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Abstract. The known secret-sharing schemes for most access structures
are not efficient; even for a one-bit secret the length of the shares in the
schemes is 2O(n), where n is the number of participants in the access
structure. It is a long standing open problem to improve these schemes
or prove that they cannot be improved. The best known lower bound is by
Csirmaz (J. Cryptology 97), who proved that there exist access structures
with n participants such that the size of the share of at least one party is
n/ log n times the secret size. Csirmaz’s proof uses Shannon information
inequalities, which were the only information inequalities known when
Csirmaz published his result. On the negative side, Csirmaz proved that
by only using Shannon information inequalities one cannot prove a lower
bound of ω(n) on the share size. In the last decade, a sequence of non-
Shannon information inequalities were discovered. This raises the hope
that these inequalities can help in improving the lower bounds beyond n.
However, in this paper we show that all the inequalities known to date
cannot prove a lower bound of ω(n) on the share size.

1 Introduction

A secret-sharing scheme is a mechanism for sharing data among a set of par-
ticipants such that only pre-defined authorized subsets of participants can re-
construct the data, while any other subset has absolutely no information on
the data. The collection of authorized subsets is called an access structure. For
example, in a t-out-of-n threshold secret-sharing scheme, the access structure
contains all subsets of size at least t. As an interesting “real-world” illustration
of this situation: According to Time Magazine control of the nuclear weapon
in Russia in the early 1990s depended upon a similar “two-out-of-tree” access
mechanism, where the three parties were the President, the Defense Minister,
and the Defense Ministry. Secret-sharing schemes, introduced by [40, 8, 30], are
nowadays used in many cryptographic protocols, e.g., Byzantine agreement [38],
secure multiparty computations [6, 14, 17], threshold cryptography [20], access
control [36], and attribute-based encryption [27, 43].

An important issue in secret-sharing schemes is the size of the shares dis-
tributed to the participants. For most access structures, even the best known
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secret-sharing schemes (e.g., [7, 11, 21, 31, 42, 31]) are not efficient; the length
of the shares for sharing an `-bit secret is ` · 2O(n), where n is the number of
participants in the access structure. The best lower bound was proved by Csir-
maz [18]; he proved that for each n there exists an access structure with n
participants such that any secret-sharing scheme with an `-bit secret requires
shares of length Ω(`n/ log n). There is a large gap between the upper bounds
and the lower bounds. Closing this gap is a major open problem.

The entropy of a random variable, which was introduced by Shannon in the
landmark paper [41], is a measure of the amount of uncertainty associated with
the value of the random variable. Starting from the works of Karnin et al. [32]
and Capocelli et al. [12], the entropy was used to prove lower bounds on the share
size in secret sharing schemes [9, 22, 18, 19]. Specifically, Csirmaz’s proof [18]
uses only Shannon information inequalities, which were the only information
inequalities known when Csirmaz published his result (this is true also for all the
previous works mentioned above). On the negative side, Csirmaz proved that by
using only Shannon information inequalities one cannot prove a lower bound of
ω(n) on the share size. In the last decade, a sequence of non-Shannon information
inequalities were discovered. This raises the hope that these inequalities can help
in improving the lower bounds beyond n. However, in this paper we show that
all the inequalities known to date cannot prove a lower bound of ω(n) on the
share size.

1.1 Related Work

Threshold secret-sharing schemes, in which a subset is authorized iff its size is
larger than some threshold, were independently introduced by Shamir [40] and
Blakley [8] about thirty years ago. General secret sharing schemes were presented
by Ito, Saito, and Nishizeki [30]; they presented a construction of a secret-sharing
scheme for every monotone access structure. More efficient schemes for specific
access structures were presented in, e.g., [7, 11, 21, 42, 31]. However, even these
better constructions are not efficient and, for most access structure, the shares’
size is exponential. Lower bounds for secret-sharing schemes were presented in [9,
22, 18, 19]; however, as stated above, there is a big gap between the upper and
lower bounds. Super-polynomial lower bounds for linear secret-sharing schemes
were presented in [1, 26].

In this work, we discuss using information inequalities for proving lower
bounds on the share size in secret-sharing schemes. An information inequal-
ity is a linear inequality over the entropy of subsets of variables that holds for
any random variables (for a formal definition see Section 2.1). For example,
H(X1) + H(X2) ≥ H(X1X2) is an information inequality. Many inequalities
can be expressed as a linear combination of a single inequality involving the
conditional mutual information, namely, I(X;Y |Z) ≥ 0. Such inequalities are
known as Shannon inequalities. It was an open problem for many years if there
are information inequalities that are not implied by Shannon inequalities, i.e., if
there are non-Shannon inequalities. The first non-Shannon inequality was given
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by Zhang and Yeung [47]. In the last decade, several additional non-Shannon in-
equalities were discovered [33, 46, 23, 44]. In particular, an interesting technique
for deriving non-Shannon inequalities, called projection, was presented in [44].
Several papers have dealt with the characterization of information inequalities.
Chan and Yeung [13] have characterized information inequalities using group-
theoretic inequalities. Matúš [34] has proved that there are infinitely many inde-
pendent information inequalities. Guille et al. [28] have given results concerning
the structure of information inequalities and, more specially, results describing
the minimal set of information inequalities when all the coefficient are 1 or −1,
called Ingleton inequalities.

The information inequality of Zhang and Yeung [47] was used in several
areas. It was used by Dougherty, Freiling, and Zeger [24] to prove bounds on
the capacity of network coding, by Matúš [35] to prove that a function is not
asymptotically entropic, and by Riis [39] to prove bounds on graph entropy of
certain graphs. Furthermore, it was used by Beimel, Livne, and Padró [4] to
prove lower bounds on the size of shares in secret-sharing schemes; they proved
that there is a matroidial access structure – the Vamos access structure – that
is not nearly ideal. We observe that this result can be proved using other infor-
mation inequalities, e.g., the information inequalities of [23]. Furthermore, the
information inequalities of [47, 23] can be used to prove that other matroidial
access structures are not nearly ideal, e.g., the access structures induced by the
matroids AG32r, F8, Q8 (for the definitions of these matroids see [37]).

