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Abstract. We exhibit constructions of the following two-party cryptographic
protocols given only black-box access to a one-way function:

– constant-round zero-knowledge arguments (of knowledge) for any language
in NP;

– constant-round trapdoor commitment schemes;
– constant-round parallel coin-tossing.

Previous constructions either require stronger computational assumptions (e.g.
collision-resistant hash functions), non-black-box access to a one-way function,
or a super-constant number of rounds. As an immediate corollary, we obtain a
constant-round black-box construction of secure two-party computation proto-
cols starting from only semi-honest oblivious transfer. In addition, by combining
our techniques with recent constructions of concurrent zero-knowledge and non-
malleable primitives, we obtain black-box constructions of concurrent zero-
knowledge arguments for NP and non-malleable commitments starting from only
one-way functions.

Key words: black-box constructions, zero-knowledge arguments, trapdoor com-
mitments, parallel coin-tossing, secure two-party computation, non-malleable
commitments

1 Introduction

Much of the modern work in foundations of cryptography rests on general
cryptographic assumptions like the existence of one-way functions and trapdoor
permutations. General assumptions provide an abstraction of the functionalities
and hardness we exploit in specific assumptions such as hardness of factoring
and discrete log without referring to any specific underlying algebraic structure.
The expressive nature of general assumptions means that we could then derive
constructions based on a large number of concrete assumptions of our choice,
even ones that may not have been considered at the time of designing the
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protocols. Constructions based on general assumptions may use the primitive
guaranteed by the assumption in one of two ways:

Black-box usage: A construction is black-box if it refers only to the in-
put/output behavior of the underlying primitive; we would typically also
require that in the proof of security, we can use an adversary breaking the
security of the construction as an oracle to break the underlying primitive
(c.f. [39, 27]).

Non-black-box usage: A construction is non-black box if it uses the code
computing the functionality of the primitive.

Motivated by the fact that the vast majority of constructions in cryptography
indeed are black-box, a rich and fruitful body of work initiated in [27]
seeks to understand the power and limitations of black-box constructions in
cryptography, resulting in a fairly complete picture of the relations amongst
most cryptographic primitives with respect to black-box constructions. We
stress that the general question of whether we can securely realize tasks via
black-box access to a general primitive is not merely of theoretical interest. A
practical reason is related to efficiency, as non-black box constructions tend to be
less efficient due to the use of general NP reductions to order to prove statements
in zero knowledge; this impacts both computational complexity as well as
communication complexity. As such, non-black box constructions traditionally
only serve as “feasibility” results; moreover, the constructions underlying such
feasibility results often do not translate readily into “practical” black-box
constructions without a recourse to the use of either specific assumptions or
additional general assumptions.

Fortunately, a recent line of work has narrowed - and in several cases even
closed - the gap between black-box and non-black-box constructions for many
cryptographic tasks. A notable example is the work of Ishai et al. [28, 24], which
building on the early work of Kilian’s [30], provides a black-box construction of
secure multi-party protocols that can tolerate any number of static malicious ad-
versaries, assuming only the existence a semi-honest oblivious transfer protocol
(which can in turn be based on homomorphic encryption schemes or enhanced
trapdoor permutations); the corresponding non-black-box feasibility result was
known since the 1980s [21]. Several other works address improvements in
efficiency for two-party protocols and multi-party protocols with an honest
majority e.g. [12, 34], as well as public-key encryption schemes secure against
chosen-ciphertext attacks and variants thereof [9, 37]. In fact, the recent success
we have had with black-box constructions of secure protocols seems to hint that
there is perhaps no inherent gap between non-black-box “feasibility” results
and black-box “practical” constructions for natural cryptographic tasks: that is,



any feasibility result may also be realized by a practical black-box construction
under the same assumptions. If so, this would be a stark contrast to black-box
versus non-black-box use of the adversary’s code in the proof of security in
simulation-based notions of security, for which a gap has been established [20,
1].

Upon closer examination, one notices that while the afore-mentioned
black-box constructions of secure protocols do improve on the efficiency of
previous non-black-box constructions as measured in terms of computational
and communication complexity, most (except for [12]) do not match the
round complexity of existing non-black-box constructions. Indeed, there are
several fundamental constant-round two-party cryptographic tasks, notably
zero-knowledge arguments for NP for which we do know how to realize
via non-black-box usage of a one-way function [16], but existing black-box
constructions either require a super-constant number of rounds or stronger
assumptions [21, 19]. This raises the following intriguing question:

Is there an inherent trade-off between round complexity and either
efficiency or computational assumptions in realizing these two-party
cryptographic tasks?

