
Hierarchical Identity Based Encryption with
Polynomially Many Levels

Craig Gentry (Stanford & IBM) and Shai Halevi? (IBM)

Abstract. We present the first hierarchical identity based encryption
(HIBE) system that has full security for more than a constant number of
levels. In all prior HIBE systems in the literature, the security reductions
suffered from exponential degradation in the depth of the hierarchy, so
these systems were only proven fully secure for identity hierarchies of
constant depth. (For deep hierarchies, previous work could only prove
the weaker notion of selective-ID security.) In contrast, we offer a tight
proof of security, regardless of the number of levels; hence our system is
secure for polynomially many levels.

Our result can very roughly be viewed as an application of Boyen’s
framework for constructing HIBE systems from exponent-inversion IBE
systems to a (dramatically souped-up) version of Gentry’s IBE system,
which has a tight reduction. In more detail, we first describe a generic
transformation from “identity based broadcast encryption with key ran-
domization” (KR-IBBE) to a HIBE, and then construct KR-IBBE by
modifying a recent construction of IBBE of Gentry and Waters, which
is itself an extension of Gentry’s IBE system. Our hardness assumption
is similar to that underlying Gentry’s IBE system.

1 Introduction

Identity-Based Encryption (IBE) is a public-key encryption scheme where one’s
public key can be freely set to any value (such as one’s identity): An authority
that holds a master secret key can take any arbitrary identifier and extract a
secret key corresponding to this identifier. Anyone can then encrypt messages
using the identifier as a public encryption key, and only the holder of the cor-
responding secret key can decrypt these messages. This concept was introduced
by Shamir [19], a partial solution was proposed by Maurer and Yacobi [18], and
the first fully functional IBE systems were described by Boneh and Franklin [5]
and Cocks [11].

? Research was sponsored by US Army Research laboratory and the UK Ministry of
Defense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government, the UK Ministry of
Defense, or the UK Government. The US and UK Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

IBE systems can greatly simplify the public-key infrastructure for encryption
solutions, but they are still not as general as one would like. Many organizations
have an hierarchical structure, perhaps with one central authority, several sub-
authorities and sub-sub-authorities and many individual users, each belonging
to a small part of the organization tree. We would like to have a solution where
each authority can delegate keys to its sub-authorities, who in turn can keep
delegating keys further down the hierarchy to the users. The depth of the hi-
erarchy can range from two or three in small organizations, up to ten or more
in large ones. An IBE system that allows delegation as above is called Hier-
archical Identity-Based Encryption (HIBE). In HIBE, messages are encrypted
for identity-vectors, representing nodes in the identity hierarchy. This concept
was introduced by Horwitz and Lynn [17], who also described a partial solution
to it, and the first fully functional HIBE system was described by Gentry and
Silverberg [15].

The security model for IBE and HIBE systems postulates an attacker that
can adaptively make “key-reveal” queries, thereby revealing the decryption keys
of identities of its choice. The required security property asserts that such an
attacker still cannot break the encryption at any identity other than those for
which it issued key-reveal queries. (Or in the case of HIBE, other than those for
which it issued key-reveal queries or their descendants.)

For the first IBE and HIBE systems, the only known proofs of security are
carried out in the random-oracle model. Canetti et al. [9] introduced a weaker no-
tion of security called selective-ID, where the attacker must choose the identity to
attack before the system parameters are chosen (but can still make adaptive key-
reveal queries afterward). They proved that a variant of the Gentry-Silverberg
system is secure in this model even without random oracles. Boneh and Boyen
described a more efficient selective-ID HIBE [1], and later described a fully secure
IBE system without a random oracle [2]. Waters [22] described what is currently
the most practical adaptively-secure HIBE system without random oracles.

All currently known fully-secure HIBE systems, however, suffer from loose
security reductions (whether they use random oracles or not). Specifically, they
lose a multiplicative factor of Ω(q/`)` in the success probability, where q is the
number of key-reveal queries and ` is the depth of the identity hierarchy. This
means that asymptotically these reductions can only be used for hierarchies
of constant depth. When considering concrete parameters, these reductions are
only meaningful for hierarchies of depth two or three.

Gentry [13] proposed the first adaptively-secure IBE system without random
oracles that has a tight reduction to its underlying hard problem. Recently Gen-
try and Waters extended Gentry’s IBE to construct an adaptively-secure identity
based broadcast encryption (IBBE) system without random oracles [16], whose
security is tightly based on a related hard problem. Our HIBE system builds on
the Gentry-Waters system.

Boyen [8] proposed a framework for constructing HIBE systems from exponent-
inversion IBE systems. Specifically, Boyen described some properties of pairing-
based IBE systems (called parallel IBE and linear IBE), and proved that an

IBE system with these properties can be transformed to HIBE with comparable
security. Boyen noted that Gentry’s IBE does not quite fit within this template,
and left it as an open problem to construct a HIBE system from Gentry’s IBE
system. Our system, which solves this problem, does not quite fit within Boyen’s
framework, yet our approach owes much to Boyen’s idea.

We construct the first fully-secure HIBE with a tight proof of security. Namely,
ours is the first HIBE system that can be proven fully secure for more than a
small constant number of levels. This solves an open problem posed in [15, 1, 2,
22, 3, 13, 8]. Similarly to the systems of Gentry [13] and Gentry-Waters [16], we
exhibit a tight reduction, albeit to a problem whose instances are of size linear
in q + `.

1.1 Loose and Tight Reductions

On a high level, the reason that most IBE systems have loose reductions is that
those reductions involve the following trade-off: For each identity ID, either the
simulator knows a decryption key for ID, or it doesn’t. If it knows a key for ID
then it does not learn anything new if the adversary chooses ID as the target
identity to attack, since it could have used the decryption key to learn the same
information. And if the simulator does not know a decryption key for ID then it
must abort if the adversary makes a key-reveal query for this identity.

The crucial difference in the security proof of Gentry’s IBE [13] is that there
are many different decryption keys for each identity, and the simulator knows
a small subset of these keys. Thus, the simulator can answer every key-reveal
query without aborting, but still learn something when the adversary choses that
identity for the challenge ciphertext. In this sense, Gentry’s IBE system follows
the universal hash proof paradigm of Cramer and Shoup [12]: Given a well-
formed ciphertext, all the decryption keys recover the same message, but they
recover different messages when the ciphertext is mal-formed (in a certain sense).
The adversary is assumed to have a non-negligible advantage when the challenge
ciphertext is well-formed, but has essentially no advantage (statistically) when
it is mal-formed; the adversary’s different behavior in these cases allows the
simulator to solve the underlying decision problem. Gentry’s reduction uses an
underlying hard problem that has a large problem instance (size θ(q)), to ensure
that the adversary cannot use its q key-reveal queries to determine what keys
the simulator possesses for the target identity. In this work we extend Gentry’s
IBE system and proof to the case of a HIBE.