This paper deals with limitations of the techniques for proving lower bounds
on the size of shares in secret-sharing schemes, continuing the work of [3]. Beimel
and Franklin [3] considered weakly-private secret-sharing schemes, in which any
unauthorized set can never rule-out any secret (however, it might deduce, for
example, that one secret is much less likely than other secrets). They show
efficient constructions of weakly-private secret-sharing schemes (for large secret
domains), implying that to prove lower bounds on the shares’ size in secret-
sharing schemes one must use the strong privacy requirement of secret-sharing
schemes.

1.2 Our Results

In contrast to the success of applying the known information inequalities to
proving lower bounds in several areas, we show that they cannot help in proving
lower bounds of ω(n) on the share size in secret-sharing schemes. Let us elaborate
on our proof. Csirmaz [18] in 1994 has proven his lower bound by translating the
question of proving lower bounds on share size to proving that a certain linear
programming instance does not have a small solution. Csirmaz constructed the
linear program by using Shannon inequalities, which were the only information
inequalities known in 1994. He proved a lower bound of Ω(n/ log n) times the
secret size for an access structure with n parties. Furthermore, all previous lower
bounds [32, 12, 9, 22] can be restated using Csirmaz’s framework using Shannon
inequalities. On the other hand, Csirmaz proved that for every access structure



4 A. Beimel and I. Orlov

the linear program has a solution in which the objective function has value O(n),
implying that his framework cannot prove better lower bounds than Ω(n).

In the last decade, a sequence of non-Shannon information inequalities were
discovered [47, 33, 46, 23, 44]. This gives hope that adding these inequalities
to the linear program, one could prove better lower bounds on the share size.
However, in this work we show that Csirmaz’s solution to the linear program
remains valid even after adding all the known information inequalities. That
is, all the information inequalities known to date cannot prove lower bounds
better than Ω(n) even if used simultaneously. Our proof that Csirmaz’s solution
remains valid after adding the new inequalities is much more involved than
Csirmaz’s proof for Shannon inequalities. We present a brute-force algorithm
that checks if Csirmaz’s solution remains valid given an information inequality.1

We executed this algorithm, using a computer program, on all known information
inequalities of [47, 33, 46, 23]. For [47, 46, 33, 44], which also give an infinite
sequence of information inequalities, we manually executed the algorithm on a
symbolic representation of the inequalities. The conclusion is that all the known
information inequalities cannot help in proving better lower bounds than Ω(n).

We end the introduction with a few remarks. First, one cannot interpret our
result as suggesting that information inequalities cannot help in improving the
lower bounds. To the contrary, the conclusion of our paper is that new informa-
tion inequalities should be sought. Hopefully, these new information inequalities
would not be ruled-out by our algorithm. However, not failing the test in our
algorithm is only the first step. Our algorithm only gives a necessary condition
for an information inequality to be helpful in proving lower bounds of ω(n) on
the share size. To use new inequalities, one has to prove that for some access
structure the linear program with the new inequalities, and possibly with all the
known inequalities, has only large solutions.

2 Preliminaries

In this section we review the relevant definitions from information theory and
define secret-sharing schemes.

2.1 Basic Definitions from Information Theory and Information
Inequalities

In this section, we review the basic concepts of Information Theory used in this
paper. For a complete treatment of this subject see, e.g., [16]. All the logarithms
here are of base 2.

The entropy of a random variable X is H(X) def= −∑
x,Pr[X=x]>0 Pr[X =

x] log Pr[X = x]. It can be proved that 0 ≤ H(X) ≤ log |supp(X)| , where

1 Our algorithm is highly inefficient. However, most known non-Shannon information
inequalities have 4 or 5 variables, thus, executing the computer program returns an
answer in a reasonable time (less than a minute).
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|supp(X)| is the size of the support of X (the number of values with probability
greater than zero). The upper bound |supp(X)| is obtained if and only if the
distribution of X is uniform and the lower bound is obtained if and only if X is
deterministic. Given two random variables X and Y (possibly dependent), the
conditioned entropy of X given Y is defined as H(X|Y ) def= H(X,Y ) − H(Y ).
From the definition of the conditional entropy, the following properties can be
proved: 0 ≤ H(X|Y ) ≤ H(X), where H(X|Y ) = H(X) if and only if X and Y
are independent, and H(X|Y ) = 0 if the value of Y completely determines the
value of X. The mutual information between X and Y is defined as I(X;Y ) def=
H(X) − H(X|Y ), and the conditional mutual information between X and Y

given Z is defined as I(X;Y |Z) def= H(X|Z)−H(X|Y, Z). Entropies, conditional
entropies, mutual information, and conditional mutual information are called
Shannon’s information measures.

Let {Xi}i∈[m] be a set of m jointly distributed random variables. For any
subset I of [m], let XI = (Xi)i∈I .

Definition 1 (Information Inequality). An information inequality over m
variables is defined by 2m constants {αA}A⊆[m], where αA ∈ R, such that∑

A⊆[m] αAH(XA) ≥ 0 for every m random variables X1, . . . , Xm.

For example, H(X1) + H(X2) ≥ H(X1X2) is an information inequality. Many
inequalities can be expressed as a linear combination of a single inequality in-
volving the conditional mutual information, namely, I(X1;X2|X3) ≥ 0 (this in-
equality can be stated as H(X1, X3)+H(X2, X3)−H(X1, X2, X3)−H(X3) ≥ 0).
Such inequalities are known as Shannon-type inequalities. Information inequal-
ities that cannot be deduced from Shannon inequalities are called non-Shannon
inequalities. For more background on information inequalities the reader may
consult [45].

2.2 Secret Sharing

Definition 2 (Access Structure and Distribution Scheme). Let P =
{p1, . . . , pn} be a finite set of parties, and let p0 /∈ P be a special party called the
dealer.A collection A ⊆ 2P is monotone if B ∈ A and B ⊆ C imply that C ∈ A.
An access structure is a monotone collection A ⊆ 2P of non-empty subsets of
P . Sets in A are called authorized, and sets not in A are called unauthorized.

