCRYPT,

2006.
12. Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. Cryp-

tology ePrint Archive, 1998/003, 1998.
13. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs

and keys. In Public Key Cryptography, 2005.
14. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing

contracts. Communications of ACM, 28(6), 1985.
15. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and

oblivious pseudorandom functions. In TCC, 2005.
16. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set

intersection. In EUROCRYPT, 2004.

17. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4), 1986.

18. Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable
oblivious transfer. In ASIACRYPT, 2007.

19. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In TCC, 2008.

20. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In CRYPTO, 2003.

21. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In STOC, 1999.
22. Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In CRYPTO, 1999.
23. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, 2001.
24. Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5),

2006.
25. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random

functions. J. ACM, 51(2), 2004.
26. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proc.

EUROCRYPT, 1999.
27. T.P. Pedersen. Non-interactive and information-theoretical secure verifiable secret sharing.

In Proceedings of Crypto’91, 1991.
28. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report, Harvard

University, 1981.

