
Oblivious Transfer from Weak Noisy Channels

Jürg Wullschleger

University of Bristol, UK
j.wullschleger@bristol.ac.uk

Abstract. Various results show that oblivious transfer can be imple-
mented using the assumption of noisy channels. Unfortunately, this as-
sumption is not as weak as one might think, because in a cryptographic
setting, these noisy channels must satisfy very strong security require-
ments.

Unfair noisy channels, introduced by Damg̊ard, Kilian and Salvail [Eu-
rocrypt ’99], reduce these limitations: They give the adversary an unfair
advantage over the honest player, and therefore weaken the security re-
quirements on the noisy channel. However, this model still has many
shortcomings: For example, the adversary’s advantage is only allowed to
have a very special form, and no error is allowed in the implementation.

In this paper we generalize the idea of unfair noisy channels. We in-
troduce two new models of cryptographic noisy channels that we call
the weak erasure channel and the weak binary symmetric channel, and
show how they can be used to implement oblivious transfer. Our models
are more general and use much weaker assumptions than unfair noisy
channels, which makes implementation a more realistic prospect. For ex-
ample, these are the first models that allow the parameters to come from
experimental evidence.

1 Introduction

Secure two-party computation, introduced in [23], allows two mutually distrust-
ful players to calculate a function in a secure way. This means that both players
get the correct output, but nothing more than that. Even though secure two-
party computation is generally impossible without any further assumption, it has
been shown in [11, 14] that if a very simple primitive called oblivious transfer is
available, then any two-party computation can be implemented in an uncondi-
tionally secure way.

Oblivious transfer was first defined in [21], however without realizing its
connection to cryptography. In the cryptographic context, the two variants of
oblivious transfer were defined in [19] and [9], which were shown to be equally
powerful in [3]. Throughout this work, we will only consider chosen one-out-of-
two oblivious transfer, or OT for short. Here, a sender can send two message
bits x0 and x1, and a receiver can choose which of the two messages he wants
to receive by sending a choice bit c. He receives xc, but does not get to know
the other message bit x1−c, and the sender does not get to know the choice



bit c. There exist various implementations of OT that are secure against com-
putationally bounded adversaries, under various hardness assumptions. Against
adversaries with unbounded computational power, OT can only be implemented
if the players have access to an additional (weaker) functionality.

1.1 OT from (Unfair) Noisy Channels

In [5], it has been shown that OT can be implemented from various weaker
forms of OT, as well as noisy channels. Therefore, noise is not always a bad
thing; in a cryptographic context it can become a valuable resource. These pro-
tocols have later been improved and generalized in [4], [6] and [16]. The basic
idea of all these protocols is very similar: First, they construct some kind of
erasure channel. Then, this erasure channel is used many times to implement
OT. The correctness and the security is guaranteed using error correcting codes
and privacy amplification.

These noisy channels seem to be quite weak primitives and easily imple-
mentable, but they have some rather strong requirements: The statistics of the
channel must be exactly the same in every instance, and known to both players.
And, apart from the output of the channel, a dishonest player must not get any
additional output.

In [8], weaker forms of noisy channels called unfair noisy channels were in-
troduced. Unfair noisy channels are binary symmetric noisy channels that let
the dishonest player change the error-rate in the channel by a certain amount.
For example, this makes the protocol secure against an adversary that might use
better transmitters or detectors in order to break the protocol. In this model,
OT must be implemented in a different way, using the following two steps. First,
from only a few instances of the channel, a weak form of OT (called WOT) is
constructed. In the second step, the security is amplified, i.e., many of these
WOTs are used to get one secure instance of OT. The resulting protocol is only
secure in the semi-honest model, i.e., under the assumption that the dishonest
player follows the protocol. To make the protocol secure in the malicious model,
where the dishonest player may deviate in an arbitrary way from the protocol, a
third step is needed, which uses bit commitments and zero-knowledge proofs to
force the dishonest player to follow the protocol.