Put differently, if we require a constant-round zero-knowledge argument system,
must we necessarily turn to a non-black-box construction (thereby incurring a
loss in efficiency) or use collision-resistant hash functions (a stronger assump-
tion)? Interestingly, the Feige-Shamir zero-knowledge arguments [16] constitute
one of the earliest examples of non-black-box constructions; the same work also
presents a non-black-box construction of constant-round trapdoor commitments
from one-way functions, for which there is again a gap with respect to existing
black-box constructions. Other related tasks with a similar gap include parallel
coin-tossing from one-way functions, and secure two-party computation from
semi-honest oblivious transfer. In each of these cases, constant-round non-
black-box constructions are known [33, 43, 21], whereas existing black-box
constructions either additionally assuming collision-resistant hash functions
or constant-round statistically hiding commitments [19, 13, 33, 34] (which we
know cannot be realized via black-box access to a one-way function [25, 42]3) or
by considering protocols with super-constant number of rounds. We summarize
these prior results in Figure 1.

3 This is true even if we allow black-box access to semi-honest oblivious transfer, by observing
that the impossibility result in [25] extends to enhanced trapdoor permutations with which we
could realize constant-round semi-honest oblivious transfer [15].



cryptographic task black-box OWF non-black-box OWF black-box SHC

zero-knowledge argument ω(1) [22] O(1) [16] O(1) [19]

trapdoor commitments (m bits) Õ(m) [13] O(1) [16] O(1) [13]

coin-tossing (m coins) Õ(m) [3] O(1) [33] O(1) [33]

Fig. 1. Round complexity of existing constructions of several cryptographic tasks from one-way
functions (OWF) and constant-round statistically hiding commitments (SHC). Here Õ(·) hides
savings of multiplicative factors that are logarithmic in the security parameter. The trapdoor
commitment with Õ(m) rounds from black-box OWF is obtained by combining the [13] protocol
with Blum’s coin-tossing protocol [3].

Our results. In this work, we answer the afore-mentioned question negatively:
we present black-box constructions of constant-round zero-knowledge argu-
ments for NP and several other two-party functionalities under the minimal
assumption of one-way functions:

Theorem 1 (informal). There exist black-box constructions of constant-round
zero-knowledge arguments (of knowledge) for NP, constant-round trapdoor
commitments and constant-round parallel coin-tossing, starting from any one-
way function.

We stress that reducing the computational assumptions for these cryptographic
protocols from collision-resistant hash functions to one-way functions is impor-
tant also in practice; recent attacks on the popular MD4, MD5 and SHA1 hash
functions demonstrate that achieving collision-resistance in the heuristic sense
is much harder than achieving one-way’ness.

The above constructions may be modified to achieve security against
adaptive corruptions in the stand-alone model (c.f. [5]) while maintaining
constant round complexity. This improves on the early work of Beaver [2],
who provided constructions assuming hardness of factoring. The idea is to
have the receiver in the commitment scheme from [13] (which we observe to
be adaptively secure) commit to its challenge using our trapdoor commitment
scheme.

Secure two-party computation. A series of recent work [28, 34, 24, 10, 29]
(building on [30]) provided a black-box construction of secure two-party
protocols starting from semi-honest oblivious transfer. The resulting protocol
has constant round complexity assuming a constant-round parallel coin-tossing
protocol. The following result then follows as an immediate corollary of our
coin-tossing protocol:



Theorem 2 (informal). There exists a black-box construction of constant-
round secure two-party computation protocol with respect to static malicious
adversaries, starting from any constant-round oblivious transfer protocol secure
against static semi-honest adversaries.

This result also extends to any constant number of parties, while preserving
constant round complexity. We point out that in concurrent work, Choi et al. [10]
established an analogous statement for adaptive corruptions, using as a building
block our trapdoor commitment schemes tolerating adaptive corruptions.