A distribution scheme Σ = 〈Π, µ〉 with domain of secrets K is a pair, where
µ is a probability distribution on some finite set R (the set of random strings)
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Ki

is called the share-domain of pi. A dealer distributes a secret s ∈ K according to
Σ by first sampling a string r ∈ R according to µ, computing a vector of shares
Π(s, r) = (s1, . . . , sn), and privately communicating each share si to party pi.

We next define secret-sharing schemes using the entropy function. It is con-
venient to view the secret as the share of the dealer p0, and for every set
T ⊆ P ∪{p0} to consider the vector of shares of T . Any probability distribution
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on the domain of secrets, together with the distribution scheme Σ, induces, for
any T ⊆ P ∪{p0}, a probability distribution on the vector of shares of the parties
in T . We denote the random variable taking values according to this probability
distribution on the vector of shares of T by ST , and by S the random variable
denoting the secret (i.e., S = S{p0}).

Definition 3 (Secret-Sharing Scheme). We say that a distribution scheme
is a secret-sharing scheme realizing an access structure A with respect to a given
probability distribution on the secrets, denoted by a random variable S, if the
following conditions hold.

Correctness. For every authorized set T ∈ A, the shares of the parties in T
determine the secret, i.e., H(S|ST ) = 0.

Privacy. For every unauthorized set T /∈ A, the shares of the parties in T do
not disclose any information on the secret, that is, H(S|ST ) = H(S).

Remark 1. Although the above definition considers a specific distribution on the
secrets, Blundo et al. [10] proved that its correctness and privacy are actually
independent of this distribution: If a scheme realizes an access structure with
respect to one distribution on the secrets, then it realizes the access structure
with respect to any distribution with the same support. Furthermore, the above
definition is equivalent to the definition of [15, 2, 5], where there is no probability
distribution associated with the secrets and it is required that the probability of
every vector of shares of an unauthorized set is the same given any secret.

Karnin et al. [32] have showed that for each non-redundant party (that is, a
party that appears in at least one minimal authorized set) H(Si) ≥ H(S), which
implies that the size of the share of the party is at least the size of the secret.

Notation 1. We use the following notation for two sets A and Â. The set Â is
a subset of P ∪{p0} and the set A is a subset of P , where A = Â \ {p0}, that is,
if p0 /∈ Â, then A = Â, otherwise A is obtained by removing p0 from Â.

3 Csirmaz Framework for Proving Lower Bounds and Its
Limitations

3.1 Csirmaz Framework for Proving Lower Bounds

Csirmaz [18] has proved the best known lower bounds on the size of the shares
in secret-sharing schemes. Towards this goal, he presented a framework for prov-
ing lower bounds and showed how to implement this framework to prove lower
bounds for a specific access structure. The idea of the framework of Csirmaz is
to construct a linear program such that lower bounds on the value of the objec-
tive function in this program imply lower bounds on the share size. Specifically,
given an access structure A and a secret-sharing scheme realizing it, define the
function f(Â) = H(S bA)/H(S) for every Â ⊆ P ∪ {p0}. The correctness and
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privacy of the secret-sharing scheme can be translated to constrains on the func-
tion f . Namely, (1) if A ∈ A, then f(A ∪ {p0}) = f(A), and (2) if A /∈ A, then
f(A∪{p0}) = f(A)+1. Proving lower bounds on the size of the shares is equiv-
alent to proving that any n random variables S1, . . . , Sn (i.e., shares) satisfying
the above equalities imply that

∑n
i=1 H(Si) is large.

These constrains are translated to a linear program using known properties
of the entropy function, namely, information inequalities. That is, we get a set
of linear inequalities, where we want to minimize

∑n
i=1 f({pi}).

Csirmaz has constructed an access structure A that implies a linear pro-
gram in which

∑
f({pi}) = Ω(n2/ log n), thus, for at least one party f({pi}) =

Ω(n/ log n). This implies that in every secret-sharing scheme realizing A with
an `-bit secret, the share of at least one party is an Ω(` ·n/ log n)-bit string. We
next formally define and describe Csirmaz’s framework.

Definition 4. Given a secret sharing scheme over n parties, define the function
f : 2P∪{p0} → R as follow: f(Â) = H(S bA)/H(S) for every Â ⊆ P ∪ {p0}.
The properties of the entropy function implies that f is a polymatroid as defined
below.

Definition 5. Let Q be a finite set, and g : 2Q → R be a function assigning real
numbers to subsets of Q. The system (Q, g) is a polymatroid if g satisfies the
following conditions:

non-negative: g(A) ≥ 0 for all A ⊆ Q and g(∅) = 0,
monotone: if A ⊆ B ⊆ Q, then g(A) ≤ g(B),
submodular: g(A) + g(B) ≥ g(A ∪B) + g(A ∩B) for every A,B ⊆ Q.

Proposition 1 ([25]). The function f defined in Definition 4 is a polymatroid.

Combining Proposition 1 and the properties of secret-sharing scheme we get:

Proposition 2. The function f defined in Definition 4 satisfies the following
additional inequalities for every sets A,B ⊆ P :

1. If A ⊆ B, A /∈ A, and B ∈ A, then f(B) ≥ f(A) + 1,
2. If A ∈ A, B ∈ A, but A∩B /∈ A, then f(A)+f(B) ≥ f(A∩B)+f(A∪B)+1.

3.2 Limitation of Shannon Inequalities

Csirmaz [18] has proved that using his framework with only Shannon inequalities
(which were the only information inequalities known when he published his re-
sult) one cannot prove lower bounds better than Ω(n). That is, his lower bound
is the best possible up to a factor of log n using only Shannon inequalities.