1.2 Constructing HIBE, Step 1: From IBBE to HIBE

In our quest to construct HIBE, we use as an intermediate step a specific type
of identity-based broadcast encryption (IBBE). An IBBE system can be seen
as somewhere in between regular IBE and HIBE: It allows a sender to encrypt
a message to a set identities, and each member of this set can use its own key
to decrypt the message. This is somewhat similar to HIBE, in that encryption

is targeted at a group of identities (similarly to the identity vector in HIBE).1

However, IBBE is simpler than HIBE since decryption keys correspond only to
single identities (see Section 2.2).

As a first step in constructing HIBE systems, we provide a generic transfor-
mation from IBBE to HIBE. This transformation, however, requires an “aug-
mented IBBE system” that also has decryption keys corresponding to sets of
identities (for decrypting ciphertexts that were encrypted for these sets). Specif-
ically, we require a key-randomizable identity based broadcast encryption (KR-
IBBE), where it is possible to generate a uniformly random decryption key KS for
a set of identities S from any decryption key KS′ for S′ ⊂ S (see Section 2.3).
KR-IBBE is rather close to HIBE, but a major difference is that security is
defined with respect to an adversary that can only ask for decryption keys cor-
responding to single identities, not for sets of identities. Hence it is still simpler
to design KR-IBBE and use our transformation than to design a HIBE “from
scratch.”

1.3 Constructing HIBE, Step 2: Constructing KR-IBBE

Even with the simplification of KR-IBBE, our construction and its proof are still
rather complex. Part of the reason for the complexity of our system and proof
stems from the inherent tension between the key-randomization requirement and
the Cramer-Shoup proof paradigm: On one hand, key-randomization implies in
particular that one can generate a random decryption key for an identity set S
from any fixed valid encryption key for the same set. On the other hand, the
Cramer-Shoup paradigm require that the simulator be able to generate only a
small subset of the decryption keys for the target identity set.

Our proof resolves this tension by going through an intermediate step in
which we replace the full-randomization requirement with “pseudo-randomization”:
Namely, from each fixed valid encryption key we can only generate a small subset
of the decryption keys, but this small subset still looks random. In our case, the
difference between “fully-random” and “pseudo-random” keys is that “fully ran-
dom” keys are taken from some linear space and “pseudo-random” keys are taken
from a proper subspace of this linear space. These being linear spaces of group
elements, they are indistinguishable under the Decision Linear Assumption [4].

We prove the security of the “pseudo-random” system using techniques and
hard problems analogous to those used by Gentry and Waters in [16], but we
we need to make rather substantial modifications to the system given in [16].
Most notably, the randomization requirement seems to imply that we cannot
have scalars in the decryption key, so we must convert everything into vectors
of group elements.

1 We use IBBE as a tool for constructing HIBE, so we consider a variant where the
intended recipients must be enumerated explicitly by the encryption procedure. Note
that it is more common for IBBE to have the “revoked” recipients enumerated on
encryption. Arguably, our variant should have been called multicast encryption.

2 HIBE and IBBE: Definitions

For simplicity, we define our encryption systems as key encapsulation mecha-
nisms (KEM). The standard transformation from KEM to encryption is ignored
here.

2.1 Hierarchical Identity-Based Encryption

A HIBE system consists of the following five procedures:

Setup(λ, `) Takes as input a security parameter λ and the hierarchy depth `. It
outputs a public key PK and a master secret key SK. The public key implies
also a key space K(PK) and an identity space ID(PK), and hierarchical
identities are (ordered) tuples in ID(PK)≤`.

KeyGen(PK, SK, ID) Takes as input the public key PK and master secret key
SK, and an identity vector ID = [ID1, . . . , IDt] ∈ ID(PK)≤`. It outputs a
decryption key KID for ID.

KeyDerive(PK, ID,KID, ID′) Takes as input the public key PK, the identity
vector ID and corresponding decryption key KID, and another vector ID′

such that ID is a prefix of ID′. It outputs a decryption key KID′ for ID′.
KEM(PK, ID) Takes as input the public key PK and identity vector ID. It

outputs a pair (K, C), where K is the KEM key (from the key space K(PK))
and C is the ciphertext.

Decrypt(PK, C, ID,KID) On input the public key PK, ciphertext C, identity
vector ID and corresponding decryption key KID. It outputs the correspond-
ing KEM key K (or an error message ⊥).

We require the usual “completeness”, namely that decryption with the cor-
rect decryption key always recovers the correct KEM key. In particular, setting
(PK, SK)← Setup(λ, `) and fixing any chain of identity vectors ID1,ID2,. . .,IDt

with each IDi a prefix of IDi+1, if we set KID1 ← KeyGen(PK, SK, ID1) and
then KIDi ← KeyDerive(PK, IDi−1,KIDi−1 , IDi) for i = 2, . . . , t and (K, C) ←
KEM(PK, IDt), then we have Decrypt(PK, C, IDt,KIDt

) = K (with probability
one).

Security. 2 Chosen-plaintext security for a HIBE system E against an adver-
sary A is defined by the following game between A and a “challenger” (both
given the parameters λ, ` as input):

Setup: The challenger runs (PK, SK)← E .Setup(λ, `) and gives PK to A.

Key-Reveal: The adversary A makes adaptive key-reveal queries to the chal-
lenger, each consisting of an identity vector ID = [ID1, . . . , IDt] ∈ ID(PK)≤`.
If the adversary already made the challenge query and ID is a prefix of the
target identity ID∗ then the challenger ignores this query, and otherwise it
returns to the adversary the decryption key KID ← E .KeyGen(PK, SK, ID).

2 Our security definition below ignores the delegation issue that was noted by Shi and
Waters [20], see discussions later in this section.

Challenge: The adversary queries the challenger with the target identity vector
ID∗ = [ID∗

1, . . . , ID
∗
t] ∈ ID(PK)≤`. If the adversary already made a challenge

query before, or if it made a key-reveal query for any prefix of the target iden-
tity ID∗ then the challenger ignores this query. Otherwise the challenger sets
(K1, C) ← E .KEM(PK, ID∗), chooses another random key K0 ∈R K(PK)
and a “challenge bit” σ ∈R {0, 1}, and returns (Kσ, C) to the adversary.

The adversary can make many Key-Reveal queries and one Challenge query, in
whatever order. Then it halts, outputting a guess σ′ for the challenge bit σ. The
HIBE advantage of A is

AdvHIBEEA(λ, `) = Pr[A⇒ 1|σ = 1] − Pr[A⇒ 1|σ = 0]

Definition 1 (CPA-secure HIBE). The system E is CPA-secure if for any
efficient adversary A and any ` = poly(λ) it holds that AdvHIBEEA(λ, `(λ)) is
negligible in λ.

CCA-security is defined similarly, where the adversary can also make decryp-
tion queries (except for decrypting the target ciphertext by the target identity
vector).

Key delegation. Shi and Waters observed recently [20] that definitions such as
the one above are incomplete model of the real world. In the definition above
the adversary only sees decryption keys that were generated by KeyGen, whereas
compromised nodes in the real world have keys that were generated by KeyDerive.
This could be significant, since different delegation paths could result in different
distributions of secret keys. Shi wand Waters presented a more elaborate defini-
tion in which the adversary is allowed to specify a delegation path and obtain a
key that was generated using this delegation path.