Additional constructions. Combining our techniques with previous work, we
also obtain black-box constructions of concurrent zero-knowledge arguments
and non-malleable commitments from one-way functions:

Theorem 3 (informal). There exist black-box constructions of the following
cryptographic protocols starting from any one-way function:

– concurrent zero-knowledge arguments for NP with c log n rounds for any
super-constant function c(·);

– non-malleable commitments with O(log n) rounds, and concurrent non-
malleable commitments with O(n) rounds.

The concurrent zero-knowledge argument system follows readily from mod-
ifying the challenge-response preamble in our stand-alone zero-knowledge
argument system in the manner of [38, 36]. The non-malleable commitment
scheme requires substantially more work, combining ideas from our stand-
alone zero-knowledge argument system, an encoding scheme from [9] along
the messaging scheduling and analysis from [14, 32].

2 Overview of our constructions

We begin with our overview of our constant-round zero-knowledge arguments
and trapdoor commitment schemes, which are obtained by applying a compiler
to challenge-response protocols with a certain structure.

Challenge-response protocol. Consider a 3-round challenge-response pro-
tocol, say between a prover and a verifier with possibly a common input,
with the following structure: In the first round, the prover commits to values
v1, . . . , vk (bit by bit, in parallel). The verifier responds with a random challenge
e ∈ {0, 1}k, and the prover responds by opening to some subset of bits in each
value v1, . . . , vk. Then verifier then decides whether to accept or reject.



SPECIAL SOUNDNESS: For every message in the first round, there exists
at most one “easy challenge” ẽ that allows the prover to cheat. For a
language, cheating means convincing the verifier to accept a NO instance;
for a commitment scheme, cheating means generating an accepting commit
phase transcript that can be opened to two different values. Moreover, we
require that the “easy challenge” is efficiently recoverable in the following
sense: there is an efficient procedure that given the values v1, . . . , vk (along
with the common input), outputs a string ẽ such that if an easy challenge
exists, it must equal ẽ.

LOOK-AHEAD SIMULATION: Roughly speaking, this condition says simu-
lation is easy if we can look ahead and obtain the verifier’s challenge
e. For a language, this condition stipulates that the protocol is special
honest-verifier zero-knowledge [11]: we require that the simulator on input
any fixed verifier’s challenge e generates an “honest-looking” transcript.
Here, honest-looking means computationally indistinguishable from an
honest prover-verifier interaction wherein the verifier always sends e. For
a commitment scheme, this condition stipulates that there exists a simulator
that on input any fixed verifier’s challenge e generates an “honest-looking”
transcript of the commit phase that can be later opened to any value v. Here,
honest-looking means computationally indistinguishable from an honest
commitment and opening to the value v wherein the verifier always sends e
in the commit phase.

The compiler. We have the verifier commits to its challenge e in advance before
running the challenge-response protocol. Indeed, this approach was adopted
in [19, 17] for zero knowledge, and in [13] for trapdoor commitments. The
difficulty is that we do not know how to guarantee soundness as there could
be a malleability attack (specifically, we do not know how to rule out the
possibility that after seeing the verifier’s commitment to e, the cheating prover
could send some carefully crafted commitments that can be open to a valid
accepting response once the verifier opens the commitment to e). This problem
can be circumvented in one of three ways:

– Have the verifier commit using a perfectly hiding commitment scheme and
the prover use a statistically binding commitment scheme [19, 13].

– Have the verifier commit using a trapdoor commitment scheme and the
prover use a statistically binding commitment scheme (implicit in [33, 38,
41, 23]4).

4 In these works (specifically, the protocols based on one-way functions), the verifier commits
to its challenge e, and to reveal the challenge, it sends the string e, along with a zero-



– Have both the prover and verifier commit using a computationally hiding
commitment scheme, but have the prover prove that it “knows” the values
underlying its commitments (e.g., by using a zero-knowledge proof of
knowledge) before the verifier opens the commitment to its challenge [17,
Sec 4.9.2.2].

We adopt the third approach in this paper. Specifically, we use an extractable
commitment scheme, which is informally a commitment scheme with a proof of
knowledge property. Such a commitment scheme can be constructed via black-
box access to any commitment scheme using cut-and-choose techniques [38,
14]. Note that the first approach cannot work in our setting because there is no
black-box construction of constant-round perfectly hiding commitment schemes
from one-way functions [25], whereas the second requires a functionality that
we are trying to construct.