The results from [8] were later improved in [7], and OT amplification was
improved in [22].

1.2 Limitations of Unfair Noisy Channels

Even though unfair noisy channels are much weaker than (fair) noisy channels,
they still have some very strong assumptions, which makes them hard to imple-
ment. Let us look at the following example:

A (fair) binary symmetric noisy channel with error ε lets a sender input a
bit x ∈ {0, 1}. The channel then outputs a value Y ∈ {0, 1} to the receiver,
where Pr[Y 6= x] = ε. Let us assume that neither the sender nor the receiver can
influence ε, but that the dishonest receiver gets an additional value E ∈ {0, 1},



where Pr[E = 1] = µ, and E = 1⇒ Y = x. Therefore, with some probability µ,
the dishonest receiver gets to know that the value Y he received is in fact equal
to x. If µ is small, then this channel is very close to a fair binary symmetric noisy
channel. However, even then it cannot be modeled by an unfair noisy channel,
because there, the receiver can only change the error probability of the channel
in a certain range, but he can never be sure that his received bit is the bit sent
by the sender. Therefore, unfair noisy channels forbid the adversary to have this
kind of advantage.

Now, let us assume that we are given an implementation a noisy channel, and
that the statistics of the channel show that the channel behaves like a fair noisy
channel. The accuracy of these statistics are only polynomial. For example, the
channel might as well be the channel from the example above, where µ is only
polynomially small. Therefore, we cannot conclude that the channel is really a
implementation of a fair noisy channel, and neither can the channel be modeled
by an unfair noisy channel. To be able to implement OT in this situation, we
need to have a model that allows the implementation to behave arbitrarily with
some probability.

1.3 Contribution

The goal of this work is to present new, more realistic models for noisy chan-
nels (called weak noisy channels) and to show that oblivious transfer can be
implemented in an unconditionally secure way, assuming that such weak noisy
channels exist. Opposed to the unfair noisy channel which is defined as an ideal
functionality, our definitions are merely a list of conditions that a implementa-
tion of a weak noisy channels should satisfy. For a given implementation, one
only needs to check these (quite simple) conditions, and does not need to show
a cryptographically secure reduction of an ideal functionality to the implemen-
tation. This makes our model easier to apply.

We will introduce the following three models of weak noisy channels:

– Weak erasure channels in the semi-honest model 1 (PassiveWEC). These are
weak variants of erasure channels2 (channels that transmit a bit with some
probability).

– Weak binary symmetric channels in the semi-honest model (PassiveWBSC).
As the unfair noisy channel, these are weak variants of binary symmetric
channels.

– Weak erasure channels in the malicious model (ActiveWEC).

We defined these channels such that they fitted well into the protocol pro-
posed in [8], which is the only protocol we know of to implement OT from weak
noisy channels.

1 See Section 2.2 for explanation of the semi-honest and the malicious model.
2 Note that the original definition of OT by Rabin [19] is in fact also an erasure

channel, so a WEC is also a weak form of Rabin OT.



To show the flexibility and generality of our models, we show that it is very
easy to implement a PassiveWEC from Gaussian channels, and that the (passive)
unfair noisy channel can be seen as an instance of a PassiveWBSC.

In Sections 3 and 4, we show that PassiveWEC implies WOT, and PassiveWBSC
implies PassiveWEC in the semi-honest model. Then, in Section 5, we show that
ActiveWEC implies both bit commitment and a committed version of PassiveWEC
in the malicious model. This implies that in a certain range of parameters, each
of the three weak noisy channels allows for any secure two-party computation
to be achieved. For each of the weak noisy channels, we also present a simu-
lation of the channel using nothing else than noiseless communication, and in
the case of ActiveWEC, shared randomness. Since it is impossible to implement
bit commitment or oblivious transfer from noiseless communication and shared
randomness, it is also impossible to implement them using the simulated weak
noisy channels.

