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Abstract. We initiate the study of one-wayness under correlated prod-
ucts. We are interested in identifying necessary and sufficient conditions
for a function f and a distribution on inputs (x1, . . . , xk), so that the
function (f(x1), . . . , f(xk)) is one-way. The main motivation of this study
is the construction of public-key encryption schemes that are secure
against chosen-ciphertext attacks (CCA). We show that any collection of
injective trapdoor functions that is secure under a very natural correlated
product can be used to construct a CCA-secure encryption scheme. The
construction is simple, black-box, and admits a direct proof of security.

We provide evidence that security under correlated products is achievable
by demonstrating that lossy trapdoor functions (Peikert and Waters,
STOC ’08) yield injective trapdoor functions that are secure under the
above mentioned correlated product. Although we currently base security
under correlated products on existing constructions of lossy trapdoor
functions, we argue that the former notion is potentially weaker as a
general assumption. Specifically, there is no fully-black-box construction
of lossy trapdoor functions from trapdoor functions that are secure under
correlated products.

1 Introduction

The construction of secure public-key encryption schemes lies at the heart of
cryptography. Following the seminal work of Goldwasser and Micali [20], increas-
ingly strong security definitions have been formulated. The strongest notion to
date is that of semantic security against a chosen-ciphertext attack (CCA) [27,
32], which protects against an adversary that is given access to decryptions of
ciphertexts of her choice.

Constructions of CCA-secure public-key encryption schemes have followed
several structural approaches. These approaches, however, either result in rather
complicated schemes, or rely only on specific number-theoretic assumptions. Our
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goal in this paper is to construct a simple CCA-secure public-key encryption
scheme based on general computational assumptions.

The first approach for constructing a CCA-secure encryption scheme was put
forward by Naor and Yung [27], and relies on any semantically secure public-key
encryption scheme and non-interactive zero-knowledge (NIZK) proof system for
NP. Their approach was later extended by Dolev, Dwork and Naor [11] for a
more general notion of chosen-ciphertext attack, and subsequently simplified by
Sahai [35] and by Lindell [26]. Schemes resulting from this approach, however, are
somewhat complicated and impractical due to the use of generic NIZK proofs.

An additional approach was introduced by Cramer and Shoup [10], and is
based on “smooth hash proof systems”, which were shown to exist based on
several number-theoretic assumptions. Elkind and Sahai [12] observed that both
the above approaches can be viewed as special cases of a single paradigm in which
ciphertexts include “proofs of well-formedness”. Even though in some cases this
paradigm leads to elegant and efficient constructions [9], the complexity of the
underlying notions makes the general framework somewhat cumbersome.

Recently, Peikert and Waters [31] introduced the intriguing notion of lossy
trapdoor functions, and demonstrated that such functions can be used to con-
struct a CCA-secure public-key encryption scheme in a black-box manner. Their
construction can be viewed as an efficient and elegant realization of the “proofs
of well-formedness” paradigm. Lossy trapdoor functions seem to be a very pow-
erful primitive. In particular, they were shown to also imply oblivious trans-
fer protocols and collision-resistant hash functions3. It is thus conceivable that
CCA-secure encryption can be realized based on weaker primitives.

A different approach was suggested by Canetti, Halevi and Katz [6] (followed
by [3–5]) who constructed a CCA-secure public-key encryption scheme based
on any identity-based encryption (IBE) scheme. Their construction is elegant,
black-box, and essentially preserves the efficiency of the underlying IBE scheme.
However, IBE is a rather strong cryptographic primitive, which is currently
realized only based on a small number of specific number-theoretic assumptions.

1.1 Our Contributions

Motivated by the task of constructing a simple CCA-secure public-key encryp-
tion scheme, we initiate the study of one-wayness under correlated products. The
main question in this context is to identify necessary and sufficient conditions
for a collection of functions F and a distribution on inputs (x1, . . . , xk) so that
the function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk are independently
chosen from F . Our results are as follows:

1. We show that any collection of injective trapdoor functions that is secure
under a very natural correlated product can be used to construct a CCA-
secure public-key encryption scheme. The construction is simple, black-box,

3 We note that the constructions of CCA-secure encryption and collision-resistant hash
functions presented in [31] require lossy trapdoor functions that are “sufficiently
lossy” (i.e., they rely on lossy trapdoor functions with sufficiently good parameters).



and admits a direct proof of security. Arguably, both the underlying as-
sumption and the proof of security are simple enough to be taught in an
undergraduate course in cryptography.

2. We demonstrate that any collection of lossy trapdoor functions (with appro-
priately chosen parameters) yields a collection of injective trapdoor functions
that is secure under the correlated product that is required by our encryp-
tion scheme. In turn, existing constructions of lossy trapdoor functions [1,
31, 34] imply that our encryption scheme can be based on the hardness of
the decisional Diffie-Hellman problem, and of Paillier’s decisional composite
residuosity problem.

3. We argue that security under correlated products is potentially weaker than
lossy trapdoor functions as a general computational assumption. Specifi-
cally, we prove that there is no fully-black-box construction of lossy trap-
door functions from trapdoor functions (and even from enhanced trapdoor
permutations) that are secure under correlated products.