Towards trapdoor commitments & parallel coin-tossing. For zero-knowledge
arguments, Blum’s challenge-response protocol for the NP-complete problem
Graph Hamiltonicity [4] suffices. On the other hand, for trapdoor commitments,
we need to design a new challenge-response protocol because we do not know
how to efficiently recover the easy challenge in the [13] protocol. Next, we
show how to derive an extractable trapdoor commitment scheme starting from
any trapdoor commitment scheme (such as ours), and from there, we obtain a
constant-round parallel coin-tossing protocol from the works of [3, 8].

3 Preliminaries

We will use 1k to denote the security parameter. We refer the reader to [17] for
definitions of various cryptographic notions, such as zero knowledge.

Commitment schemes. Recall that a commitment scheme Com is a 2-party
protocol between a sender C and a receiver R. In this paper, we always refer to
computationally hiding commitment schemes. The binding property however,
may be either statistical or computational. A commitment scheme has a commit
phase and an open phase; we only consider commitment schemes where the
open phase consists of a single message from the sender to the receiver. We
know that there is a black-box construction of a 2-round statistically binding
commitment scheme from any one-way function [35, 26].

knowledge proof that the value in the commitment is e; the verifier is effectively using a
trapdoor commitment.



Trapdoor commitment schemes. Let (C,R) be a (computationally hiding)
commitment scheme. We say that (C,R) is a trapdoor commitment scheme
if there exists an expected polynomial-time probabilistic oracle machine S =
(S1,S2) such that for any PPT R∗ and all v ∈ {0, 1}n, the output (τ, w) of the
following experiments are computationally indistinguishable:

– an honest sender C interacts withR∗ to commit to v, and then opens
the commitment: τ is the view of R∗ in the commit phase, and w is
the message C sends in the open phase.

– the simulator S generates a simulated view τ for the commit phase,
and then opens the commitment to v in the open phase: formally,
SR∗1 (1n, 1k) → (τ, STATE),S2(STATE, v) → w.

Extractable commitment schemes. Let (C,R) be a statistically binding
commitment scheme. We say that (C,R) is an extractable commitment scheme
if there exists an expected polynomial-time probabilistic oracle machine (the
extractor) E that given oracle access to any PPT cheating sender C∗ outputs a
pair (τ, σ∗) such that:

– (simulation) τ is identically distributed to the view of C∗ at the end of
interacting with an honest receiver R in commit phase.

– (extraction) the probability that τ is accepting and σ∗ = ⊥ is negligible.
– (binding) if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value

other than σ∗.

We will also consider extractable commitment schemes that are computationally
binding; the definition is as above, except if σ∗ 6= ⊥, we only require that it is
computationally infeasible to open τ to any value other than σ∗.

4 Extractable commitment schemes.

The basic construction. The following protocol used in the works of [14, 38,
40] (also [30]) yields an extractable commitment scheme, starting from any
commitment scheme Com:

PROTOCOL ExtCom.
– Common input: security parameter 1k.
– Sender’s input: a string σ ∈ {0, 1}m.

COMMIT PHASE.
– The sender commits (using Com) to k pairs of strings (v0

1, v
1
1), . . . , (v

0
k, v

1
k)

where (v0
i , v

1
i ) = (ηi, σ ⊕ ηi) and η1, . . . , ηk are random strings in

{0, 1}m.



– Upon receiving a challenge e = (e1, . . . , ek) from the receiver, the
sender opens the commitments to ve1

1 , . . . , vek
k .

– The receiver checks that the openings are valid.

OPEN PHASE.
– The sender sends σ and opens the commitments to all k pairs of strings.
– The receiver checks that all the openings are valid, and also that σ =

v0
1 ⊕ v1

1 = · · · = v0
k ⊕ v1

k.

We sketch the proof (implicit in [14, 38, 40]) that ExtCom is an extractable
commitment scheme.

Computationally hiding. The proof proceeds by a hybrid argument. Fix a
cheating receiver, σ, σ′ and suppose we want to show that ExtCom(σ)
and ExtCom(σ′) are computationally indistinguishable. In the i’th hybrid
distribution, the first i pairs of strings are random shares of σ and the
last k − i pairs of strings are random shares of σ′. Suppose we have a
distinguisher for the i’th and i+1’th hybrids. If the distribution of the bit ei

is noticeably biased, then we can break the hiding property of the underlying
commitment Com right away. Otherwise, we can guess ei with probability
roughly 1/2 and obtain a distinguisher for Com(σ ⊕ ηi) and Com(σ′ ⊕ ηi).