Full proofs are provided in the full version of this work.

2 Preliminaries

We start with some basic definitions and lemmas that we will need later.
We will use the following convention: Lower case letters will denote fixed

values and upper case letters will denote random variables. Calligraphic letters
will denote sets and domains of random variables. For a random variable X over
X , we denote its distribution by PX : X → [0, 1] with

∑
x∈X PX(x) = 1. For a

given distribution PXY : X × Y → [0, 1], we write for the marginal distribution
PX(x) :=

∑
y∈Y PXY (x, y) and, if PY (y) 6= 0, PX|Y (x | y) := PXY (x, y)/PY (y)

for the conditional distribution. Let h(x) := −x log x− (1− x) log(1− x) be the
binary entropy function.

2.1 Statistical Distance and Maximal Bit-Prediction Advantage

The statistical distance of two distributions PX and PY over the same domain
U is defined as

δ(PX , PY ) :=
1
2

∑
u∈U
|PX(u)− PY (u)| .

For a distribution PXY over {0, 1}×Y, the maximal bit-prediction advantage of
X from Y for a function f is defined as

PredAdv(X | Y ) := 2 ·max
f

Pr[f(Y ) = X]− 1 .

Lemmas 1, 2 and 3 give some intuition about these measures: The random
variable B (or C) indicates that an error occurred: If B = 0, everything is fine.
But if B = 1, the adversary may have complete knowledge. (See also [12] and
[22].)

Lemma 1. Let PBX and PCY be distributions over {0, 1}×U such that Pr[B =
1] = Pr[C = 1] = ε. Then δ(PX , PY ) ≤ ε+ (1− ε) · δ(PX|B=0, PY |C=0).



Lemma 2. Let PXY be a distribution over {0, 1}×Y. There exists a conditional
distribution PB|XY over {0, 1}× {0, 1}×Y such that Pr[B = 1] ≤ PredAdv(X |
Y ) and such that for all functions f : Y → {0, 1}, Pr[f(Y ) = X | B = 0] = 1/2.

Lemma 3. Let PXY be a distribution over {0, 1}×Y with δ(PY |X=0, PY |X=1) ≤
ε. There exists a random variable B over {0, 1} such that Pr[B = 1 | X = 0] =
Pr[B = 1 | X = 1] = ε, and PY |X=0,B=0 = PY |X=1,B=0.

Lemma 4. Let PXY be a distribution over {0, 1}×Y with δ(PY |X=0, PY |X=1) ≤
b and PredAdv(X) ≤ a. Then PredAdv(X | Y ) ≤ 1− (1− a)(1− b).

We say that X is ε-close to uniform with respect to Y , if δ(PXY , PUPY ) ≤ ε,
where PU is the uniform distribution.

2.2 Adversaries

We distinguish between two different models, the semi-honest model and the
malicious model. In the semi-honest model, the adversary is passive, which means
that he follows the protocol, but may try to get additional knowledge from the
messages received. In the malicious model, the adversary is active, which means
that he may change his behavior in an arbitrary way.

2.3 Randomized Functionalities

All our channels are randomized, because we think the security conditions tend
to be more intuitive this way. But randomized channels are usually also easier to
implement (See for example Protocol ActiveToPassiveWEC in Section 5.3). The
results for randomized channels immediately imply similar conditions for non-
randomized channel, as they can be converted into a randomized channel simply
by requiring the players to choose their inputs at random. Our definitions are
weak enough that this works even in the malicious case.

2.4 Oblivious Transfer Amplification

Our work is based on oblivious transfer amplification from [8, 22], which gives a
way to implement oblivious transfer (OT) from weak oblivious transfer (WOT).
We will take the definition of WOT from the full version of [22], however we use
the weaker requirement of PredAdv(C | U) ≤ p instead of PredAdv(C | U,E) ≤
p. As explained there, the reduction of OT to WOT still works for this weaker
definition, as long as the error correction is always done from the sender to the
receiver, which is normally the case.