In this section we explain how Csirmaz proved this limitation. Since Csirmaz
proved his result in 1994, some non-Shannon information inequalities were dis-
covered. In Section 6 we will show that these inequalities cannot prove better
lower bounds than Ω(n) using Csirmaz’s framework.
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Theorem 1. Given any access structure A on the n-element set P , there is a
polymatroid ĝ : 2P∪{p0} → R so that

1. For every A ⊆ P , ĝ(A ∪ {p0}) = ĝ(A) if A ∈ A and ĝ(A ∪ {p0}) = ĝ(A) + 1
if A /∈ A.

2. ĝ satisfies the conditions of Proposition 2,
3. ĝ({pi}) ≤ n for every pi ∈ P .

In order to prove this theorem, Csirmaz has defined a polymatroid ĝ that, on one
hand, satisfies all the conditions and, on the other hand, ĝ({pi}) = n. In other
words, Csirmaz has shown that for every access structure the linear program has
a small solution.

Definition 6 (The Csirmaz function). Let n ∈ N. Define the the Csirmaz
function Cn : {0, . . . , n}→N as follows

Cn(k) def= n + (n− 1) + ... + (n− k + 1) = nk +
k

2
− k2

2
.

To prove Theorem 1, Csirmaz defined g : 2P→N as g(A) def= Cn(|A|). Next, he
extended g to ĝ : 2P∪{p0}→N, where for every A ⊆ P he defined ĝ(A) = g(A),
and ĝ(A ∪ {p0}) = g(A) if A ∈ A, and ĝ(A ∪ {p0}) = g(A) + 1 if A /∈ A. It can
be checked that ĝ satisfies the conditions of the theorem. The Csirmaz function
is universal; it is used to construct a polymatroid for every access structure. We
next prove that any such universal function is at least as large as the Csirmaz
function. This lemma sheds some light why Csirmaz chose this function.

Lemma 1. Let yn : {0, . . . , n}→R be a function satisfying the following in-
equalities:

1. If A ⊆ B ⊆ Q, then yn(|B|) ≥ yn(|A|) + 1 and yn(0) = 0,
2. If A and B are subsets of Q such that A 6⊆ B and B 6⊆ A, then yn(|A|) +

yn(|B|) ≥ yn(|A ∩B|) + yn(|A ∪B|) + 1.

The Csirmaz Function Cn(k) is the minimal function that satisfies these require-
ments, i.e., for each 1 ≤ k ≤ n, Cn(k) ≤ yn(k).

Proof. Let A,B be two sets of k elements each that are different in exactly one
element. Thus, |A ∩B| = k−1 and |A ∪B| = k+1. From Item (2) in the lemma,
for each 0 ≤ k ≤ n

yn(k)− yn(k − 1) ≥ yn(k + 1)− yn(k) + 1.

This implies that yn(k)−yn(k−1) ≥ yn(n)−yn(n−1)+n−k for every 0 ≤ k ≤ n.
By Item (1) in the lemma, yn(|B|) ≥ yn(|A|) + 1. Thus, yn(n)− yn(n− 1) ≥ 1.
Therefore,

yn(k)− yn(k − 1) ≥ n− k + 1. (1)

By the requirement in the lemma yn(0) = 0, thus, Inequality (1) with k = 1
implies yn(1) ≥ n = Cn(1). By induction and by (1), yn(k) ≥ yn(k − 1) + n −
k + 1 ≥ Cn(k − 1) + n− k + 1 = Cn(k). ut
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4 When Can Information Inequalities Help?

In this section, we will define when information inequalities can help in improving
lower bounds beyond Ω(n). We start with some notation; using this notation
we will define two quantities for an information inequality, ∆ and Λ. These
quantities are used to define when an information inequality can help.

Notation 2. Let A1, . . . , Am be m (not necessarily disjoint) sets. For I ⊆ [m],
denote AI =

⋃
i∈I Ai.

Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. Given an access struc-
ture A, we fix some secret-sharing scheme realizing it. Therefore, the function
f(Â) = H(S bA)/H(S) where Â ⊆ P ∪ {p0} is well defined. Then, for every sets
Â1, . . . , Âm ⊆ P ∪ {p0}, the following inequality is valid

∑
I⊆[m] αIf(ÂI) ≥ 0.

Recall that for every 1 ≤ i ≤ m, we defined Ai = Âi \ {p0}. Using this notation,
f(ÂI) = f(AI) + 1 if p0 ∈ ÂI and AI /∈ A, otherwise, f(ÂI) = f(AI).

Definition 7. For an information inequality
∑

I⊆[m] αIH(XI) ≥ 0, an access

structure A, and sets Â1, . . . , Âm, define ∆ as ∆
def= −∑

I:p0∈ bAI ;AI /∈A αI .

Claim 1. Let Â1, . . . , Âm be m sets,
∑

I⊆[m] αIH(XI) ≥ 0 be an information
inequality, and A be an access structure. Then,

∑
I⊆[m] αIf(AI) ≥ ∆.

Proof. Applying the rules f(ÂI) = f(AI) if p0 /∈ ÂI or AI ∈ A, and f(ÂI) =
f(AI) + 1 otherwise, the inequality

∑
I⊆[m] αIf(ÂI) ≥ 0 implies

∑

I⊆[m]

αIf(ÂI) =
∑

I : p0 /∈ bAI∨AI∈A
αIf(AI) +

∑

I : p0∈ bAI∧AI /∈A
αI(f(AI) + 1)

=
∑

I⊆[m]

αIf(AI)−∆ ≥ 0. ut

Observe that ∆ can be negative, positive, or equal to zero, but, as we will
see later, the information inequality can be useful only when ∆ > 0.

Definition 8. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. For sets

A1, . . . , Am ⊆ P define Λ as Λ
def=

∑
I⊆[m] αICn(|AI |).

For every I ⊆ [m], the size |AI | depends on some of the sizes of the inter-
sections between the sets A1, . . . , Am. Therefore, we define additional notation
in order to represent these intersections. For an illustration of this notation see
Fig. 1.