Extractable. We start with the easier case where Com is statistically binding,
upon which ExtCom is also statistically binding. Fix a cheating sender C∗.
We construct the extractor E as follows:
1. First, simulate an execution of C∗ by internally emulating an honest

receiverR to obtain a transcript τ of the commit phase. If τ is rejecting,
then output (τ,⊥) and halt.

2. If τ is accepting with some challenge e, then keep rewinding C∗ with
random challenges until we receive another accepting response from C∗
with some challenge e′. If e = e′, then output (τ,⊥) and halt. Otherwise,
extract a value σ∗ from the C∗’s responses to distinct challenges e, e′ (by
combining the appropriate shares), and output (τ, σ∗).

Now, suppose the probability over e that we obtain an accepting transcript τ
is p. Then, the expected number of queries E makes to C∗ is (1−p)+p · 1p ≤
2. Also, the failure probability, i.e., the probability that τ is accepting and
e = e′ is at most p · 2−k

p = 2−k.

We can still use the same extractor E in the case where Com is compu-
tationally binding. Now, if there is a cheating sender that can open the
commitment in τ to a different value from σ∗, then we can combine this
with the opening to σ∗ obtained by E to derive an efficient adversary that
breaks the binding property of Com.



The parallel variant. For our compiler, we will actually need an extractable
commitment scheme to a string σ for which we can open any subset of the
bits in σ without compromising the security (i.e. hiding) of the remaining
bits. We may obtain such a scheme PExtCom by running ExtCom to commit
to each bit of σ in parallel. That PExtCom is hiding follows from the more
general fact that the hiding property of commitment schemes is preserved under
parallel composition. To show that PExtCom is extractable, we may use the
same extractor E as before, except for a modification in step 2. Note that the
receiver’s challenge in PExtCom is a k-tuple of m-bit strings, which again we
denote by e ∈ ({0, 1}m)k. Once we obtain responses to two challenges e, e′ in
Step 2, we proceed as follows: if e′ agrees with e in any of the k components,
we output (τ,⊥) and halt. Otherwise, we will be able to extract each of the m
bits in the m parallel executions of ExtCom. As before, the expected number of
queries E makes to C∗ is at most 2. The failure probability in this case is now at
most m · 2−k.

5 Zero-knowledge arguments for NP

Look-ahead zero-knowledge proof system. We use as our look-ahead zero-
knowledge proof system the parallel repetition variant of Blum’s Hamiltonic-
ity protocol [4], which we already know to be special honest-verifier zero-
knowledge.

HAMILTONICITY PROTOCOL ΠHAM .
– Common input: a graph G on n vertices.
– Prover’s input, a cycle h in G

1. The prover picks random permutations πi over [n] and commits to vi =
(πi, Ai), where Ai denotes the adjacency matrix of the graph πi(G).

2. Upon receiving the verifier’s challenge e = (e1, . . . , ek), the prover
responds as follows for each i = 1, . . . , k: if ei = 0, it opens the
commitment to (πi, Ai); if ei = 1, it opens the commitment to entries
in Ai corresponding to the edges of the cycle πi(h).

3. The verifier checks that the openings are valid and in addition, that Ai =
πi(Gi) if ei = 0 and that the open entries correspond to edges of a
Hamiltonian cycle if ei = 1.

We just need to verify that the easy challenge is efficiently recoverable:

Special soundness. Given a non-Hamiltonian graph G and the values vi =
(πi, Ai), we can compute ẽ = (ẽ1, . . . , ẽk) as follows: ẽi equals 0 if



πi(G) = Ai and 1 otherwise. It is easy to see that if an easy challenge
(that allows the prover to cheat) exists, then it must equal ẽ.5

The zero-knowledge argument system. The zero-knowledge protocol is as
follows:

1. The verifier picks a random e ∈ {0, 1}k and commits to e using Com, a
statistically-binding commitment scheme.

2. The prover commits to v1, . . . , vk as in ΠHAM using PExtCom.
3. The verifier opens the commitment to e.
4. The prover aborts if the opening to e is not valid. Otherwise, it responds to

the challenge e according to ΠHAM.
5. The verifier runs the final verification step as in ΠHAM.

The analysis. Completeness is straight-forward.