Definition 1 (WOT, semi-honest model). A weak (randomized) oblivious
transfer, denoted by (p, q, ε)-WOT, is a primitive between a sender and a receiver,
that outputs (X0, X1) to the honest sender and (C, Y ) to the honest receiver.
Let U be the additional auxiliary output3 to a dishonest sender and let V be
3 Or the view of the adversary, i.e., everything he knows at the end of the protocol.



the auxiliary output to a dishonest receiver. Let E := XC ⊕ Y . The following
conditions must be satisfied:

– Correctness: Pr[E = 1] ≤ ε.
– Receiver Security: PredAdv(C | U) ≤ p.
– Sender Security: PredAdv(X1−C | V,E) ≤ q.

Theorem 1 ([22]). Let p, q and ε be constants such at least one of the following
conditions holds:

p+q+2ε ≤ 0.24 , 22q+44ε < 1−p , 22p+44ε < 1−q , 49p+49q < (1−2ε)2 ,

q = 0 ∧ p < (1− 2ε)2 , p = 0 ∧ q < (1− 2ε)2 , ε = 0 ∧ p+ q < 1 .

Then there exists a protocol that efficiently implements OT from (p, q, ε)-WOT
secure in the semi-honest model.

We will only use the first four bounds, because we assume that p, q, ε > 0.

2.5 Bit Commitment

To achieve oblivious transfer in the malicious model, we will need bit commit-
ments. A bit commitment scheme is a pair of protocols, a Commit protocol and
a Open protocol, executed between a committer and a receiver. The players first
execute the Commit protocol, where the committer has an input b. Then, they
may also execute the Open protocol. After the Open protocol, the receiver either
accepts or rejects. If he accepts, he gets a value b′. The protocols are ε-secure, if
they satisfy the following properties:

– Correctness: If both players follow the protocols, then the receiver rejects
with a probability smaller than ε, and if he accepts, he outputs b′ = b with
probability at least 1− ε.

– Binding : If the receiver is honest, then for any malicious sender, with prob-
ability 1 − ε, there exists at most one value after the commit protocol that
the receiver will accept with a probability bigger than ε in the open phase.

– Hiding : If the committer is honest, then no malicious receiver gets to know
b with a probability bigger than ε.4

3 Weak Erasure Channel in the Semi-Honest Model

In this section, we present a reduction of WOT to weak erasure channels (WEC)
in the semi-honest model. A weak erasure channel lets a honest sender send a
bit, which is then received by the honest receiver with a certain probability,
and gets lost otherwise. Dishonest players are allowed to receive some additional
information, so a dishonest receiver may get to know some information about
the input even in the case where the channel lost the bit, and a dishonest sender
may get information about whether the bit has been lost or not.
4 This means that if b ∈ {0, 1} and V is the receiver’s view, then we require that
δ(PV |B=0, PV |B=0) ≤ ε.



Definition 2 (WEC, semi-honest model). (d0, d1, p, q, ε)-PassiveWEC is a
primitive where the honest sender has output X ∈ {0, 1} and the honest receiver
has output Y ∈ {0, 1, ∆}. Furthermore, the dishonest sender may receive an
additional value U , and the dishonest receiver may receive an additional value
V . These values must satisfy the following conditions:

– Correctness: Pr[Y = ∆] ∈ [d0, d1], Pr[Y 6= X | Y 6= ∆] ≤ ε.
– Receiver Security: δ(PXU |Y 6=∆, PXU |Y=∆) ≤ p.
– Sender Security: PredAdv(X | V, Y = ∆) ≤ q.