Notation 3. Let A1, . . . , Am be m (not necessarily disjoint) sets. Denote δI
def=⋂

i∈I Ai \
⋃

i/∈I A{i} and tI
def= |δI | for I ⊆ [m]. In addition, for I ⊆ 2[m], denote

δI
def=

⋃
I∈I δI .
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δ{1}
δ{2}

δ{3}δ{4}

δ{1,2}

δ{3,4}

δ{1,4} δ{2,3}δ{1,2,3,4}

δ{1,2,3}δ{1,2,4}

δ{1,3,4} δ{2,3,4}

A1
A2

A3

A4

(a) δ{1,2} = (A1 ∩A2) \ (A3 ∪A4).

δ{1}
δ{2}

δ{3}δ{4}

δ{1,2}

δ{3,4}

δ{1,4} δ{2,3}δ{1,2,3,4}

δ{1,2,3}δ{1,2,4}

δ{1,3,4} δ{2,3,4}

A1
A2

A3

A4

(b) δ{{1,2},{1,3,4}} = δ{1,2} ∪ δ{1,3,4}.

Fig. 1. An illustration of Notation 3 for m = 4. For clarity of the illustration, we
assume that δ{2,4} = δ{1,3} = ∅.

Observation 1. δJ ⊆ Ai if and only if i ∈ J , that is, Ai = ∪i∈JδJ and AI =
∪i∈IAi = ∪I∩J 6=∅δJ .

Csirmaz has suggested a specific function defined in Definition 6 in order
to show the limitations of Shannon information inequalities. We will prove in
Lemma 4 that any information inequality remains valid after plugging in the
Csirmaz function. That is, if

∑
I⊆[m] αIH(XI) ≥ 0 is an information inequality,

then
∑

I⊆[m] αICn(|AI |) ≥ 0. So, our only hope is that ∆ is “big” for some

sets Â1, . . . , Âm ⊆ P ∪ {p0} and the corresponding sets A1, . . . , Am ⊆ P , but,
Λ =

∑
I⊆[m] αICn(|AI |) is negative (or “small”). If this condition does not hold,

then the inequality cannot help.

Definition 9. We say that an information inequality
∑

I⊆[m] αIH(XI) ≥ 0 can

at most γ-help if ∆ ≤ γΛ for every sets Â1, . . . , Âm ⊆ P ∪ {p0} and for every
access structure A, where ∆ = −∑

I:p0∈ bAI ;AI /∈A αI and Λ =
∑

I⊆[m] αICn(|AI |).
Theorem 2. Let γ > 0 be a constant. Consider a collection of information
inequalities, where each information inequality in the collection can at most γ-
help. Then, this collection of information inequalities cannot help improving the
lower bounds beyond γn even if all inequalities are used simultaneously.

Proof. Consider an access structure A and the “huge” linear program obtained
for this access structure by applying each information inequality to every choice
of subsets of the parties. We take the polymatroid g(AI) = γCn(|AI |), and we get
a solution that satisfies each inequality in the program, where g({pi}) = γn. ut

When dealing with a finite collection of information inequalities, one can use
a rougher notion than an information inequality that can at most γ-help.
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Definition 10. We say that an information inequality
∑

I⊆[m] αIH(XI) ≥ 0
cannot help (in improving the lower bounds beyond Ω(n)) if for every sets
Â1, . . . , Âm ⊆ P ∪ {p0} and for every access structure A, if ∆ > 0 then Λ > 0.

Observation 2. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality that
cannot help. Observe that ∆ = −∑

I:p0∈ bAI ;AI /∈A αI ≥ −∑
I:p0∈ bAI ;AI /∈A;αI<0 αI .

In addition, using Lemma 3 (proved later), if Λ > 0 then there exists a constant
β > 0 that depends only on the coefficients of the information inequality (and,
therefore, independent of the access structure and the number of parties in the
access structure) such that Λ ≥ β.2 Thus, the information inequality can at most
γ-help for some constant γ > 0. If we consider a finite collection of information
inequalities, such that each inequality in the collection cannot help, then there is
a constant γ > 0 such that each inequality in the collection can at most γ-help,
and we can apply Theorem 2. Therefore, when dealing with a finite collection
of information inequalities, we will check that each inequality in the collection
cannot help; this is easier than calculating the maximal γ for each inequality.

5 Examples of Information Inequalities that Cannot Help

In this section, we demonstrate our method for proving that an information
inequality cannot help by considering two example. First, we will demonstrate
the calculations and the technique that we will use later on a simple Shannon
inequality with two random variables. The fact that this inequality cannot help
follows from Csirmaz’s proof that using only Shannon inequalities one cannot
prove better lower bounds. We reprove this result in order to supply a simple
example of our method.

We consider the inequality f(Â1) + f(Â2) ≥ f(Â1 ∪ Â2) + f(Â1 ∩ Â2) for
two sets Â1, Â2 ⊆ P ∪{p0}. This inequality follows from the fact that the condi-
tional mutual information is non-negative. We should calculate Λ = Cn(|A1|) +
Cn(|A2|) − Cn(|A1 ∪A2|) − Cn(|A1 ∩A2|). By Obseration 1, |A1| = t1 + t1,2,
|A2| = t2 + t1,2, |A1 ∪A2| = t1 + t1,2 + t2, and |A1 ∩A2| = t1,2.3 Furthermore,
n = t1 + t1,2 + t2. Therefore, for every A1, A2 ⊆ P

Cn(|A1|) + Cn(|A2|)− Cn(|A1 ∪A2|)− Cn(|A1 ∩A2|)
= (t1 + t1,2)

[
(t1 + t1,2 + t2) +

1
2
− (t1 + t1,2)

2

]

+ (t2 + t1,2)
[
(t1 + t1,2 + t2) +

1
2
− (t2 + t1,2)

2

]

− (t1 + t1,2 + t2)
[
(t1 + t1,2 + t2) +

1
2
− (t1 + t1,2 + t2)

2

]

− t1,2

[
(t1 + t1,2 + t2) +

1
2
− (t1,2)

2

]
= t1t2.