Computational soundness. Suppose there exists a cheating prover P ∗ (WLOG

deterministic) that convinces the verifier to accept a non-Hamiltonian graph
G with probability ε = 1/ poly(k). Intuitively this means that P ∗ on input
Com(e) predicts e with probability roughly ε � 2−k, which must contradict the
hiding property of Com. More formally, fix the graph G, and we know that with
probability ε/2 over e, P ∗ succeeds with probability ε/2. Let Γ denote the set
of such challenges e, so |Γ| ≥ ε

2 ·2
k, and consider the procedure A that on input

a commitment Com(e):

1. sends Com(e) to P ∗;
2. uses the extractor for PExtCom with P ∗ as the cheating sender to obtain

commitments to v1, . . . , vk along with the values v1, . . . , vk.
3. computes a candidate easy challenge ẽ from v1, . . . , vk and outputs ẽ.

It is easy to see that for all e ∈ Γ, Pr[A(Com(e)) → e] ≥ ε
2 − neg(k) ≥ ε

4 .
By using a non-uniform reduction, we may WLOG assume that 0k ∈ Γ. Now,
the sets of strings Γ′ in the output of A(Com(0k)) that occurs with probability
at least ε

8 is at most 8
ε . Since |Γ′| < |Γ|, there must exist a string, say 1k, that

lies in Γ but outside Γ′. Now,

1k /∈ Γ′ ⇒ Pr[A(Com(0k)) → 1k] ≤ ε
8

1k ∈ Γ ⇒ Pr[A(Com(1k)) → 1k] ≥ ε
4

This yields a distinguisher for Com(0k) and Com(1k), which contradicts the
hiding property of Com.

5 Note that determining whether an easy challenge exists is NP-hard, since we must determine
whether Ai contains a cycle.



Zero-knowledge. The zero-knowledge simulator is virtually identically to that
in the Goldreich-Kahan protocol [19]. Roughly speaking, upon receiving the
verifier’s commitment to e, the prover sends the cheating verifier V ∗ dummy
commitments. If the verifier aborts, we are basically done. Otherwise, we learn
the challenge e and then we could use the honest-verifier zero-knowledge
simulator to complete the simulation. As in [19], we will need to estimate the
probability that V ∗ aborts on dummy commitments.

Argument of knowledge. We may obtain a zero-knowledge argument of
knowledge for NP by instantiating the Feige-Shamir protocol [16] with the
trapdoor commitment scheme, which we present in the next section.

6 Trapdoor commitments

We construct a “look-ahead trapdoor commitment”. This is a statistically
binding commitment scheme wherein the commit phase comprises a 3-round
challenge-response protocol. In addition, the scheme will be “look-ahead
trapdoor” in the following sense: if we fix the receiver’s challenge in the
challenge-response phase, then we may generate a simulated transcript for the
commit phase which we may later open to both a 0 and a 1. Moreover, the
transcript together with either bit b is computationally indistinguishable from
a legitimate commitment to b followed by an opening to b. We note similar
constructions appear in [31, 30]. In addition, we stress that we cannot use the
challenge-response protocol in [13] because we do not know how to efficient
compute the easy challenge in that protocol.6

Look-ahead trapdoor bit commitment. To commit to a bit σ. Again, we fix
some statistically binding commitment scheme Com.

COMMIT PHASE.
– Each vi is a 2× 2 0,1-matrix given byv00

i v01
i

v10
i v11

i

 =

ηi σ ⊕ ηi

ηi σ ⊕ ηi


6 Roughly speaking, easy challenges in [13] are the first-round messages in Naor’s commitment

scheme [35] that allow a computationally unbounded sender to cheat, i.e. strings of the form
G(a)⊕G(b) ∈ {0, 1}k ranging over all a, b ∈ {0, 1}k, and where G : {0, 1}k/3 → {0, 1}k

is a pseudorandom generator.



where ηi is a random bit. The sender commits to v1, . . . , vk us-
ing Com (bit by bit in parallel). In addition, the sender prepares
(a0

1, a
1
1), . . . , (a

0
k, a

1
k) where aβ

i is the opening of the commitment to
v0β
i , v1β

i (i.e., either the left or right column of vi).
– Upon receiving a challenge e = (e1, . . . , ek) from the receiver, the

sender responds with ae1
1 , . . . , aek

k .
– The receiver checks that the openings are valid and that v0ei

i = v1ei
i for

i = 1, 2, . . . , k (i.e., every column that is open contains two equal bits).