Following our work Peikert [30] and Goldwasser and Vaikuntanathan [21] re-
cently showed that security under correlated products is achievable also under
the worst-case hardness of lattice problems (although these assumptions are cur-
rently not known to imply lossy trapdoor functions with the appropriately chosen
parameters that are required for our transformation). Their constructions result
in new CCA-secure public-key encryption schemes that are based on lattices, and
this demonstrates that the correlated products approach for chosen-ciphertext
security is fruitful, and that security under correlated products is achievable
under a variety of number-theoretic assumptions.

In the remainder of this section we provide a high-level overview of our con-
tributions, and then turn to describe the related work.

1.2 Security Under Correlated Products

It is well known that for every collection of one-way functions F = {fs}s∈S and
polynomially-bounded k ∈ N, the collection Fk = {fs1,...,sk

}(s1,...,sk)∈Sk , whose
members are defined as

fs1,...,sk
(x1, . . . , xk) = (fs1(x1), . . . , fsk

(xk))

is also one-way. Moreover, such a direct product amplifies the one-wayness of
F [19, 37], and this holds even when considering a single function (i.e., when
s1 = · · · = sk).

In general, however, the one-wayness of Fk is guaranteed only when the in-
puts are independently chosen, and when the inputs are correlated no such guar-
antee can exist. A well-known example for insecurity under correlated products
is H̊astad’s attack [2, 23] on plain-broadcast RSA: there is an efficient algorithm
that is given as input x3 mod N1, x3 mod N2, and x3 mod N3, and outputs x.
More generally, it is rather easy to show that if collections of one-way functions
exist, then there exists a collection of one-way functions F = {fs}s∈S such that



fs1,s2(x, x) = (fs1(x), fs2(x)) is not one-way. However, this does not rule out
the possibility of constructing a collection of one-way functions whose product
remains one-way even when the inputs are correlated.

Informally, given a collection F of functions and a distribution Ck of inputs
(x1, . . . , xk), we say that F is secure under a Ck-correlated product if Fk is one-
way when the inputs (x1, . . . , xk) are distributed according to Ck (a formal def-
inition is provided in Section 2). The main goal in this setting is to characterize
the class of collections F and distributions Ck that satisfy this notion.

We motivate the study of security under correlated products by relating it to
the study of chosen-ciphertext security. Specifically, we show that any collection
of injective trapdoor functions that is secure under a very natural correlated
product can be used to construct a CCA-secure public-key encryption scheme.
The simplest form of distribution Ck on inputs that is sufficient for our construc-
tion is the uniform k-repetition distribution that outputs k copies of a uniformly
chosen input x. We note that although this seems to be a strong requirement,
we demonstrate that it can be based on various number-theoretic assumptions.

More generally, our construction can rely on any distribution Ck with the
property that any (x1, . . . , xk) in the support of Ck can be reconstructed given
any t = (1 − ε)k entries from (x1, . . . , xk), for some constant 0 < ε < 1. For
example, Ck may be a distribution that evaluates a random polynomial of degree
at most t−1 on a set of k points (in this case the xi’s are t-wise independent, but
other choices which do not guarantee such a strong property are also possible).

1.3 Chosen-Ciphertext Security via Correlated Products

Consider the following, very simple, public-key encryption scheme. The public-
key consists of an injective trapdoor function f , and the secret-key consists of
its trapdoor td. Given a message m ∈ {0, 1}, the encryption algorithm chooses a
random input x and outputs the ciphertext (f(x),m⊕h(x)), where h is a hard-
core predicate of f . The decryption algorithm uses the trapdoor to retrieve x
and then extracts m. In what follows we frame our approach as a generalization
of this fundamental scheme.

The above scheme is easily proven secure against a chosen-plaintext attack.
Any adversary A that distinguishes between an encryption of 0 and an encryp-
tion of 1 can be used to construct an adversary A′ that distinguishes between
h(x) and a randomly chosen bit with exactly the same probability. Specifically,
A′ receives a function f , a value y = f(x), and a bit w (which is either h(x) or a
uniformly chosen bit), and emulates A with f as the public-key and (y, m⊕ w)
as the challenge ciphertext for a random message m. This scheme, however, fails
to be proven secure against a chosen-ciphertext attack (even when considering
only CCA1 security). There is a conflict between the fact that A′ is required to
answer decryption queries, and the fact that A′ does not have the trapdoor for
inverting f .

The following simplified variant of our scheme is designed to resolve this con-
flict. The public-key consists of k pairs of functions (f0

1 , f1
1 ), . . . , (f0

k , f1
k ), where



each function is sampled independently from a collection F of injective trap-
door functions4. The secret-key consists of the trapdoors (td0

1, td
1
1), . . . , (td

0
k, td1

k),
where each tdb

i is the trapdoor of the function f b
i . Given a message m ∈ {0, 1},

the encryption algorithm chooses a random v = v1 · · · vk ∈ {0, 1}k, a random
input x, and outputs the ciphertext

EPK(m; v, x) = (v, fv1
1 (x), . . . , fvk

k (x),m⊕ h(x)) ,

where h is a hard-core predicate of Fk with respect to the uniform k-repetition
distribution. The decryption algorithm acts as follows: given a ciphertext of the
form (v, y1, . . . , yk, z) it inverts y1, . . . , yk to obtain x1, . . . , xk, and if x1 = · · · =
xk then it outputs h(x1)⊕ z (otherwise it outputs ⊥).