2 The value of β can be calculated by assigning tI = 1 whenever tI > 0.
3 For simplicity of our notation, in the rest of the paper we sometimes write t1,2 instead

of t{1,2} (and similarly for other sets).
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Assume that p0 ∈ Â1, Â2. Thus, p0 ∈ Â1 ∪ Â2, Â1 ∩ Â2. Before calculating ∆ we
have to decide which sets are in the access structure. If A1 ∪ A2 /∈ A, then also
A1, A2, A1∩A2 /∈ A. Thus, f(A1∪{p0}) = f(A1)+1, f(A2∪{p0}) = f(A2)+1,
f(A1 ∪ A2 ∪ {p0}) = f(A1 ∪ A2) + 1, and f(A1 ∩ A2 ∪ {p0}) = f(A1 ∩ A2) + 1.
Therefore, ∆ = 0 and the inequality cannot help using these selections. However,
if A1, A2 ∈ A, but A1∩A2 /∈ A, then f(A1∪{p0}) = f(A1), f(A2∪{p0}) = f(A2),
f(A1 ∪ A2 ∪ {p0}) = f(A1 ∪ A2), and f((A1 ∩ A2) ∪ {p0}) = f(A1 ∩ A2) + 1.
Therefore, ∆ = 1 > 0 as needed. But the selection of A1, A2 ∈ A and A1∩A2 /∈ A
implies A1 \ (A1 ∩A2), A2 \ (A1 ∩A2) 6= ∅ which means that t1 > 0 and t2 > 0,
thus, Λ = t1 · t2 ≥ 1 > 0 as well. In other words using these selections the
inequality cannot help. Moreover, every other set of selections cannot help to
achieve ∆ > 0 while Λ = 0.

To conclude, given an information inequality we want ∆ > 0 while Λ = 0.
By different choices of which sets are in the access structure and which sets
contain the dealer we get different values of ∆. We want choices that maximize
∆. However, notice that by choosing, for example, A1 ∈ A while A2 /∈ A, we
must have that A1 \ A2 6= ∅. Thus, the choices of which sets are in the access
structure force that certain sets are non-empty, which might imply that Λ > 0.

5.1 The Zhang and Yeung Information Inequality Cannot Help

We next consider the Zhang and Yeung information inequality [47] – the first
Non-Shannon inequality that was discovered – and prove that this inequality
cannot help in proving lower bounds of ω(n).

Theorem 3 (The Zhang and Yeung Information Inequality [47, The-
orem 3]). For every four discrete random variables X1, X2, X3, and X4 the
following inequality holds:

3 [H(X3X4) + H(X2X4) + H(X2X3)] + H(X1X3) + H(X1X2)−H(X4)
− 2 [H(X3) + H(X2)]−H(X1X4)− 4H(X2X3X4)−H(X1X2X3) ≥ 0. (2)

For every secret-sharing scheme and for every four sets Â1, Â2, Â3, Â4 ⊆
P ∪ {p0} we can consider the random variables Xi = S bAi

for i = 1, . . . , 4. Thus,

3
[
f(Â3Â4) + f(Â2Â4) + f(Â2Â3)

]
+ f(Â1Â3) + f(Â1Â2)− f(Â4)

− 2
[
f(Â3)− f(Â2)

]
− f(Â1Â4)− 4f(Â2Â3Â4)− f(Â1Â2Â3) ≥ 0. (3)

By choosing which sets contain the dealer and which sets are in the access
structure we get different values of ∆. We next apply the Csirmaz function on
Inequality (3). We use the same process described above on each one of the
terms of (3). After simplifications, we get the following polynomial Λ, which is
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a multivariate polynomial whose variables are {tI : I ⊆ [m]}.
︷ ︸︸ ︷
t1,2,3 + t21,2,3

2
+t1t1,2,3 + t1,2t1,2,3 +

︷ ︸︸ ︷
t1,2,4 + t21,2,4 +2t1t1,2,4 + 2t1,2t1,2,4 + t1,2t1,3

+ t1,2,3t1,3 +
︷ ︸︸ ︷
t1,3,4 + t21,3,4 +2t1t1,3,4 + 2t1,3t1,3,4 +

︷ ︸︸ ︷
t1,4 + t21,4

2
+t1t1,4 + 2t1,2t1,4

+2t1,2,4t1,4 + 2t1,3t1,4 + t1,3,4t1,4 + t1,2,3t2 + 2t1,2,4t2 + t1,3t2 + 2t1,4t2 + t1,2t2,3

+
︷ ︸︸ ︷
t2,3 + t22,3 +t1t2,3 + t1,2,3t2,3 + t1,3t2,3 + 2t2t2,3 +

︷ ︸︸ ︷
t2,4 + t22,4

2
+2t1t2,4 + t2t2,4

+2t1,2t2,4 + 2t1,2,4t2,4 + 2t1,4t2,4 + t1,2t3 + t1,2,3t3 + 2t1,3,4t3 + 2t1,4t3 + 2t2t3

+2t2,3t3 +

︷ ︸︸ ︷
t3,4 + t23,4

2
+2t1t3,4 + 2t1,3t3,4 + 2t1,3,4t3,4 + 2t1,4t3,4 + t3t3,4 + +t1t4

+2t1,2t4 + 2t1,2,4t4 + 2t1,3t4 + 2t1,3,4t4 + t1,4t4 + t2t4 + t2,4t4 + t3t4 + t3,4t4.

After applying the Csirmaz function we get a polynomial of degree 2 such that
all its coefficients are non-negative. We are looking for the following situation:
Λ = 0 while ∆ > 0. Since all coefficients are non-negative and tI ≥ 0 for every
I ⊆ [m], the value of Λ is zero if every monomial in Λ is zero. In particular, every
term β ·tI or β ·t2I in Λ has to be equal to zero. If the coefficient β is positive, then
tI = 0 must hold. Thus, t1,2,3 = t1,2,4 = t1,3,4 = t1,4 = t2,3 = t2,4 = t3,4 = 0. Let
Λ′ be the polynomial after setting these variables to be zero, that is,

Λ′ = t1,2t1,3 + t1,3t2 + t1,2t3 + 2t2t3 + t1t4 + 2t1,2t4 + 2t1,3t4 + t2t4 + t3t4.