The parameters can be interpreted as follows: d0,d1 and ε are parameters
of the honest players. The probability that the output of the channel is ∆ is
in the interval [d0, d1]. (Defining this as an interval gives some freedom to the
implementation, which may be important, as parameters often cannot be known
precisely.) ε is the probability that the output of the honest receiver is wrong,
if the output is not ∆. According to Lemma 2, q is the probability that the
dishonest receiver gets to know the input of the channel, given that the output
of the channel is ∆, and according to Lemma 3, p is the probability that a
dishonest sender gets to know whether Y = ∆ or Y 6= ∆.

3.1 Simulation of PassiveWEC

We start by showing for which values a PassiveWEC can be simulated by only
using noiseless communication. Since OT cannot be implemented from noise-
less communication, such PassiveWEC therefore cannot be used to implement
OT. Note that in any simulation that only uses noiseless communication, we
always have d0 = d1, as both players know all the probabilities. In the following
simulation, we require that ε ∈ [0, 1

2 ], d, g ∈ [0, 1], and g ≥ (1− 2ε)(1− d).

Protocol SimWEC(d, ε, g)

1. The sender chooses x uniformly at random and sends the receiver m := x
with probability g, and m := ∆ otherwise. The sender outputs x.

2. If the receiver getsm ∈ {0, 1}, he outputs y := m with probability (1−2ε)(1−d)
g ,

and y := ∆ otherwise.
3. If the receiver gets m = ∆, he outputs y chosen at random with probability

2ε(1−d)
1−g , and y := ∆ otherwise.

Theorem 2. For any d, ε, p and q, where p+q+2ε ≥ 1, (d, d, p, q, ε)-PassiveWEC
is simulatable in the semi-honest model.

3.2 WOT from PassiveWEC

Protocol PassiveWECtoWOT

1. The sender and the receiver execute PassiveWEC twice. The sender receives
(x0, x1), the receiver (y0, y1).



2. If there exists a c, such that yc 6= ∆ and y1−c = ∆, then the receiver
sets y := yc, outputs (c, y), tells the sender to terminate the protocol and
terminates.

3. If the sender receives the message to terminate the protocol, he outputs
(x0, x1) and terminates. Otherwise, they restart the protocol.

Theorem 3. Protocol PassiveWECtoWOT securely implements a(
1− 2d0(1− d1)

d1(1− d0) + d0(1− d1)
(1− p)2, q, ε

)
-WOT

secure against passive adversaries out of (d0, d1, p, q, ε)-PassiveWEC. The ex-
pected number of instances used is at most 1/min(2d0(1− d0), 2d1(1− d1)).

Theorem 3 is not difficult to show using Lemma 3 and Lemma 4. Corollary 1
follows now from Theorem 1, Theorem 3 and

1− 2d0(1− d1)w(1− p)2 ≤ 2p+ (d1 − d0)w .

Corollary 1. Let d0 ≤ d1, p, q and ε be constants, and let w = 1/(d1(1− d0) +
d0(1− d1)). If at least one of the conditions

2p+ q + (d1 − d0)w + 2ε ≤ 0.24 , 11q + 22ε < d0(1− d1)w(1− p)2 ,

44p+ 22(d1 − d0)w + 44ε < 1− q , 98p+ 49q + 49(d1 − d0)w < (1− 2ε)2

holds, then there exists a protocol that uses (d0, d1, p, q, ε)-PassiveWEC and effi-
ciently implements OT secure in the semi-honest model.

3.3 An Example: The Gaussian Channel

The Gaussian channel is often used in information theory as a model of a noisy
channel, because it models real physical channels quite well. It has been shown
that a perfect and fair Gaussian channel implies bit commitment, see [17, 18].
A Gaussian channel is a channel where the sender has input xg ∈ R and the
receiver has output Yg = xg + Eg, where Eg ∼ N (0, 1), i.e., the channel has an
additive error that is normal distributed.