In order to prove the CCA1 security of this scheme, we show that any adver-
sary A that breaks the CCA1 security of the scheme can be used to construct an
adversary A′ that distinguishes between h(x) and a randomly chosen bit with
exactly the same probability. The adversary A′ receives as input k functions
f1, . . . , fk ∈ F , k values y1 = f1(x), . . . , yk = fk(x), and a bit w (which is either
h(x) or a uniformly chosen bit). A′ simulates the CCA1 interaction to A by
choosing a random value v∗ = v∗1 · · · v∗k ∈ {0, 1}k, and for each pair (f0

i , f1
i ) it

sets f
vk∗i
i = fi and samples f

1−vk∗i
i together with its trapdoor from F . Note that

now A′ is able to answer decryption queries as long as none of them contain
the value v∗, and in this case we claim that essentially no information on v∗ is
revealed. The challenge ciphertext is then computed as (v∗, y1, . . . , yk, m ⊕ w)
for a random message m. If A guesses the bit m correctly then A′ outputs that
w = h(x), and otherwise A′ outputs that w is a random bit.

Our scheme can be viewed as a realization of the Naor-Yung paradigm [27]
in which a message is encrypted using several independently chosen keys, and
ciphertexts include “proofs of well-formedness”. In our scheme, however, the
decryption algorithm can verify “well-formedness” of ciphertexts without any
additional “proof”: given any one of the trapdoors it is possible to verify that
the remaining values are consistent with the same input x.

Our scheme is inspired also by the one based on lossy trapdoor functions
[31], and specifically, by the generic construction of all-but-one lossy trapdoor
functions from lossy trapdoor functions. However, the proof security of our con-
struction is simpler than that of [31] due to the additional hybrids resulting
from using both lossy trapdoor functions and all-but-one trapdoor functions.
In addition, our construction only relies on computational hardness, whereas the
construction of [31] relies on the statistical properties of lossy trapdoor functions.

Finally, we note that our proof of security is rather similar to that of the
IBE-based schemes [4–6]. The value v∗ can be viewed as the challenge identity,
for which A′ does not have the secret key, and is therefore not able to decrypt
ciphertexts for this identity. For any other identity v 6= v∗, A′ has sufficient
information to decrypt ciphertexts.
4 For CCA1 security any k = ω(log n) is sufficient, where n is the security parameter.

For our more generalized construction that guarantees CCA2 security, any k = nε

for some constant 0 < ε < 1 is sufficient.



In some sense, our approach enjoys “the best of both worlds” in that both
the underlying assumption and the proof of security are simpler than those of
previous approaches.

1.4 A Black-Box Separation

Although we currently base security under correlated products on lossy trapdoor
functions, we argue that security under correlated products is potentially weaker
than lossy trapdoor functions as a general computational assumption. Specifi-
cally, we prove that there is no fully-black-box construction of lossy trapdoor
functions from trapdoor functions that are secure under correlated products. We
present an oracle relative to which there exists a collection of injective trapdoor
functions (and even of enhanced trapdoor permutations) that is secure under
a correlated product with respect to the above mentioned uniform k-repetition
distribution, but there is no collection of lossy trapdoor functions. The oracle is
essentially the collision-finding oracle due to Simon [36], and the proof follows
the approach of Haitner et al. [22] while overcoming several technical difficulties.

Informally, consider a circuit A which is given as input (f1(x), . . . , fk(x)),
and whose goal is to retrieve x. The circuit A is provided access to an oracle
Sam that receives as input a circuit C and outputs random w and w′ such that
C(w) = C(w′). As in the approach of Haitner et al. the idea underlying the
proof is to distinguish between two cases: one in which A obtains information
on x via one of its Sam-queries, and the other in which none of A’s Sam-queries
provides information on x. The proof consists of two modular parts dealing with
these two cases separately. In first part we generalize an argument of Haitner et
al. (who in turn generalized the reconstruction lemma of Gennaro and Trevisan
[14]) to deal with the product of several functions. We show that the probability
that A retrieves x in the first case is exponentially small. In the second part we
show that the second case can essentially be reduced to the first case. This part
of the proof is simpler than the corresponding argument of Haitner et al. that
considers a more interactive setting.

1.5 Related Work

Much research has been devoted for the construction of CCA-secure public-key
encryption schemes. A significant part of this research was already mentioned
in the previous sections, and here we mainly focus on results regarding the
possibility and limitations of basing such schemes on general assumptions.

Pass, shelat and Vaikuntanathan [28] constructed a public-key encryption
scheme that is non-malleable against a chosen-plaintext attack from any seman-
tically secure one (building on the scheme of Dolev, Dwork and Naor [11]). Their
technique was later shown by Cramer et al. [8] to also imply non-malleability
against a weak notion of chosen-ciphertext attack, in which the number of de-
cryption queries is bounded. These approaches, however, are rather impractical
due to the use of generic (designated verifier) NIZK proofs. Very recently, Choi et
al. [7] showed that the latter notions of security can in fact be elegantly realized



in a black-box manner based on the same assumptions. The reader is referred to
[11, 29] for classifications of the different notions of security.