The polynomial Λ′ should be zero, therefore, in the inequality above one of the
variables (i.e., set size) in each monomial has to be zero (e.g., t1,2 = 0 or t1,3 = 0).

We use a brute-force algorithm for checking if it is possible that ∆ > 0 while
Λ = 0. We have two decisions to make:

– For each i ∈ {1, . . . , 4} we should decide if p0 ∈ Âi or not.
– We have to decide which sets are in the access structure. Specifically, for each

I ⊆ [m] such that αI 6= 0 in the information inequality, we need to decide
whether AI /∈ A or AI ∈ A. These decisions should be consistent with the
constrains that some sets δJ are of size zero.

Example 1. Assume that A4 is the only minimal set in the in the access structure.
Thus, the sets that are in the access structure are exactly those that include A4.
We add the dealer to Â2 and do not add it to any other set. After committing to
these decisions we compute ∆ as specified in Definition 7, ∆ = −∑

2∈I,4/∈I αI =
−(3 + 1− 2− 1) = −1 < 0. Thus, these decisions cannot help.

Example 2. Assume that A{1,2} and A{2,3} are the only minimal sets in the in
the access structure. This means that the sets that are in the access structure are
exactly those that include A{1,2} or A{2,3}. For example, A{1,2,3} ∈ A. We also
add the dealer to every Âi, 1 ≤ i ≤ 4. After committing to these two decisions



14 A. Beimel and I. Orlov

we compute ∆ = −∑
{1,2}6⊆I∧{1,3}6⊆I αI = −(3+3+3−1−2−2−1−4) = 1 > 0.

Observe that ∆ > 0 as needed. But, A{1,2} ∈ A while A{1,3} /∈ A. This means
that A{1,2} \ A{1,3} = δ{{2},{2,4}} 6= ∅. However, we have set t2,4 = 0, thus,
t2 6= 0. In a similar way, A{2,3,4} ∈ A while A{2,3} /∈ A. This means that
A{2,3,4} \ A{2,3} = δ{{4},{1,4}} 6= ∅. However, we have set t1,4 = 0, thus, t4 6= 0.
Combining these two constraints we get t2 · t4 > 0, which implies Λ > 0. Thus,
as before, these decisions cannot help.

We have written a computer program that checks all the possibilities for includ-
ing the dealer in the sets and for which sets are in the access structure. The
computer program showed that for each possible combination either ∆ ≤ 0 or
Λ > 0 (or both). This means that the Csirmaz function is still a solution to the
linear program and this inequality cannot help.

6 All Known Information Inequalities Cannot Help

In this section we describe an algorithm that checks if an information inequality
cannot help. We executed this algorithm on all known information inequalities,
except for two infinite collections of inequalities, and verified that they cannot
help. Thereafter, we consider the two known infinite collections of information
inequalities and show that they can at most γ-help for some constant γ > 0.
Before presenting these results, we show how to compute the polynomial Λ effi-
ciently and analyze its properties.

6.1 Properties of the Polynomial Λ

For every information inequality
∑

I⊆[m] αIH(XI) ≥ 0 and for every sets A1, . . . ,
Am we consider the quantity Λ =

∑
I⊆[m] αICn(|AI |). By Obseration 1, |AI | =∑

I∩J 6=∅ tJ . Thus, we consider Λ =
∑

I⊆[m] αICn(
∑

I∩J 6=∅ tJ ) as a polynomial
in the variables {tJ}J⊆[m]. We start with proving a property of information
inequalities that we use in the analysis of our algorithm.

Lemma 2. Let
∑

I αIH(XI) ≥ 0 be an information inequality. Then, for every
J ⊆ [m],

∑
I∩J 6=∅ αI ≥ 0.

Proof. Define a random variable Y which is uniformly distributed in {0, 1}; in
particular H(Y ) = 1. Now define X1, . . . , Xm, where Xj = Y iff j ∈ J and
Xj = 0 otherwise (that is, in the latter case Xj is a deterministic variable whose
entropy is 0). This implies that H(XI) = 1 iff I ∩ J 6= ∅ and H(XI) = 0
otherwise. Since the information inequality holds for every random variables,
the lemma follows. ut
Lemma 3. For every information inequality the polynomial Λ is a multivariate
polynomial with total degree 2. Furthermore, the coefficient of every monomial in
Λ is non-negative and can be efficiently calculated from the information inequality
(without applying the Csirmaz function).
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Proof. The fact that the polynomial Λ is a multivariate polynomial with total
degree 2 can be deduced from the structure of the Csirmaz function (see Defi-
nition 6), that is, Λ is a sum of polynomials Cn(|AI |) = Cn(

∑
I∩J 6=∅ tJ), where

Cn(k) is polynomial of degree 2. Next, we compute the coefficients of Λ. Recall
that n =

∑
I⊆[m] tI .

Λ =
∑

I⊆[m]

αICn(|AI |) =
∑

I⊆[m]

αI

[
n |AI |+ |AI |

2
− |AI |2

2

]

=
∑

I⊆[m]

αI


 ∑

J:I∩J 6=∅
tJ +

∑

J:I∩J=∅
tJ





 ∑

J:I∩J 6=∅
tJ


 +

∑

I⊆[m]

αI

∑
J:I∩J 6=∅ tJ

2

−
∑

I⊆[m]

αI

(∑
J:I∩J 6=∅ tJ

)2

2

=
∑

I⊆[m]

αI




∑
J:I∩J 6=∅ tJ +

(∑
J:I∩J 6=∅ tJ

)2

2
+

∑

J:I∩J 6=∅
tJ ·

∑

J:I∩J=∅
tJ


 .

We can now compute the coefficients of the monomials of the polynomial Λ:

1. βtJ : In this case β =
P

I∩J 6=∅ αI

2 , i.e., the sum of the coefficients of sets that
include δJ . By Lemma 2 this sum is non negative.

2. βt2J : In this case β =
P

I∩J 6=∅ αI

2 , again, this is the sum of the coefficients of
sets that include δJ .