We can easily implement a PassiveWEC from this channel in the following
way: Let a, b ∈ R+. The sender chooses x ∈ {0, 1} uniformly at random, sends
xg := (2x−1)a and outputs x. The receiver gets yg, and outputs y = ∆ if |yg| ≤ b,
y = 1 if yg > b and y = 0 otherwise. With an arbitrary small error, we can make
the Gaussian channel discrete. In the limit, we get a (d, d, p, q, ε)-PassiveWEC,
where d = Φ(b− a)−Φ(−a− b), ε = Φ(−a−b)

1−d , p = 0 and q = 2Φ(b−a)−Φ(−a)
d − 1.

Choosing for example a = 1 and b = 2.5, we get d ≈ 0.93296, ε ≤ 0.0035, and
q ≤ 0.6604. Since 44 ·ε < 1−q, it follows from Corollary 1 that oblivious transfer
can be implemented. Together with the bit commitment protocols from [17, 18],
this implies (using a protocol similar to ActiveToPassiveWEC) that OT can be
implemented from (perfect and fair) Gaussian channels in the malicious model.



To the best of our knowledge, this has not been known before, as previous
results in [6, 16] rely on the fact that the channel is discrete and cannot be
applied to the Gaussian channel. Note that in contrast to the reductions from
[17, 18], our reduction even works for Gaussian channels that are neither perfect
nor fair.

4 Weak Binary Symmetric Channel in the Semi-Honest
Model

Weak Binary Symmetric Channel is a weak form of a binary symmetric channel.
The channel transmits the input bit of the sender to the receiver, but flips the
bit with some probability. Again, the definition is randomized.

Definition 3 (WBSC, semi-honest model). (ε, ε0, ε1, p, q)-PassiveWBSC is
defined as follows: The honest sender has output X ∈ {0, 1} and the honest
receiver has output Y ∈ {0, 1}. Furthermore, the dishonest sender may receive
an additional value U ∈ U , and the dishonest receiver may receive an additional
value V ∈ V. These values must satisfy the following conditions:

– Correctness: Pr[X = 0] ∈ [ 1−ε2 , 1+ε
2 ], and for x ∈ {0, 1}, Pr[Y 6= x] ∈ [ε0, ε1].

– Receiver Security: δ(PUX|Y=X , PUX|Y 6=X) ≤ p.
– Sender Security: For all y ∈ {0, 1}: δ(PV |X=0,Y=y, PV |X=1,Y=y) ≤ q.

The parameters can be interpreted as follows: ε is the bias of X, and ε0 and
ε1 define the error interval of the honest players. From Lemma 3 it follows that
p is the probability that the sender, and q is the probability that the receiver
gets to know whether X = Y or not. Note that in order to make our reduction
work, the sender security has a slightly different form than the receiver security.
If ε = 0 and ε0 = ε1, the sender security implies δ(PV Y |Y=X , PV Y |Y 6=X) ≤ q. So
in this case, the sender security is strictly stronger than the receiver security.

4.1 Simulation of PassiveWBSC

The following simulation is basically the same as in [8] for the unfair noisy
channel. Let εA, εB ∈ [0, 1

2 ].

Protocol SimWBSC(εA, εB)

1. The players toss a uniform coin M ∈ {0, 1}.
2. The sender calculates X := 1 −M with probability εA and X := M other-

wise, and outputs X.
3. The receiver calculates Y := 1−M with probability εB and Y := M other-

wise, and outputs Y .

Theorem 4. Let ε := εA(1 − εB) + εB(1 − εA), p := (1−εA)(1−εB)
1−ε − εA(1−εB)

ε ,

and q := (1−εA)(1−εB)
1−ε − (1−εA)εB

ε . The Protocol SimWBSC(εA, εB) securely im-
plements a (0, ε, ε, p, q)-PassiveWBSC in the semi-honest model.

Theorem 4 implies that (0, ε, ε, p, q)-PassiveWBSC is simulatable if p+ q > 1.