For our construction, the key-randomization property ensures that the dis-
tribution of keys is nearly identical, whether they are generated by KeyGen or
by KeyDerive. Hence, we only prove security with respect to this simplified defi-
nition.

2.2 Identity-Based Broadcast Encryption

An IBBE system consists of the procedures (Setup,KeyGen,KEM,Decrypt). Setup,
KeyGen, and KEM are similar to HIBE, except that KeyGen can only be used for
single identities (not identity vectors), and KEM gets a set of identities S instead
of an ordered vector. Decrypt is defined as follows:

Decrypt(PK, C, S, ID,KID) On input the public key PK, ciphertext C, identity
set S = {ID1, . . . , IDt} (with t ≤ `) and the decryption key KID for some
ID ∈ S. It outputs the corresponding KEM key K (or an error message ⊥).

The security definition for IBBE is similar to the one for HIBE, the difference
being that the adversary can only make key-reveal queries for single identities
rather than identity-vectors. See the long version [14] for the formal definitions.

2.3 Key-Randomizable IBBE

To construct HIBE systems, we will use “augmented IBBE systems” that also
have decryption keys corresponding to sets of identities: A decryption key corre-
sponding to an identity-set S makes it possible to decrypt ciphertexts that were
created with respect to this set. A Key-Randomizable Identity-Based Broadcast
Encryption system (KR-IBBE) is an IBBE system with extended key genera-
tion KeyGen∗, extended decryption Decrypt∗, and key-derivation KeyDerive, as
follows:

KeyGen∗(PK, SK, S) Takes as input the public key PK, master secret key SK,
and an identity set S = {ID1, . . . , IDt} ∈ ID(PK)≤`, and outputs a decryp-
tion key KS for S. We require that KeyGen∗(PK, SK, S) degenerates to the
original KeyGen when S is a singleton set S = {ID}.

KeyDerive(PK, S,KS , S′) Takes as input the public key PK, an identity set S
and corresponding decryption key KS , and a superset S′ ⊇ S, and outputs
a decryption key KS′ for S′.3

Decrypt∗(PK, C, S,KS) Takes as input the public key PK, an identity set S, ci-
phertext C that was generated with respect to S, and the decryption key KS

for S. It outputs the KEM key K (or an error message ⊥).

We stress that we make no security requirements regarding these additional
procedures: the CPA-security game is still defined with respect to the original
four procedures Setup,KeyGen,KEM, Decrypt. However, we do make some func-
tionality requirements, specifically the standard “completeness” requirement on
Decrypt∗ and a distribution requirement on KeyDerive.

The “completeness” requirement says that for any (PK, SK) ← Setup(λ, `)
and any set of identities S, if we set KS ← KeyGen∗(PK, SK, S) and (K, C)←
KEM(PK, S), then we get Decrypt∗(PK, C, S,KS) = K (with probability one).

The distribution requirement says for any (PK, SK)← Setup(λ, `), any two
sets of identities S ⊆ S′, and any decryption key KS ← KeyGen∗(PK, SK, S),
the output distributions of KeyGen∗(PK, SK, S′) and KeyDerive(PK, S,KS , S′)
are almost identical. (That is, their statistical distance is negligible in λ.)

Remark. Due to the distribution requirement above, our transformation from
key-randomizable IBBE to HIBE in Section 3 results in a system where the
decryption keys generated by KeyDerive have the same distribution as the ones
generated by KeyGen. As we pointed out before, this property allows us to ignore
the delegation issue of Shi and Waters [20].

3 From Key-Randomizable IBBE to HIBE

The transformation from key-randomizable IBBE to HIBE is quite straight-
forward: we use collision-resistant hashing to map identity-vectors to identity-
sets, and then just use each of the procedures Setup, KeyGen∗, KeyDerive, KEM,
3 Note that in this setting of broadcast encryption, keys corresponding to smaller sets

are “more powerful” than ones corresponding to larger sets: one can derive a key for
the superset S′ from any key for a subset S, but not the other way around.

Decrypt∗ as-is. The only non-trivial aspect of this transformation is the security
reduction, since the HIBE adversary can make key-reveal queries on identity-
vectors whereas the IBBE adversary can only ask for keys of “top level” single
identities. We handle this difference by having the reduction algorithm generate
decryption keys differently than is done in the system, which is where we need
the distribution requirement of key randomization.

3.1 The Transformation

Let E = (Setup,KeyGen∗,KeyDerive,KEM,Decrypt∗) be a key-randomizable IBBE
system, and we assume that we have a “matching” collision resistant hash func-
tion H that can hash identity-vectors into the identity space of E .4 We use H to
hash identity vectors in the HIBE system into identity sets for E by setting:

H(ID1, . . . , IDi)
def= {H(ID1), H(ID1, ID2), . . . , H(ID1, ID2, . . . , IDi)}

Note that short of finding collisions in H, we can only get H(ID1, ID2, . . . , IDi) ∈
H(ID′) if (ID1, ID2, . . . , IDi) is a prefix of ID′. Then we construct a HIBE system
as follows:5

HIBE.Setup(λ, `): Set (SK0, PK0)← E .Setup(λ, `). Output SK and PK, which
are the same as SK0 and PK0, except that each includes a description of the
hash function H as above.

HIBE.KeyGen(PK, SK, ID): Set S ←H(ID) (as above), KS ← E .KeyGen∗(PK0,
SK0, S) and output KID = KS .

HIBE.KeyDerive(PK, ID,KID, ID′): Set S ←H(ID) and S′ ←H(ID′), and note
that S ⊆ S′ since ID is a prefix of ID′. Also let KS = KID, compute KS′ ←
E .KeyDerive(PK0, S,KS , S′) and output KID′ = KS′ .

HIBE.KEM(PK, S): Set S ← H(ID), compute (K, C) ← E .KEM(PK0, S) and
output (K, C).

HIBE.Decrypt(PK, C, ID,KID): Set S ← H(ID) and KS = KID, and return
E .Decrypt∗(PK0, C, S,KS).

Theorem 1. Suppose that there exists a HIBE adversary A that breaks CPA
security (resp. CCA security) of the HIBE construction with advantage ε. Then,
there exists an IBBE adversary B and a collision finder B′, both running in
about the same time as A, such that B′ finds a hash function collision with
some probability ε′ and B breaks the CPA security (resp. CCA security) of the
underlying KR-IBBE system E with advantage ε− ε′.

4 The identity space in our IBBE system from Section 5 is Zq for a large q, so “match-
ing” a hash function is easy.

5 Note that this transformation is completely black box; in particular, it does not
depend on whether or not the IBBE system uses a bilinear map.

The proof is in the long version [14]. The only non-trivial aspect of the proof
is that to get a key for the set S ←H(ID1, . . . , IDt), the simulator makes a query
for the singleton key of the identity ID′

t = H(ID1, . . . , IDt) ∈ S, and then uses
key-derivation to get the key for S.