Impagliazzo and Rudich [24] introduced a paradigm for proving impossibility
results for cryptographic constructions. They showed that there are no black-
box constructions of key-agreement protocols from one-way permutations, and
substantial additional work in this line followed (see, for example [13, 15, 17, 25,
36] and many more). The reader is referred to [33] for a comprehensive discussion
and taxonomy of black-box constructions. In the context of public-key encryption
schemes, most relevant to our result is the work of Gertner, Malkin and Myers
[16], who addressed the question of whether or not semantically secure public-key
encryption schemes imply the existence of CCA-secure schemes. They showed
that there are no black-box constructions in which the decryption algorithm of
the proposed CCA-secure scheme does not query the encryption algorithm of
the semantically secure one.

1.6 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we provide a
formal treatment of security under correlated products, which is shown to be sat-
isfied by lossy trapdoor functions. In Section 3 we describe a simplified version of
our encryption scheme which already illustrates the main ideas underlying our
approach. In Section 4 we prove that there is no fully-black-box construction of
lossy trapdoor functions from trapdoor functions secure under correlated prod-
ucts. Due to space limitation we refer the reader to the full version for a more
generalized version of the encryption scheme, and for a complete proof of the
black-box separation.

2 Security Under Correlated Products

In this section we formally define the notion of security under correlated prod-
ucts, and demonstrate that the notion is satisfied by any collection of lossy trap-
door functions (with appropriately chosen parameters) for a very natural and
useful correlation. We then discuss the exact parameters that are required for
our encryption scheme, and the number-theoretic assumptions that are currently
known to guarantee such parameters.

A collection of functions is represented as a pair of algorithms F = (G,F ),
where G is a generation algorithm used for sampling a description of a function,
and F is an evaluation algorithm used for evaluating a function on a given
input. The following definition formalizes the notion of a k-wise product which
introduces a collection Fk consisting of all k-tuples of functions from F .

Definition 2.1 (k-wise product). Let F = (G,F ) be a collection of efficiently
computable functions. For any integer k, we define the k-wise product Fk =
(Gk, Fk) as follows:



– The generation algorithm Gk on input 1n invokes G(1n) for k times inde-
pendently and outputs (s1, . . . , sk). That is, a function is sampled from Fk

by independently sampling k functions from F .
– The evaluation algorithm Fk on input (s1, . . . , sk, x1, . . . , xk) invokes F to

evaluate each function si on xi. That is,

Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) .

The notion of a one-way function asks for a function that is efficiently com-
putable but is hard to invert given the image of a uniformly chosen input. More
generally, one can naturally extend this notion to consider one-wayness under
any specified input distribution, not necessarily the uniform distribution. That
is, informally, we say that a function is one-way with respect to an input distri-
bution I if it is efficiently computable but hard to invert given the image of a
random input sampled according to I.

In the context of k-wise products, a standard argument shows that for any
collection F which is one-way with respect to some input distribution I, the k-
wise product Fk is one-way with respect to the input distribution which samples
k independent inputs from I. The following definition formalizes the notion of
security under correlated products, where the inputs for Fk may be correlated.

Definition 2.2 (Security under correlated products). Let F = (G, F ) be
a collection of efficiently computable functions, and let Ck be a distribution where
Ck(1n) is distributed over {0, 1}k·n for some integer k = k(n). We say that F is
secure under a Ck-correlated product if Fk is one-way with respect to the input
distribution Ck.

Correlated products security based on lossy trapdoor functions. We
conclude this section by demonstrating that, for an appropriate choice of pa-
rameters, any collection of lossy trapdoor functions yields a collection of injec-
tive trapdoor functions that is secure under a Ck-correlated product. The input
distribution under consideration, Ck, samples a uniformly random input x and
outputs k copies of x. We refer to this distribution as the uniform k-repetition
distribution, and this distribution is the one required for the simplified variant
of our encryption scheme, presented in Section 3.

Specifically, given a collection of lossy trapdoor functions F = (G,F, F−1) we
define a collection Finj of injective trapdoor functions by restricting F to its in-
jective functions. That is, Finj = (Ginj, F, F−1) where Ginj(1n) = G(1n, injective).
We prove the following theorem:

Theorem 2.1. Let F = (G,F, F−1) be a collection of (n, `)-lossy trapdoor func-
tions. Then, for any integer k < n−ω(log n)

n−` , for any probabilistic polynomial-time
algorithm A and polynomial p(·), it holds that

Pr [A(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = x] <
1

p(n)
,



for all sufficiently large n, where the probability is taken over the choices of
s1 ← Ginj(1n), . . . , sk ← Ginj(1n), x ← {0, 1}n, and over the internal coin tosses
of A.