3. βtJ tK : In this case β =
∑

I : I∩(J∪K)6=∅ αI . That is, β is the sum of co-
efficients of sets that include at least one of tJ and tK , and by Lemma 2,
β ≥ 0. ut
As all the coefficients in Λ are non-negative and all the values of tI are non-

negative, its value is always non-negative. That is,

Lemma 4. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. Then, for
every sets A1, . . . , Am ⊆ P ,

∑
I⊆[m] αICn(|AI |) ≥ 0.

6.2 An Algorithm for Checking If an Information Inequality
Cannot Help

We next present the algorithm that checks if an information inequality cannot
help. The algorithm is a brute-force algorithm that checks, for each possible
choice of adding the dealer or not adding the dealer to each set Ai and for each
possible choice AI ∈ A or AI /∈ A for each I ⊆ [m], if ∆ > 0 while it is possible
that Λ = 0. To check if Λ can equal 0 under some a specific choice, we check for
each choice tI = 0 and tI > 0 for each I ⊆ [m] if (1) Λ = 0 under this choice,
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Input : An information inequality
P

A⊆[m] αAH(XA) ≥ 0.
Output: “NO” if the information inequality cannot help, “YES” otherwise.

Calculate the polynomial Λ using Lemma 3;1

foreach monomial in Λ of the form βtJ where β 6= 0 do set tJ = 0;2

Let Λ′ be the resulting polynomial after setting these variables.;3

foreach choice of setting AI ∈ A or AI /∈ A for each αI 6= 0 in the4

information inequality do
/* If there are q terms with non-zero coefficient inP

I⊆[m] αIH(XI) ≥ 0, there are 2q combinations. */

foreach choice of setting p0 ∈ bAi or p0 /∈ bAi for every 1 ≤ i ≤ m do5

/* There are 2m combinations. */

Calculate ∆ = −PI:p0∈ bAI ;AI /∈A αI ;6

if ∆ ≤ 0 then go to (5);7

/* Check if it is possible that Λ = 0: */

foreach choice of setting tI = 0 or tI > 0 for every I ⊆ [m] do8

/* There are 22m

such combinations. */

foreach monomial βtJ tK in Λ′, where β 6= 0 do9

if tJ > 0 and tK > 0 in the current explored combination10

then go to (8);
end11

foreach I, J where αI 6= 0 and αJ 6= 0 in the information12

inequality
P

I⊆[m] αIH(XI) ≥ 0 do

if in the current explored combination AI ∈ A, AJ /∈ A, and13

there is no K ⊆ [m] such that I ∩K 6= ∅, J ∩K = ∅, and
tK > 0 in the current explored combination then go to (8);

end14

return “YES”15

end16

end17

end18

return “NO”19

Algorithm 1: A brute-force algorithm that checks if an information
inequality cannot help.

and (2) this choice is consistent with the choice of sets that are in the access
structure. The algorithm is formally described in Algorithm 1.

We have executed Algorithm 1 on the following non-Shannon inequalities:

– The first Non-Shannon inequality with four variables that was discovered by
Zhang and Yeung in [47].

– The six Non-Shannon inequalities with four variables and anther one with
five variables in [23].

– The five Non-Shannon inequalities with four variables in [44].
– The inequality of Ingleton in [29].4

4 The inequality of Ingleton [29] holds only for linear-algebraic spaces.
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For each of these inequalities the result is the same – the information inequality
cannot help in proving lower bounds of ω(n).

Remark 2. The algorithm written above is not efficient. However, for our purpose
– checking information inequalities with four or five variables – the algorithm
is good enough. To be precise, the running of the computer program executing
the algorithm takes less than a minute even for an information inequality of [23]
that contains five variables. All other inequalities contain 4 variables and the
running time is better.

Remark 3. Our algorithm gives a necessary condition for an information inequal-
ity to be helpful. We do not know of an information inequality that fulfills this
necessary condition. We do have an example of a potential inequality that sat-
isfies it: H(X1X2) + H(X1X3) + H(X2X3) + H(X4) ≤ H(X1X2X3) + H(X1) +
H(X2) + H(X3X4). We stress that we do not know if this is an information
inequality. It does satisfy Lemma 2 and some stronger conditions for being an
information inequality.

6.3 Dealing with the Known Infinite Collections of Information
Inequalities

There are a few examples for infinite sequences of Non-Shannon inequalities.
The first infinite sequence of Non-Shannon inequalities was discovered by Zhang
and Yeung in [47]; they show for every n ∈ N an information inequality with n
variables. A sequence of Non-Shannon information inequalities generalizing the
result of [47] appears in [33, 46]. Finally, an infinite sequence of Non-Shannon
information inequalities with four variables was given in [44].

In [44] there is a symbolic inequality with four variables, where some of the
coefficients are a function of a parameter s. This inequality is an information
inequality for every assignment s ∈ N+. For example, for s = 2 it yields the
Zhang and Yeung information inequality [47]. For this symbolic information
inequality, we computed the symbolic polynomial Λ and proved that there is
a constant γ > 0 such that for every s ∈ N+ the information inequality with
parameter s can at most γ-help. We used a similar technique to deal with the
infinite sequence presented in [46] that is more general than the infinite sequences
presented in [47, 33]. For these sequences the result is that there is a constant
γ > 0 such that every inequality in the sequence can at most γ-help.

Using Theorem 2 we conclude that all the known information inequalities
cannot help in proving lower bounds of ω(n) on the size of the shares in secret-
sharing schemes.

Theorem 4. The information inequalities of [29, 47, 33, 46, 23, 44] cannot
help in proving lower bounds of ω(n) even if they are used simultaneously.

Acknowledgment. We thank the anonymous TCC referees for valuable com-
ments.



18 A. Beimel and I. Orlov

References

[1] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319, 1999.

[2] A. Beimel and B. Chor. Universally ideal secret sharing schemes. IEEE Trans.
on Info. Theory, 40(3):786–794, 1994.

[3] A. Beimel and M. Franklin. Weakly-private secret sharing schemes. In S. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 253–272. Springer-Verlag, 2007.
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