OPEN PHASE.

– The sender sends σ. In addition, it chooses a random γ ∈ {0, 1}, sends
γ, opens the commitments to vγ0

i , vγ1
i for i = 1, 2, . . . , k (i.e., either the

top rows or the bottom rows of all the matrices).
– The receiver checks that all the openings are valid, and also that σ =

vγ0
1 ⊕ vγ1

1 = · · · = vγ0
k ⊕ vγ1

k .

Analysis. It is straight-forward to show that the commitment scheme is
computationally hiding.

Special soundness. Suppose we have a cheating sender that generates a
transcript for the commit phase that can be successfully open to both a 0
and a 1. It must be the case that every matrix vi contains at least one column
with two unequal bits; call that column ẽi. Then, the cheating sender will get
caught in the commit phase unless e = ẽ = (ẽ1, . . . , ẽk). Moreover, given
v1, . . . , vk it is easy to compute ẽ.

Look-ahead trapdoor. We construct a simulator as follows:
– Given the challenge e, pick a random β ∈ {0, 1}, and prepare the

matrices vi as follows:v00
i v01

i

v10
i v11

i

 =

ηi β ⊕ ηi

ηi β̄ ⊕ ηi

 if ei = 0; and

v00
i v01

i

v10
i v11

i

 =

β ⊕ ηi ηi

β̄ ⊕ ηi ηi

 otherwise;

where ηi is a random bit. When the receiver sends e, open the commit-
ments to v0ei

i and v1ei
i like the honest sender.

– To open to σ, send γ = β ⊕ σ, and open the commitments to vγ0
i , vγ1

i

for i = 1, 2, . . . , k.



The trapdoor bit commitment scheme. The construction and the analysis
is completely analogous to the zero-knowledge protocol. The verifier begins
by committing to a random challenge e ∈ {0, 1}k using a statistically-binding
commitment Com, and then we proceed according to the look-ahead scheme ex-
cept the prover commits using ExtCom. Completeness is again straight-forward.
Establishing computational binding is analogous to establishing computational
soundness for the zero-knowledge protocol; we transform any cheating sender
a distinguisher for Com by arguing that it must on input Com(e) predict e with
noticeable probability. Trapdoor simulation is again based on the Goldreich-
Kahan simulation strategy [19].

Extension to multiple bits. We claim that by running the trapdoor bit
commitment scheme in parallel, we obtain a trapdoor commitment scheme for
multiple bits, with the additional property that we can open the commitment to
any subset of the bits without compromising the security of the remaining bits.
We know that parallel repetition preserves the hiding and binding properties of
commitment schemes. To see that the parallel version is still trapdoor, observe
that we may still use the Goldreich-Kahan simulation strategy and that the look-
ahead simulation property is preserved under parallel repetition.

7 Parallel coin-tossing

We present a constant-round parallel coin-tossing protocol in this section. Using
the composition theorem in [6] and the results of [3, 8], it is sufficient to
implement the ideal string commitment functionality FCom (shown in Fig 2)
with stand-alone security a la [21, 5, 18] in constant rounds. Moreover, by the
results of [7], it suffices to construct a constant-round extractable trapdoor
commitment scheme.

Extractable trapdoor commitment scheme. We provide a general construc-
tion of an extractable trapdoor commitment scheme ExtTDCom starting from
any trapdoor commitment scheme TDCom: simply instantiate the protocol
ExtCom with the trapdoor commitment scheme TDCom. Specifically, the
sender in ExtTDCom on input a string σ ∈ {0, 1}m, commits to k pairs of
strings (v0

1, v
1
1), . . . , (v

0
k, v

1
k) (with v0

1 ⊕ v1
1 = · · · = v0

k ⊕ v1
k = σ) using

TDCom, by treating the k pairs of strings as a single string of length 2km. The
trapdoor property is straight-forward: if we could equivocate on the commitment
to the string (v0

1, v
1
1), . . . , (v

0
k, v

1
k), then we could easily equivocate on the

commitment to σ. The extractable property is already established in Section 4.



Functionality FCom

1. Upon receiving input (Commit, sid, Pj , x) from Pi where x ∈ {0, 1}m,
internally record the tuple (Pi, Pj , x) and send the message (sid, Pi, Pj)
to the adversary; When receiving (ok) from the adversary, output
(Receipt, sid, Pi) to Pj . Ignore all subsequent (Commit, ...) inputs.