Proof. Peikert and Waters [31] proved that any collection of (n, ω(log n))-lossy
trapdoor functions is in particular a collection of one-way functions. Thus, it is
sufficient to prove that Fk is a collection of (n, ω(log n))-lossy trapdoor func-
tions. For any k functions s1, . . . , sk sampled according to Ginj(1n), the func-
tion Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) is clearly injective.
For any k functions s1, . . . , sk sampled according to Glossy(1n), the function
Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) obtains at most 2k(n−`)

values, which is upper bounded by 2n−ω(log n) for any k < n−ω(log n)
n−` . Finally,

note that a standard hybrid argument shows that the distribution obtained by
independently sampling k functions according to Ginj(1n) is computationally
indistinguishable from the distribution obtained by independently sampling k
functions according to Glossy(1n). Thus, Fk is a collection of (n, ω(log n))-lossy
trapdoor functions. ut

The required parameters for our scheme. The assumption underlying our
encryption scheme asks for k(n) = ω(log n) for CCA1 security, and for k(n) = nε

(for some constant 0 < ε < 1) for CCA2 security. In turn, existing constructions
of lossy trapdoor functions guaranteing these parameters [1, 31, 34] imply that
our encryption scheme can be realized under the hardness of the decisional Diffie-
Hellman problem, and of Paillier’s decisional composite residuosity problem. We
note that the lattice-based construction of Peikert and Waters [31] guarantees
only a constant k(n) that is not sufficient for our encryption scheme. However,
Peikert [30] and Goldwasser and Vaikuntanathan [21] recently showed that se-
curity under correlated products (with sufficiently large k(n)) is nevertheless
achievable under the worst-case hardness of lattice problems, although these are
currently known to imply lossy trapdoor functions with only a relatively small
amount of loss.

3 A Simplified Construction

In this section we describe a simplified version of our construction which already
illustrates the main ideas underlying our approach. The encryption scheme pre-
sented in the current section is a simplification in the sense that it relies on a
seemingly stronger computational assumption than the more generalized con-
struction which is presented in the full version. In addition, we first present the
scheme as encrypting only one bit messages, and then demonstrate that it natu-
rally extends to multi-bit messages. In what follows we state the computational
assumption, describe the encryption scheme, prove its security, and describe the
extension to multi-bit messages.

The underlying computational assumption. The computational assump-
tion underlying the simplified scheme is that there exists a collection F of injec-
tive trapdoor functions and an integer function k = k(n) such that F is secure



under a Ck-correlated product, where Ck is the uniform k-repetition distribu-
tion (i.e., outputs k copies of a uniformly distributed input x). Specifically, our
scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1} for Fk with respect to Ck.
That is, the underlying computational assumption is that for any probabilistic
polynomial-time predictor P it holds that

∣∣∣∣Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)]− 1
2

∣∣∣∣
is negligible in n, where the probability is taken over the choices of s1 ←
G(1n), . . . , sk ← G(1n), x ← {0, 1}n, and over the internal coin tosses of P.

The integer function k(n) should correspond to the bit-length of verification
keys of some one-time strongly-unforgeable signature scheme (KGsig,Sign, Ver).
By applying a universal one-way hash function to the verification keys (as in
[11]) it suffices that the above assumption holds for k(n) = nε for a constant
0 < ε < 1. For simplicity, however, when describing our scheme we do not apply
a universal one-way hash function to the verification keys. We also note that for
an even more simplified version which is only CCA1-secure (the one described
in Section 1.3), any k(n) = ω(log n) suffices.

The construction. The following describes our simplified encryption scheme
given by the triplet (KG, E,D).

– Key generation: On input 1n the key generation algorithm invokes G(1n)
for 2k times independently to obtain 2k descriptions of functions denoted
(s0

1, s
1
1), . . . , (s

0
k, s1

k) with trapdoors (td0
1, td

1
1), . . . , (td

0
k, td1

k). The public-key
and secret-key are defined as follows:

PK =
((

s0
1, s

1
1

)
, . . . ,

(
s0

k, s1
k

))

SK =
((

td0
1, td

1
1

)
, . . . ,

(
td0

k, td1
k

))
.

– Encryption: On input a message m ∈ {0, 1} and a public key PK, the
algorithm samples (vk, sk) ← KGsig(1n) where vk = vk1 ◦ · · · ◦ vkk ∈ {0, 1}k,
chooses a uniformly distributed x ∈ {0, 1}n, and outputs the ciphertext

(vk, y1, . . . , yk, c1, c2) ,

where

yi = F
(
svki

i , x
)
∀i ∈ [k]

c1 = m⊕ h
(
svk1
1 , . . . , svkk

k , x
)

c2 = Sign(sk, (y1, . . . , yk, c1)) .

– Decryption: On input a ciphertext (vk, y1, . . . , yk, c1, c2) and a secret-key
SK, the algorithm acts as follows. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, it out-
puts ⊥. Otherwise, for every i ∈ [k] it computes xi = F−1

(
tdvki

i , yi

)
. If

x1 = · · · = xk then it outputs c1 ⊕ h
(
svk1
1 , . . . , svkk

k , x1

)
, and otherwise it

outputs ⊥.



The following theorem establishes the security of the scheme.

Theorem 3.1. Assuming that F is secure under a Ck-correlated product, where
Ck is the uniform k-repetition distribution, and that (KGsig,Sign, Ver) is one-time
strongly unforgeable, the encryption scheme (KG,E, D) is CCA2-secure.