4 Notations and Preliminaries

We now introduce notations and hardness assumption that are used to establish
our key-randomizable IBBE in Section 5. We denote the set of integers from
m to n (inclusive) by [m,n]. We denote polynomials by uppercase letters in
San-serif font, for example P, Q, T, etc. We use the following simple fact about
polynomials:

Lemma 1. For any polynomial P(x) and any scalar a, P(x)− P(a) is divisible
by x − a. In other words, P(x)−P(a)

x−a is a polynomial (without denominator) of
degree deg(P)− 1.

4.1 Bilinear maps and our additive notations

Our system and its security proof make heavy use of linear algebra. We there-
fore use additive notations for all the groups that are involved in the system.
Specifically, we use Zq — the field of integers modulo a prime q — as our base
scalar field, and we have two order-q groups that we call the source group G and
target group GT , both of which can be viewed as vector spaces over Zq.

Throughout the writeup we denote elements of the source group with a hat
over lowercase letters (e.g., â, b̂, etc.) and elements of the target group with
a tilde (ã, b̃, etc.). Scalars will be denoted with no decorations (e.g., a, b, and
sometimes also τ, ρ, etc.)

We will make use of an efficiently computable bilinear map from the source
group to the target group e : G×G→ GT , 6 such that for any two source-group
elements â, b̂ ∈ G and any two scalars u, v ∈ Zq it holds that

e(u · â, v · b̂) = uv · e(â, b̂)

The neutral elements in the groups G, GT are denoted by 0̂, 0̃, respectively. We
also denote by 1̂ some fixed generator in G, which we consider to be part of the
description of G. We require that the mapping e is non-trivial, which means that
e(1̂, 1̂) is a generator in GT , and we denote this generator by 1̃ = e(1̂, 1̂).

More generally, for a scalar a ∈ Zq, we denote the source-group element a · 1̂
by â, and the target-group element a· 1̃ = e(â, 1̂) by ã. Conversely, for an element
â ∈ G, its discrete-logarithm based 1̂ is denoted a ∈ Zq. (Readers who are used
to multiplicative notations may find it easier to think of â, ã as denoting “a

6 Our system can just as well use a-symmetric bilinear maps where you have two
different source groups, e : G1×G2 → GT . We chose to describe it for the symmetric
case G1 = G2 in order to avoid introducing even more notations.

in the exponent” in the appropriate groups.) Note also that in these notations,
the discrete-logarithm of â with respect to b̂ is just their “ratio” â/b̂, which is a
scalar.

With these notations, we usually omit the map e altogether, and simply
denote it as a “product” of two source-group elements:

â · b̂ def= e(â, b̂) = ãb ∈ GT

Note that the bi-linearity of e looks in these notations just like the natural
commutative property of products ûa · v̂b = uv · ãb.

Below we slightly abuse notations to denote “powers of group elements”: If
â is a group element with discrete-logarithm a, then we denote âi def= ai · 1̂ and
we call âi the i’th power of â. 7

Vectors and matrices. We extend our notations to vectors and matrices: A
vector of scalars is denoted with no decoration a = [a1, a2, . . . , an], a vector of
source-group elements denoted with a hat, â = [â1, â2, . . . , ân], and a vector of
target-group elements denoted with a tilde ã = [ã1, ã2, . . . , ãn]. All these vectors
are considered row vectors.

Matrices are denoted by uppercase letters, e.g., A for a matrix of scalars,
Â for a matrix of source-group elements, and Ã for a matrix of target-group
elements. We denote the i’th row of A by Ai, the sub-matrix consisting of rows
i, j, k by Ai,j,k, and the sub-matrix consisting of rows i through j is denoted
Ai..j . As usual, the transposed matrix of A is denoted At.

We denote by span(x,y,z) the linear space that is spanned by the vectors
x,y,z, and also use the same notation to denote the uniform distribution over
this space. For example, we use û ← ŵ + span(Â1,2,4) as a shorthand for the
process of choosing three random scalars a, b, c ∈R Zp and setting û ← ŵ +
aÂ1 + bÂ2 + cÂ4.

Inner and outer-products. For vectors a, b, we denote their inner product by
〈a, b〉 def=

∑
i aibi. We use the same inner-product notations also for vectors of

source-group elements, namely:〈
a, b̂

〉
=

〈
b̂,a

〉
def=

∑
i

aib̂i = 〈a, b〉 · 1̂, and
〈
â, b̂

〉
def=

∑
i

e(âi, b̂i) = 〈a, b〉 · 1̃

It is easy to check that all the commutative, associative, and distributive prop-
erties of inner products hold for both scalars and group elements.

Similar notations apply to matrix multiplication, for either scalar matrices
or group-element matrices. For example, if A is an ` ×m scalar matrix and B̂
is an m × n matrix of source-group elements, then AB̂ ∈ G[` × n] is a matrix
of source-group elements whose i, j element is the inner product of the i’th row

7 This abuse of notation may take some getting used to: notice that the a’s themselves
should be thought of as being “in the exponent.” In multiplicative notation, this

power of â would be denoted as something like g(ai).

of A by the j’th column of B̂. We also use a× b to denote the outer product of
two vectors. Namely, the outer product of the m-vector a by the n-vector b is
the m×n matrix obtained as the matrix product of the m× 1 matrix at by the
1× n matrix b. The same notation applies to vectors of group elements.

Linear algebra. All the standard concepts from linear algebra behave just the
same with either scalars or group elements. For example, if Â ∈ G[n × n] is
a square matrix of source-group elements and A is the matrix of the discrete
logarithm of all the elements in Â (with respect to the fixed generator 1̂), then
the inverse of Â is Â−1 = A−1 · 1̂. (Equivalently, the inverse of Â is the unique
matrix B̂ such that Â · B̂ = Ĩ.) Similarly, the rank of a scalar matrix is defined
as usual, and the rank of a matrix of group elements is defined as the rank of
their discrete-logarithm matrix.

4.2 The BDHE-Set assumption

The BDHE-Set assumption (used also in [16]) is a parameterized generaliza-
tion of the t-BDHI problem from [1].8 Recall that a t-BDHI adversary is given
t + 1 powers of a random source-group element, 1̂, â, â2, . . . ât, and it needs to
distinguish the target-group element ã−1 from random.

An instance of the BDHE-Set assumption is parameterized by a set of integers
S ⊂ Z and another “target integer” m. The BDHE-Set adversary is given some
powers of a random source-group element, {âi : i ∈ S}, and it (roughly) needs
to distinguish the target-group element ãm from random. Denoting S +q S

def=
{i + j mod λ(q) : i, j ∈ S}, where λ(q) is the order of elements modulo q, it is
easy to see that if G is an order-q bilinear-map group and m ∈ S +q S then the
problem is easy: Just choose some i, j ∈ S such that i + j = m mod λ(q) and
compute the bilinear map

e(âi, âj) = âi · âj = ãi+j = ãm

However, when m /∈ S +q S then there does not seem to be an easy way of
distinguishing ãm from random given the source-group elements {âi : i ∈ S}.
The formal BDHE-Set assumption below is somewhat stronger, however, giving
the adversary not the target group element ãm itself, but rather two random
source group elements whose product is ãm. Even so, this may be a reasonable
assumption to make.