2. Upon receiving a value (Open, sid) from Pi, where a tuple (Pi, Pj , x) is
recorded, send (x) to the adversary; When receiving (ok) from the adversary,
output (Open, sid, x) to Pj .

Fig. 2. Ideal String Commitment Functionality

The coin-tossing protocol. For self-containment, we present the coin-tossing
protocol based directly on ExtTDCom.

1. Party 1 chooses a random s1 ∈ {0, 1}m and commits to s1 using
ExtTDCom. Party 2 aborts with output ⊥ if the commitment protocol fails.

2. Party 2 chooses s2 ∈ {0, 1}m and sends s2 to Party 1.
3. If Party 1 receives an invalid message from Party 2, then Party 1 aborts.

Otherwise, Party 1 opens the commitment to s1. Party 2 aborts with output
⊥ if the opening is invalid.

4. Output: both parties output s1 ⊕ s2.

The high level proof strategy is as follows.

– If Party 1 is corrupted, we will use the extractor for ExtTDCom to extract s1

and then set s2 = s1 ⊕ s (where s is the string chosen by the trusted party).
– If Party 2 is corrupted, we will use the trapdoor commitment property so

that upon receiving s2 from Party 2, the simulator can open the commitment
to s1 = s⊕ s2.

8 Non-malleable commitments

We begin by describing a commitment scheme satisfying some strong notions
of extractability and hiding, based on an encoding scheme from [9].

An intermediate construction. To commit to a string v with parameter 1` (` is
the length of the identities):

COMMIT PHASE.
1. The receiver commits to a random subset S ⊂ [10k] of size k using

Com.



2. The sender picks random α1, . . . , αk ∈ GF(2n) and set sj = p(j), j ∈
[10k] where p(x) = v + α1x + . . . + αkx

k. (Note that (s1, . . . , s10k)
encodes v under the Reed-Solomon code.) The sender then commits to
(s1, . . . , s10k) a total of 2` times using PExtCom sequentially.

3. The receiver opens the commitment to S.
4. The sender opens the 2` commitments to the value sj for all j ∈ S.
5. The receiver checks that for each j ∈ S, the 2` commitments to sj open

to the same value.

OPEN PHASE.

1. The sender sends v and opens the commitments to (s1, . . . , s10k) in the
first execution of PExtCom.

2. The receiver computes the codeword w = (w1, . . . , w10k) that agrees
with (s1, . . . , s10k) in at least 9k positions, and checks that (s1, . . . , s10k)
is a codeword corresponding to v and that for all j ∈ S, sj = wj .

We sketch the properties satisfied by this commitment scheme, and defer the
analysis to the full version of this paper.

Extractability. There exists expected polynomial-time probabilistic oracle
machines E1, E2, . . . , E2` such that for all i = 1, 2, . . . , 2`, the machine
Ei given oracle access to any PPT cheating sender C∗ outputs a pair (τ, σ∗)
such that

– (simulation) τ is identically distributed to the view of C∗ at the end of
interacting with an honest receiver R in commit phase.

– (strong extraction) the pair (τ, σ∗) is computationally indistinguishable
from the view of C∗ at the end of interacting with an honest receiver R
in commit phase, together with the committed value implicitly specified
by the view.

We will also require that the machine Ei extracts from the i’th execution of
PExtCom, for i = 1, . . . , 2`.

Hiding. We require that the commitment scheme is (computationally) hiding
even against a PPT cheating receiver R∗ that may request for an arbitrary
number of additional commitments to (s1, . . . , s10k) using PExtCom, along
with the openings to sj for each j ∈ S in these additional commitments.

We stress that the notion of extractability above is stronger than that in Section 3.
In particular, it guarantees that if there is no valid opening for the commit phase
transcript τ , then the extractor must output σ∗ =⊥.



Achieving non-malleability. To obtain a non-malleable commitment scheme
from the previous construction, we just need to schedule the messages in the
2` copies of PExtCom according to the message scheduling in [14]. It follows
from the analysis in [32] that the resulting O(n)-round commitment scheme is
one-many non-malleable. By further applying the results in [14, 32], we obtain a
O(log n)-round non-malleable commitment and a O(n)-round concurrent non-
malleable commitment.
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