Proof. Let A be a probabilistic polynomial-time CCA2-adversary. We denote by
Forge the event in which for one of A’s decryption queries (vk, y1, . . . , yk, c1, c2)
during the CCA2 interaction it holds that vk = vk∗ (where vk∗ is given in the
secret key) and Ver(vk, (y1, . . . , yk, c1), c2) = 1. We first argue that the event
Forge has a negligible probability due to the security of the one-time signature
scheme. Then, assuming that the event Forge does not occur, we construct a
probabilistic polynomial-time algorithm P that predicts the hard-core predicate
h while preserving the advantage of A.

More formally, we denote by Success the event in which A successfully guesses
the bit b used for encrypting the challenge ciphertext. Then, the advantage of A
in the CCA2 interaction is bounded as follows:

∣∣∣∣Pr [Success]− 1
2

∣∣∣∣ =
∣∣∣∣Pr [Success ∧ Forge] + Pr

[
Success ∧ Forge

]− 1
2

∣∣∣∣

≤ Pr [Forge] +
∣∣∣∣Pr

[
Success ∧ Forge

]− 1
2

∣∣∣∣ .

The theorem follows from the following two claims:

Claim 3.2. Pr [Forge] is negligible.

Proof. We show that any probabilistic polynomial-time adversary A for which
Pr [Forge] is non-negligible, can be used to construct a probabilistic polynomial-
time adversary A′ that breaks the security of the one-time signature with the
same probability. The adversary A′ is given a verification key vk∗ sampled
using KGsig(1n) and simulates the CCA2 interaction to A as follows. A′ be-
gins by invoking the key generation algorithm on input 1n and using vk∗ for
forming the public and secret keys. In the decryption phases, whenever A sub-
mits a decryption query (vk, y1, . . . , yk, c1, c2), A′ acts as follows. If vk = vk∗

and Ver(vk, (y1, . . . , yk, c1), c2) = 1, then A′ outputs ((y1, . . . , yk, c1), c2) as the
forgery and halts. Otherwise, A′ invokes the decryption procedure. In the chal-
lenge phase, upon receiving two message m0 and m1, A′ chooses b ∈ {0, 1} and
x ∈ {0, 1}n uniformly at random, and computes

yi = F
(
s

vk∗i
i , x

)
∀i ∈ [k]

c1 = mb ⊕ h
(
s

vk∗1
1 , . . . , s

vk∗k
k , x

)
.

Then, it obtains a signature c2 on (y1, . . . , yk, c1) with respect to vk∗ (recall
that A′ is allowed to ask for a signature on one message). Finally, it sends
(vk∗, y1, . . . , yk, c1, c2) to A. We note that during the second decryption phase,



if A submits the challenge ciphertext as a decryption query, then A′ responds
with ⊥.

Note that prior to the first decryption query in which Forge occurs (assuming
that Forge indeed occurs), the simulation of the CCA2 interaction is perfect.
Therefore, the probability that A′ breaks the security of the one-time signature
scheme is exactly Pr [forge]. The security of the signature scheme implies that
this probability is negligible. ut
Claim 3.3.

∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣ is negligible.

Proof. Given any efficient adversary A for which
∣∣Pr

[
Success ∧ Forge

]− 1
2

∣∣ is
non-negligible, we construct a predictor P that breaks the security of the hard-
core predicate h. That is,

∣∣∣∣Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)]− 1
2

∣∣∣∣

is non-negligible, where s1 ← G(1n), . . . , sk ← G(1n) independently, and the
probability is taken over the uniform choice of x ∈ {0, 1}n, and over the internal
coin tosses of both G and P.

For simplicity, we first construct an efficient distinguisher A′ which receives
input of the form (1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) and a bit w ∈ {0, 1}
which is either h(s1, . . . , sk, x) or a uniformly random bit, and is able to distin-
guish between the two cases with non-negligible probability. The distinguisher
A′ acts by simulating the CCA2 interaction to A. More specifically, on in-
put (1n, s1, . . . , sk, y1, . . . , yk) and a bit w, the distinguisher A′ first creates a
pair (PK,SK) as follows. It samples (vk∗, sk∗) ← KGsig(1n), where vk∗ =
vk∗1 ◦ · · · ◦ vk∗k ∈ {0, 1}k, and for every i ∈ [k] sets s

vk∗i
i = si and samples(

s
1−vk∗i
i , td

1−vk∗i
i

)
← G(1n). Then, A′ outputs the public-key

PK =
((

s0
1, s

1
1

)
, . . . ,

(
s0

k, s1
k

))
.

Whenever A submits a decryption query of the form (vk, y1, . . . , yk, c1, c2), A′
acts as follows. If vk = vk∗ or Ver(vk, (y1, . . . , yk, c1), c2) = 0, it outputs ⊥
and halts. Otherwise, it picks some i ∈ [k] for which vki 6= vk∗i and computes
x = F−1

(
tdvki

i , yi

)
. If for every j ∈ [k] it holds that yj = F

(
s

vkj

j , x
)
, it outputs

c1 ⊕ h
(
svk1
1 , . . . , svkk

k , x
)
, and otherwise it outputs ⊥.