Definition 2 (Decision BDHE-Set). Fix a prime number q, a set of inte-
gers S and another integer m /∈ S +q S. Also fix two order-q groups G and GT ,
admitting a non-trivial, efficiently computable bilinear map e : G×G→ GT .

The (S,m)-BDHE-Set problem with respect to G and GT consists of the
following experiment: Choose at random a scalar a ∈R Z∗q and a bit σ ∈R {0, 1}.
If σ = 0 then choose two random scalars z1, z2 ∈R Z∗q , and if σ = 1 then choose
a random scalar z1 ∈R Z∗q and set z2 ← a/z1 mod q. The BDHE-Set adversary

8 This assumption is called q-BDHI in [1], but we use the letter q as our group order.

gets as input âi = ai · 1̂ for all i ∈ S and also ẑ1, ẑ2, and its goal is to guess the
bit σ. The advantage of an adversary A is defined as

AdvBDHES,m
A (G, GT) def= Pr

[
a, z1 ∈R Z∗q , z2 ←

a

z1
, A

(
{âi : i ∈ S}, ẑ1, ẑ2

)
⇒ 1

]
− Pr

[
a, z1, z2 ∈R Z∗q , A

(
{âi : i ∈ S}, ẑ1, ẑ2

)
⇒ 1

]
Informally, the asymptotic Decision BDHE-Set assumption states that for

any m /∈ S+S and a large enough prime q, efficient adversaries (that work in time
poly(|S|, log q) only have insignificant advantage in the experiment from above.
Making this formal is rather straightforward (though getting the quantification
right takes some care).

Jumping ahead, for our system we use the assumption above with the target
integer m = −1 and the set S defined as:

S = [−2h− 2`, − 2h− `− 2] ∪ [−h− `, − `− 1] (1)
∪ [0, `− 1] ∪ [h + `, 2h + `] ∪ [2h + 2`, 3h + 2` + 1]

where ` is the depth of the identity-hierarchy of the system and h > ` is some
other parameter. (Specifically, if q∗ is a bound on the number of queries then
h = q∗ + ` + 2.) It is easy to check that indeed m = −1 /∈ S + S.

The Linear Assumption. The decision linear assumption, first defined in [4],
states (in our additive notations) that given the six source group elements
â,b̂,ĉ,d̂,ê,f̂ , it is hard to distinguish the case where these elements are completely
random from the case where they are chosen at random subject to the condition
f̂/ĉ = ê/b̂ + d̂/â. (I.e., the discrete logarithm of f relative to c is the sum of
the discrete logarithm of e relative to b and the discrete logarithm of d relative
to a.) Note that this assumption is equivalent to saying that given the matrix of
group elements

M =

 â 0̂ ĉ

0̂ b̂ ĉ

d̂ ê f̂

it is hard to decide if this matrix is invertible or has rank two. In this work we
use a slightly weaker variant of this assumption: Specifically, we assume that
given a 3× 3 matrix of source-group elements, it is hard to distinguish the case
where this is a random invertible matrix from the case where it is a random
rank-two matrix. (The advantage of an adversary in distinguishing these cases is
denoted AdvLinearA(G, GT).) This assumption is implied both by the standard
linear assumption from [4] and by our BDHE-Set assumption, but we make it a
separate assumption just to make the exposition of our security-proof easier.

5 A Key-Randomizable IBBE system

Our system operates in prime-order bilinear-map groups. In the description be-
low we assume that these order-q groups are fixed “once and for all” and every-

one knows their description. (An alternative description will include the group-
generation as part of the Setup procedure.) We also fix the hierarchy-depth of
the system to some integer `.

The identity space of the system is the scalar field Zq, except that we have `
“forbidden identities” within this range: `− 1 of them are arbitrary (and we set
them to be 0, 1, . . . , `− 2), and the last one is a random scalar a that is chosen
during Setup (see below).

Setup: Choose three random scalars a, b, s ∈ Zq and a random invertible matrix
A ∈ G[7 × 7], and set B̂ = (Â−1)t. We note that the system only uses the top
four rows of Â and five rows of B̂. The seventh dimension is only used in the
security proof. Below we denote by ai the vector ai

def= [1 a a2 . . . ai].

– The master secret key is SK = (B̂1..6, s, a`).
– The public key consists of three parts, PK = (PK1, PK2, PK3) with PK1

consisting of a target-group element that is used to compute the KEM key,
PK2 consisting of multiples of the rows of Â that are used to compute the
ciphertext, and PK3 consisting of multiples of the rows of B̂ that are used
only for key randomization. Specifically we have PK1 = a`−1s̃ and

PK2 =
{
{aiÂ1 : i = 0, . . . , `}︸ ︷︷ ︸

a`×Â1

, sÂ2, {aiÂ3 : i = 0, . . . , `− 1}︸ ︷︷ ︸
a`−1×Â3

, Â4

}
(2)

PK3 =
{

bsB̂1, absB̂1, B̂5, B̂6, , {aibB̂1 : i = 0, . . . , `}︸ ︷︷ ︸
b(a`×B̂1)

,

{aibB̂2 : i = 0, . . . , `}︸ ︷︷ ︸
b(a`×B̂2)

, {aibB̂3 : i = 0, . . . , ` + 1}︸ ︷︷ ︸
b(a`+1×B̂3)

}

KeyGen(PK, SK, ID): Choose a key of 3` − 3 seven-dimensional vectors of
source-group elements as follows: Pick at random r

ID
∈ Zq and set K̂ID =

(û
ID
, V̂

ID
, Ŵ

ID
, X̂

ID
, ŷ

ID
), where

û
ID

=
s− r

ID

a− ID
B̂1 V̂

ID
= r

ID
(a`−2 × B̂1)

(
= {r

ID
aiB̂1 : i = 0, . . . , `− 2}

)
Ŵ

ID
= a`−2 × B̂2

(
= {aiB̂2 : i = 0, . . . , `− 2}

)
ŷ

ID
= r

ID
a`−1B̂3 + span(B̂5,6) X̂

ID
= r

ID
(a`−2 × B̂3)

(
= {r

ID
aiB̂3 : i = 0, . . . , `− 2}

)
(3)

Note that the Ŵ
ID

component is the same for all identities (so it really belongs
in the public key). It is included in the secret key only for the purpose of the
key-randomization procedure below.

KEM(PK, S): If |S| < ` then add to S the first ` − |S| of the “forbidden
identities” 0, 1, Denote the resulting ` identities by {ID1, ID2, . . . , ID`}.

– Set the monic degree-` polynomial P(x) def=
∏`

i=1(x − IDi), let p0, . . . , p` be

the coefficients of P and denote p
def= [p0 . . . p`] (so P(a) = 〈p,a`〉).