In the challenge phase, given two messages m0 and m1, A′ chooses a random
bit b ∈ {0, 1} and replies with the challenge ciphertext

c = (vk∗, y1, . . . , yk, c1, c2) ,

where c1 = mb⊕w, and c2 = Sign(sk∗, (y1, . . . , yk, c1)). We note that during the
second decryption phase, if A submits the challenge ciphertext as a decryption
query, then A′ responds with ⊥. At the end of this interaction A outputs a bit
b′. If b′ = b then A′ outputs 1, and otherwise A′ outputs 0.

In order to compute the advantage of A′ we observe the following:



1. If w is a uniformly random bit, then the challenge ciphertext in the simulated
interaction is independent of b. Therefore, the probability that A′ outputs 1
in this case is exactly 1/2.

2. If w = h(s1, . . . , sk, x), then as long as the event Forge does not occur, the
simulated interaction is identical to the CCA2 interaction (a formal argument
follows). Therefore, the probability that A′ outputs 1 in this case is exactly
Pr

[
Success ∧ Forge

]
.

Note that the only difference between the CCA2 interaction and the simu-
lated interaction is the distribution of the challenge ciphertext: In the CCA2
interaction the value vk in the challenge ciphertext is a randomly chosen ver-
ification key, and in the simulated interaction the value vk is chosen ahead
of time by A. In what follows we claim that as long as the event Forge does
not occur, the distribution of vk in the challenge ciphertext is identical in
the two cases.
Formally, denote by vk1, . . . , vkq the random variables corresponding to the
value of vk in A’s decryption queries (without loss of generality we as-
sume that A always submits q queries, and that the signature verification
never fails on these queries). In the CCA2 interaction, as long as the event
Forge does not occur, it holds that the verification key used for the chal-
lenge ciphertext is a random verification key with the only restriction that
it is different than vk1, . . . , vkq. In the simulated interaction, given that
vk∗ /∈ {vk1, . . . , vkq}, we claim that from A’s point of view, the value vk∗ is
also a random verification key which is different than vk1, . . . , vkq. That is,
each vk∗ /∈ {vk1, . . . vkq} produces exactly the same transcript. Indeed, first
note that the public key is independent of vk∗. Now consider a decryption
query (vk, y1, . . . , yk, c1, c2) for some vk ∈ {vk1, . . . , vkq}. For any vk∗ 6= vk,
if y1, . . . , yk have the same preimage x, then the decryption algorithm will
always output c1 ⊕ h

(
svk1
1 , . . . , svkk

k , x
)
. In addition, for any vk∗ 6= vk, if

y1, . . . , yk do not have the same preimage, then the decryption algorithm
will always output ⊥.

The above observations imply that

|Pr [A′ outputs 1 | w = h(s1, . . . , sk, x)]− Pr [A′ outputs 1 | w is random]|
=

∣∣∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣∣∣ .

A standard argument (see, for example, [18, Chapter 3.4]) can be applied to
efficiently transform A′ into a predictor P that predicts h(s1, . . . , sk, x) with the
same probability. ut

ut

Encrypting any polynomial number of bits. For simplicity we presented
the encryption scheme above for one-bit plaintexts. We now demonstrate that



our approach extends to plaintexts of any polynomial length while relying on
the same computational assumption5.

Recall that the underlying computational assumption is the existence of a col-
lection F of injective trapdoor functions such that Fk is one-way under the uni-
form k-repetition distribution (i.e., x1 = · · · = xk where x1 is chosen uniformly at
random). Specifically, the scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1}
for Fk to mask the plaintext bit. This assumption clearly implies that for any
polynomial T = T (n) there exists a collection F ′ of injective trapdoor functions
such that F ′ is one-way under the uniform k-repetition distribution, and has a
hard-core function h′ : {0, 1}∗ → {0, 1}T that can be used in our scheme to mask
T -bit plaintexts. Specifically, the collection F ′ is defined as follows: for every
function f : {0, 1}n → {0, 1}m in F define a function f ′ : {0, 1}Tn → {0, 1}Tm

by f ′(x1, . . . xT ) = (f(x1), . . . , f(xT )). The security proof of the T -bit encryp-
tion scheme is essentially identical to the proof of Theorem 3.1 by showing that
any successful CCA-adversary can be used to either break the one-time signature
scheme or to break the pseudorandomness of h′.

4 A Black-Box Separation

In this section we show that there is no fully-black-box construction of lossy
trapdoor functions (with even a single bit of lossiness) from injective trapdoor
functions that are secure under correlated products. We show that this holds
for the seemingly strongest form of correlated product, where independently
chosen functions are evaluated on the same input (i.e., we consider the uniform
k-repetition distribution).

Our proof consists of constructing an oracle O relative to which there exists
a collection of injective trapdoor functions that are permutations secure under
a correlated product6, but there are no collections of lossy trapdoor functions.
In what follows, we describe the oracle O, and show that it breaks the security
of any collection of lossy trapdoor functions.

The oracle. The oracle O is of the form (τ, Samτ ), where τ is a collection
of trapdoor permutations, and Samτ is an oracle that samples random collision.
Specifically, Sam receives as input a description of a circuit C (which may contain
τ -gates), chooses a random input w, and then samples a uniformly distributed
w′ ∈ C−1(C(w)).

We now explain how exactly Sam samples w and w′. We provide Sam with
a collection of permutations F , where for every possible circuit C the collection

5 It is well-known that for semantic security under a chosen-plaintext attack it is
straightforward to construct a multi-bit encryption scheme from any one-bit encryp-
tion scheme by independently encrypting the individual bits of the plaintext. For
semantic security under a chosen-ciphertext attack, however, this approach fails in
general.

6 These functions are in fact enhanced trapdoor permutations, but we note that this
is not essential for our result.



F contains two permutations f1
C and f2

C over the domain of C. Given a circuit
C : {0, 1}m → {0, 1}`(m), for some m and `(m), the oracle Sam uses f1

C to
compute w = f1

C(0m). Then, it computes w′ = f2
C(t) for the lexicographically

smallest t ∈ {0, 1}m such that C(f2
C(t)) = C(w). Note that whenever the per-

mutations f1
C and f2

C are chosen uniformly at random, and independently of all
other permutations in F , then w is uniformly distributed over {0, 1}m, and w′ is
uniformly distributed over C−1(C(w)). In the remainder of the proof, whenever
we consider the probability of an event over the choice of the collection F , we
mean that for each circuit C, two permutations f1

C and f2
C are chosen uniformly

at random and independently of all other permutations. A complete and formal
description of the oracle is provided in Figure 1.

On input a circuit C : {0, 1}m → {0, 1}`(m), the oracle Samτ,F acts as fol-
lows:

1. Compute w = f1
C(0m).

2. Compute w′ = f2
C(t) for the lexicographically smallest t ∈ {0, 1}m such that

C(f2
C(t)) = C(w).

3. Output (w, w′)

Figure 1: The oracle Sam.

Distinguishing between injective functions and lossy functions. The
oracle Sam can be easily used to distinguish between the injective mode and
the lossy mode of any collection of (n, 1)-lossy functions. Consider the following
distinguisher A: given a circuit C (which may contain τ -gates7), which is a
description of either an injective function or a lossy function (with image size at
most 2n−1), A queries Sam with C. If Sam returns (w,w′) such that w = w′, then
A outputs 1, and otherwise A outputs 0. Clearly, if C corresponds to an injective
function, then always w = w′ and A outputs 1. In addition, if C corresponds to
a lossy function, then with probability at least 1/4 it holds that w 6= w′, where
the probability is taken over the randomness of Sam (i.e., over the collection F).

Outline of the proof. For simplicity we first consider only two permutations.
Then, we extend our argument to more than two permutations, and to trapdoor
permutations. Our goal is to upper bound the success probability of circuits
having oracle access to Sam in the task of inverting (π1(x), π2(x)) for random
permutations π1, π2 ∈ Πn and a random x ∈ {0, 1}n (where Πn is the set of all
permutations over {0, 1}n). We prove the following theorem:

7 We allow the circuits given as input to Sam to contain τ -gates, but we do not allow
them to contain Sam-gates. This suffices, however, for ruling out fully-black-box
constructions.



Theorem 4.1. For any circuit A of size at most 2n/40 and for all sufficiently
large n, it holds that

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

(π1(x), π2(x)) = x
]
≤ 1

2n/40
.

Consider a circuit A which is given as input (π1(x), π2(x)), and whose goal is
to retrieve x. The idea underlying the proof is to distinguish between two cases:
one in which A obtains information on x via one of its Sam-queries, and the other
in which none of A’s Sam-queries provides information on x. More specifically,
we define:

Definition 4.1. A Sam-query C produces a x-hit if Sam outputs (w, w′) such
that some π1-gate or π2-gate in the computations of C(w) or C(w′) has input x.

Given π1, π2, F , a circuit A, and a pair (π1(x), π2(x)), we denote by SamHITx

the event in which one of the Sam-queries made by A produces a x-hit. From this
point on, the proof proceeds in two modular parts. In the first part of the proof,
we consider the case that the event SamHITx does not occur, and generalize
an argument of Haitner et al. [22] (who in turn generalized the reconstruction
lemma of Gennaro and Trevisan [14]). We show that if a circuit A manages to
invert (π1(x), π2(x)) for many x’s, then π1 and π2 have a short representation
given A. This enables us to prove the following lemma:

Lemma 4.1. For any circuit A of size at most 2n/7 and for all sufficiently large
n, it holds that

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

(π1(x), π2(x)) = x ∧ SamHITx

]
≤ 2−n/8 .

In the second part of the proof, we show that the case where the event
SamHITx does occur can be reduced to the case where the event SamHITx does
not occur. Given a circuit A that tries to invert (π1(x), π2(x)), we construct a
circuit M that succeeds almost as well as A, without M ’s Sam-queries producing
any x-hits. This proof is a simpler case of a similar argument due to Haitner et
al. [22]. The following theorem is proved:

Lemma 4.2. For any circuit A of size s(n), if

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

((π1(x), π2(x))) = x
]
≥ 1

s(n)

for infinitely many values of n, then there exists a circuit M of size O(s(n)) such
that

Pr π1,π2,F
x←{0,1}n

[
Mπ1,π2,Samπ1,π2,F

((π1(x), π2(x))) = x ∧ SamHITx

]
≥ 1

s(n)5

for infinitely many values of n.

Due to space limitations the remainder of the proof is provided in the full
version.
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