– Choose at random f0, . . . , f`−1 ∈ Zq and denote f
def= [f0 f1 . . . f`−1] and

F(x) def=
∑`−1

i=0 fix
i. Make sure that F(IDi) 6= 0 for all i = 1, . . . , ` (otherwise

re-choose F until this condition holds).
– Choose a random scalar t ∈ Zq.
– Output the ciphertext containing the polynomial F and the vector

ĉ = t

(
P(a)Â1︸ ︷︷ ︸
p(a`×Â1)

+ sÂ2 + F(a)Â3︸ ︷︷ ︸
f(a`−1×Â3)

)
+ span(Â4) (4)

The implied KEM key is the target-group element k̃ = t · PK1 = a`−1ts̃.

Remark. Note that the ciphertext include seven source group elements and `
scalars (to specify F). The ciphertext size can be reduced in a particular way,
so that when encrypting to a set S of size m < ` we only have m scalars in the
ciphertext: Instead of choosing F completely at random, we impose the condition
that F(ID) = 1 for each of the “forbidden identities” that were added to S. This
way, the encryptor can specify F using only the m scalars F(IDi) for all IDi ∈ S.
This optimization requires a small change to the proof of security, see remark at
the end of Section 6. We also note that we can get a constant-size ciphertext by
moving to the random-oracle model: the encryptor just sends some nonce, and
F is determined by applying the random oracle to this nonce.

Decrypt(PK, (F, ĉ), S, ID, K̂ID), where ID ∈ S. If |S| < ` then add to S the first
`− |S| of the “forbidden identities” 0, 1, Denote the resulting ` identities by
{ID1, ID2, . . . , ID`}. Parse the key as K̂ID = (û

ID
, V̂

ID
, Ŵ

ID
, X̂

ID
, ŷ

ID
), recalculate

the monic `-degree polynomial P(x) =
∏`

i=1(x− IDi), and do the following:

– Set Q
ID
(x) def=

P(x)
x− ID

and Q′
ID
(x) = Q

ID
(x)−a`−1. (That is, Q′ is the polyno-

mial Q without the top coefficient of 1 · x`−1.) Denote the coefficient vector
of Q′

ID
by q′

ID
= [q0 q1 . . . q`−2].

– Set G
ID
(x) def=

F(x)− F(ID)
x− ID

and denote the coefficient vector of G
ID

by g
ID

=

[g0 g1 . . . g`−2].
– Set

d̂
ID

= û
ID
− q′

ID
· Ŵ

ID
− g

ID
· V̂

ID
− q′

ID
· X̂

ID
− ŷ

ID

F(ID)
(5)

Finally, recover the KEM key as k̃ =
〈
ĉ, d̂ID

〉
.

5.1 Correctness

To argue correctness, we can rewrite

d̂
ID

=

s−r
ID

a−ID B̂1︷︸︸︷
û

ID
− q′

ID
·

a`−2×B̂2︷︸︸︷
Ŵ

ID
− g

ID
·

r
ID

a`−2×B̂1︷︸︸︷
V̂

ID
− q′

ID
·

r
ID

a`−2×B̂3︷︸︸︷
X̂

ID
−

r
ID

a`−1B̂3+span(B̂5,6)︷︸︸︷
ŷ

ID

F(ID)

=
s− r

ID

a− ID
B̂1 − 〈q′

ID
,a`−2〉 B̂2

− r
ID

F(ID)

(
〈g

ID
,a`−2〉 B̂1 −

(
〈q′

ID
,a`−2〉+ a`−1

)
B̂3 − span(B̂5,6)

)
=

(
s− r

ID

a− ID
− r

ID
G

ID
(a)

F(ID)

)
B̂1 − (Q

ID
(a)− a`−1)B̂2 +

r
ID

F(ID)

(
Q

ID
(a)B̂3 + span(B̂5,6)

)
Further developing the coefficient of B̂1 (using G

ID
(a)(a − ID) = F(a) − F(ID)),

we get

(
s− r

ID

a− ID
− r

ID
G

ID
(a)

F(ID)

)
=

F(ID)(s− r
ID
)− r

ID
G

ID
(a)(a− ID)

F(ID)(a− ID)
=

s · F(ID)− r
ID
· F(a)

F(ID)(a− ID)

Examining the inner-product of ĉ with d̂
ID
, we use the fact that

〈
Âi, B̂j

〉
is

either 0 (when i 6= j) or 1̃ (when i = j). Hence the span’s of Â4 and of B̂5,6 drop
out completely, and we are left with the product of the matching coefficients
only:〈
ĉ, d̂

ID

〉
=

(
tP(a)

s · F(ID)− r
ID
· F(a)

F(ID)(a− ID)︸ ︷︷ ︸
coefficients of Â1,B̂1

− ts(Q
ID
(a)− a`−1)︸ ︷︷ ︸

coefficients of Â2,B̂2

+ tF(a)
r

ID

F(ID)
Q

ID
(a)︸ ︷︷ ︸

coefficients of Â3,B̂3

)
· 1̃

The first term in the parenthesis can be simplified using Q
ID
(a) = P(a)/(a− ID),

so we get〈
ĉ, d̂

ID

〉
= t

(
Q

ID
(a)

s · F(ID)− r
ID
· F(a)

F(ID)
− s(Q

ID
(a)− a`−1) + F(a)

r
ID

F(ID)
Q

ID
(a)

)
· 1̃

= t

(
Q

ID
(a)s− r

ID
Q

ID
(a)F(a)

F(ID)
− Q

ID
(a)s + a`−1s +

r
ID
Q

ID
(a)F(a)

F(ID)

)
· 1̃

= t · a`−1s · 1̃ = k̃ ut

5.2 Key randomization

Our key-randomization follows Boyen’s idea from [8], where the key for identity-
set S = {ID1, . . . , IDm} consists of m “shifted versions” of the keys, r′

ID1
K̂ID1 ,

. . ., r′
IDn

K̂IDm , such that
∑

i r′
IDi

= 1 (mod q). Namely, the augmented procedure

KeyGen∗(PK, SK, S) uses the same KeyGen procedure from above m times to
get K̂IDi

← KeyGen(PK, SK, IDi). Then for i = 1 . . .m it chooses r′
IDi
∈ Zq at

random subject to the constraint
∑

i r′
IDi

= 1 (mod q), and outputs the secret
key

K̂S = [r′
ID1

K̂ID1 , . . . , r′
IDm

K̂IDm]

where r′
IDi

K̂IDi means multiplying all the elements in K̂IDi by the scalar r′
IDi

.

Below we call K̂IDi
the singleton key corresponding to IDi, and r′

IDi
K̂IDi

is the
shifted singleton key for IDi. Note that for the special case m = 1, we have
r′

ID
= 1, so KeyGen∗ degenerates to the original KeyGen.

Extended decryption. The extended decryption procedure Decrypt∗ is given
a ciphertext (F, ĉ) together with a set of identities S = {ID1, . . . , IDm} (m ≤
`) and a matching decryption key K̂S . It parses the decryption key as K̂S =
[K̂ ′

ID1
, . . . , K̂ ′

IDm
] where the K̂ ′

IDi
’s are shifted singleton keys. Namely we have

K̂ ′
IDi

= r′
IDi

K̂IDi
where the K̂IDi

’s are singleton keys and
∑

i r′
IDi

= 1 (mod q).

Then we use each shifted singleton key to produce d̂′IDi
just as in Eq. (5), sets

d̂S =
∑

i d̂′IDi
, and recover k̃ =

〈
ĉ, d̂S

〉
.

Correctness holds since the decryption process in linear: Denote by d̂IDi
the

vector that would have been obtained from the singleton key K̂IDi using Eq. (5).
Then on one hand decryption is linear so we have d̂′IDi

= r′
IDi

d̂′IDi
. On the other

hand by correctness of the basic decryption procedure we know that
〈
ĉ, d̂IDi

〉
=

k̃. We therefore get〈
ĉ, d̂S

〉
=

∑
i

〈
ĉ, d̂

′
IDi

〉
=

∑
i

〈
ĉ, r′

IDi
d̂IDi

〉
=

∑
i

r′
IDi

〈
ĉ, d̂IDi

〉
=

∑
i

r′
IDi

k̃ = k̃

Key derivation. Key-derivation uses Boyen’s idea of reciprocal keys [8]. Namely,
given the public key and any two identities ID1 and ID2, anyone can compute
a pair of shifted singleton keys δK̂ID1 and δK̂ID2 for the same (unknown) scalar
factor δ. The procedure for generating these reciprocal keys (which is used as a
subroutine for key derivation) is as follows:

ReciprocalKeys(PK, ID1, ID2): recall that the public key PK depends on the
unknown scalars a, b, s (among other things).

– Choose at random z ∈ Zq. The shifted singleton keys δK̂IDi
will have δ =

bz(a− ID1)(a− ID2).
– Choose at random r1, r2 ∈ Zq (which will play the role of r

ID1
and r

ID2
in the

reciprocal keys).

– Compute δK̂ID1 as

δ · s−r1
a−ID1

B̂1 = (abs− bsID2 − abr1 + br1ID2)zB̂1

δ · r1(a`−2 × B̂1) = {br1z(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂1

: i = 0, . . . , `− 2}
δ · (a`−2 × B̂2) = { bz(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂2

: i = 0, . . . , `− 2}
δ · r1(a`−2 × B̂3) = {br1z(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂3

: i = 0, . . . , `− 2}
δ
(
r1a

`−1B̂3 + span(B̂5,6)
)

= br1z(a`+1 − a`(ID1 + ID2) + a`−1ID1ID2)B̂3

+ span(B̂5,6)

and similarly for δK̂ID2 (using r2 instead of r1 and swapping the roles of
ID1, ID2). Notice that the terms aibB̂j for i ∈ [0, `],j = 1, 2, 3, as well as
bsB̂1, absB̂1, a`+1bB̂3, and B̂5,6, are all part of the PK3 component of the
public key.

From the description above it is clear that when ID1, ID2 6= a, then Recipro-
calKeys indeed returns the correct distribution, namely two shifted singleton
keys δK̂ID1 , δK̂ID2 where each K̂ID is drawn from the same distribution as the
singleton keys for ID in KeyGen and δ is chosen at random in Zq (and inde-
pendently of K̂ID1 , K̂ID2).

KeyDerive(PK, S, K̂S , S′) (where S′ = {ID1, . . . , IDm} and S ⊆ S′). Assume
(w.l.o.g.) that S consists of the first n identities in S′, namely S = {ID1, . . . , IDn}
with n ≤ m. Denote K̂S = {K̂ ′

ID1
, . . . , K̂ ′

IDn
}, where K̂ ′

IDi
is the shifted singleton

key for IDi (consisting of 3`−3 7-dimensional vectors of source-group elements).
For i = 1, . . . ,m, run the ReciprocalKeys procedure from above with identities

IDi and IDi+1 (indexing mod m) to get two shifted singleton keys for these ID’s,
which we denote by L̂IDi

, M̂IDi+1 , respectively. Namely, set

(L̂IDi
, M̂IDi+1)← ReciprocalKeys(PK, IDi, IDi+1)

Then for i ∈ [1, n] set K̂∗
IDi

= K̂ ′
IDi

+ L̂IDi
− M̂IDi

, and for i ∈ [n + 1,m] set
K̂∗

IDi
= L̂IDi

− M̂IDi
(where addition and subtraction is element-wise). The new

key is K̂S = [K̂∗
ID1

, . . . , K̂∗
IDm

]. In Lemma 2 below we show that this KeyDerive
procedure induces almost the same distribution as KeyGen over the decryption
key K̂S′ .

Lemma 2. For every S ⊆ S′ (with |S′| = m) and every secret key K̂S corre-
sponding to S, the procedure KeyDerivation(PK, S, K̂S , S′) draws from a distri-
bution at most O(m/q) away from that of KeyGen(PK, SK, S′).

Proof. Observe that every 7-vector in a singleton key K̂ID corresponding to iden-
tity ID (as computed by KeyGen) is of the form

(expr(a, s, ID) + r
ID
expr′(a, s, ID)) · B̂k

where r
ID

is the scalar that was chosen for this singleton key, B̂k is one specific
row of the matrix B̂, and expr(a, s, ID), expr′(a, s, ID) are two fixed scalar-valued
expressions that depend only on the scalars a, s from the master secret key and
on the identity ID. (Note that either expr(a, s, ID) or expr′(a, s, ID) can be zero,
but not both.)

Considering the same vector in all the shifted singleton keys in K̂S , we
have a collection of n vectors, x̂1, . . . , x̂n, where x̂i = r′

IDi
(expr(a, s, IDi) +

r
IDi

expr′(a, s, IDi)) · B̂k, and the scalars r′
IDi

satisfy
∑

i r′
IDi

= 1. For notational
convenience, for i ∈ [n + 1,m] we denote r

IDi
= r′

IDi
= 0 and x̂i = 0̂ (so we

still have x̂i’s of the right format with
∑

i r′
IDi

= 1, even when we consider all
m elements). Similarly considering the same vector in all the shifted singleton
keys that are generated by ReciprocalKeys, we have vectors ŷ1 . . . ŷm (from the
L̂IDi

’s) and ẑ1 . . . ẑm (from the M̂IDi
’s) of the form

ŷi = δi(expr(a, s, IDi) + ρi expr′(a, s, IDi)) · B̂k

and ẑi = δi−1(expr(a, s, IDi) + τi expr′(a, s, IDi)) · B̂k

where all the scalars δi, ρi, τi, i = 1 . . .m, are chosen at random in Zq (and
indexing is mod m, so δ0 = δm). Hence the corresponding element in the shifted
singleton key K̂∗

IDi
is

x̂i+ŷi−ẑi =
(
(r′

IDi
+ δi − δi−1)expr(a, s, IDi) + (r′

IDi
r

IDi
+ δiρi − δi−1τi)expr′(a, s, IDi)

)
B̂k

Assuming that r′
IDi

+ δi − δi−1 6= 0, we can denote

r∗∗
IDi

def= r′
IDi

+ δi − δi−1 and r∗
IDi

def=
r′

IDi
r

IDi
+ δiρi − δi−1τi

r′
IDi

+ δi − δi−1

and then we have x̂i + ŷi − ẑi = r∗∗
IDi

(expr(a, s, IDi) + r∗
IDi

expr′(a, s, IDi))B̂k,
which is of the right form, and indeed the scalars r∗∗

IDi
satisfy

m∑
i=1

r∗∗
IDi

=
m∑

i=1

r′
IDi

+
m∑

i=1

δi −
m∑

i=1

δi−1 =
m∑

i=1

r′
IDi

= 1

Since the δi’s are random and independent then the r∗∗
IDi

’s are also random and
independent subject to the constraint that their sum is one. Finally, assuming
that none of the r∗∗

IDi
’s is zero and also none of the δi’s are zero (which happens

with probability at least 1 − O(m/q)) then all the r∗
IDi

’s are random and inde-
pendent (since the τi’s and ρi’s are). ut

6 Security of our System

Theorem 2. The IBBE system from Section 5 is secure under the BDHE-Set
assumption and the decision Linear assumption. Specifically, for an `-depth hi-
erarchy, groups G, GT of order q, and an adversary that makes upto q∗ key-
extraction queries, we have AdvIBBEE(log q, `) ≤ AdvBDHE(G, GT)+AdvLinear(G, GT),
where the BDHE-Set instances are of size O(` + q∗).

The proof is found in the long version [14]. On a very high level, the proof
consists of four games: Game 0 is the actual interaction of the adversary with
our system, in Game 1 we use decryption rather than encryption to compute
the KEM key corresponding to the challenge ciphertext (which has no effect on
the outcome), in Game 2 we add a component of B̂7 to the secret keys (which is
indistinguishable by the Linear assumption), and in Game 3 we add a component
of Â7 to the challenge ciphertext vector (thus making the KEM key statistically
independent of the adversary’s view).

The main reduction then proves indistinguishability of Game 3 from Game 2
based on the BDHE-Set assumption. That reduction follows the hash-proof ap-
proach: The simulator generates the challenge ciphertext so that this is either a
valid ciphertext or an invalid one, depending on whether the input of the sim-
ulator is a YES instance or a NO instance of the decision BDHE-Set problem.
In our case, a valid ciphertext is spanned by the rows Â1,2,3,4, and an invalid
ciphertext also has a component of Â7. The secret keys have a random B̂7 com-
ponent in them, so an invalid ciphertext is decrypted to a random KEM key
(while a valid ciphertext are always decrypted to the “right KEM key”).

In the reduction itself, the simulator gets as input source-group elements
âi = ai · 1̂ for all i ∈ S and two additional source-group elements ẑ1, ẑ2, and uses
these elements to answer all the queries of the adversary: Very roughly, it chooses
a random polynomial H(x) of high-enough degree over Zq, sets s = H(a) for the
master secret key, r

ID
= H(ID) in all the key-reveal queries, and F = H mod P

for the challenge ciphertext. To compute the appropriate terms, the simulator
uses the powers âi from its input. The main challenge is to make the set S
“large enough” so the simulator can produce the entire view of the adversary
from the elements âi that it knows, while at the same time ensuring that S is
“small enough” so that the target integer m is not in S +S (since otherwise the
problem becomes easy).

References

1. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In Proceedings of Eurocrypt’04, volume 3027 of LNCS,
pages 223–238, Springer, 2004.

2. D. Boneh and X. Boyen. Secure Identity Based Encryption without Random
Oracles. In Proceedings of CRYPTO’04, volume 3152 of LNCS, pages 443–259,
Springer, 2004.

3. D. Boneh, X. Boyen and E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertexts. In Proceedings of EUROCRYPT’05, volume 3494 of
LNCS, pages 440–456, Springer, 2005.

4. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of
CRYPTO’04, volume 3152 of LNCS, pages 41–55, Springer, 2004.

5. D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. In
Proceedings of CRYPTO’01, volume 2139 of LNCS, pages 213–229, Springer, 2001.

6. D. Boneh, C. Gentry and M. Hamburg. Space Efficient Identity Based Encryption
without Pairings. In Proceedings of FOCS’07, pages 647–657, IEEE, 2007.

7. D. Boneh, C. Gentry and B. Waters. Collusion Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys. In Proceedings of CRYPTO’05, volume
3621 of LNCS, pages 258–275, Springer, 2005.

8. X. Boyen. General Ad Hoc Encryption from Exponent Inversion IBE. In Proceed-
ings of EUROCRYPT’07, volume 4515 of LNCS, pages 394–411, Springer, 2007.

9. R. Canetti, S. Halevi and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. In Proceedings of EUROCRYPT’03, volume 2656 of LNCS, pages 255–271,
Springer, 2003.

10. R. Canetti, S. Halevi and J. Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. In Proceedings of EUROCRYPT’04, volume 3027 of LNCS,
pages 207-222, Springer, 2004.

11. C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues.
In IMA Int. Conf. ’01.

12. R. Cramer and V. Shoup, Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In Proceedings of Eurocrypt’02,
volume 2332 of LNCS, pages 45–64, Springer, 2002.

13. C. Gentry. Practical Identity-Based Encryption without Random Oracles. In
Proceedings of EUROCRYPT’06, volume 4004 of LNCS, pages 445-464, Springer,
2006.

14. C. Gentry and S. Halevi, Hierarchical Identity Based Encryption with Polynomially
Many Levels. Long version available at http://eprint.iacr.org/2008/383.

15. C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Proceedings
of ASIACRYPT’02, volume 2501 of LNCS, pages 548–566, Springer, 2002.

16. C. Gentry and B. Waters, Adaptive Security in Broadcast Encryption Systems.
Manuscript, 2008. Available at http://eprint.iacr.org/2008/268.

17. J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. In
Proceedings of EUROCRYPT’02, volume 2332 of LNCS, pages 466–481, Springer,
2002.

18. Ueli M. Maurer and Yacov Yacobi. Non-interactive Public-Key Cryptography, In
Proceedings of EUROCRYPT’91, pages 498–507, Springer, 1991.

19. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Proceedings
of CRYPTO’84, pages 47–53, Springer, 1984.

20. E. Shi and B. Waters, Delegating Capabilities in Predicate Encryption Systems.
In Proceedings of ICALP’08 (track C), volume 5126 of LNCS, pages 560–578,
Springer, 2008.

21. E.W. Weisstein. Sylvester Matrix. From MathWorld, a Wolfram Web Resource.
http://mathworld.wolfram.com/SylvesterMatrix.html

22. Brent Waters. Efficient Identity Based Encryption without Random Oracles. In
Proceedings of EUROCRYPT’05, volume 3494 of LNCS, pages 114–127, Springer,
2005.