4.2 PassiveWEC from PassiveWBSC

We will now give a reduction of PassiveWEC to PassiveWBSC. The protocol itself
has already been used in [5] and [4]. The intuition behind the following protocol
is simple: The sender sends a bit twice over a binary noisy channel. If the receiver
gets twice the same message, he knows (with a small error) what the sender has
sent and outputs that. If he receives two different messages, he does not know the
input and outputs ∆. Note that since two channels are randomized, the sender
cannot choose his input, and therefore has to additionally send x0 ⊕ x1.

Protocol PassiveWBSCtoWEC

1. The players execute PassiveWBSC twice. The sender gets (x0, x1), the re-
ceiver (y0, y1).

2. The sender sends k := x0 ⊕ x1 to the receiver and outputs x := x0.
3. If y0 ⊕ y1 = k, the receiver outputs y := y0. Otherwise, he outputs y := ∆.

Theorem 5. Let

d0 := min(2ε0(1− ε0), 2ε1(1− ε1)) ,
d1 := max(2ε0(1− ε0), 2ε1(1− ε1), ε0(1− ε1) + ε1(1− ε0)) .

ε′ :=
ε1 − ε0

ε1 + ε0 − 2ε0ε1
− 2ε

1 + ε2
.

Protocol PassiveWBSCtoWEC securely implements a(
d0, d1, 1− (1− p)2, 1− (1− ε′)(1− q)2, ε21

ε21 + (1− ε1)2

)
-PassiveWEC

in the semi-honest model out of two instances of (ε, ε0, ε1, p, q)-PassiveWBSC.

Proof (Sketch). It is easy to verify that

Pr[Y 6= X | Y 6= ∆] ≤ ε21
ε21 + (1− ε1)2

and Pr[Y = ∆] ∈ [d0, d1], and the security against a dishonest sender can be
shown using Lemma 3 and Lemma 1.

Let V0 and V1 be the additional information a dishonest receiver gets in the
two executions of the PassiveWBSC. We have V := (K,V0, V1, Y0, Y1). Using
Lemma 3 and Lemma 1 it can be shown that

δ(PV0V1|X=0,K=k,Y0=y0,Y1=y1 , PV0V1|X=1,K=k,Y0=y0,Y1=y1) ≤ 1− (1− q)2 .

We can bound

Pr[X = x | Y0 = y0, Y1 = y1,K = k, Y = ∆]

≤ (1 + ε)ε1 · (1 + ε)(1− ε0)
(1 + ε)ε1 · (1 + ε)(1− ε0) + (1− ε)ε0 · (1− ε)(1− ε1)

,



from which follows

PredAdv(X | Y0 = y0, Y1 = y1,K = k, Y = ∆) ≤ ε1 − ε0
ε1 + ε0 − 2ε0ε1

+
2ε

1 + ε2
.

The statement now follows from Lemma 4. ut

4.3 An Example: The Unfair Noisy Channel

The passive unfair noisy channel (γ, δ)-PassiveUNC from [8, 7] is a special case
of a PassiveWBSC, namely a (0, δ, δ, p, p)-PassiveWBSC, where

p :=
(1− δ)δ − (1− γ)γ

(1− 2γ)δ(1− δ)
.

Note, however, that the bounds that we get using our results are not as good as
the bounds from [8, 7].

5 WEC in the Malicious Model

The assumption that the adversary is semi-honest and therefore follows the pro-
tocol is quite strong and often too strong. As shown in [10], there exist compilers
that can convert protocols which are only secure in the semi-honest model into
protocols that are also secure in the malicious model. The basic idea is that at
the beginning, the players are committed to all the secret data they have, and af-
ter every computation step they do, they commit to the newly computed values
and show with a zero-knowledge proof that the new committed value contains
indeed the correct value, according to the protocol. To implement this in our
setting, we need two things: A bit commitment protocol, and a protocol that
implements a committed version of the passive weak noisy channel. Hence, for
any weak noisy channel in the active model, we need to show that it implies bit
commitment and a committed version of either PassiveWEC or PassiveWBSC for
parameters that allow us to achieve OT in the semi-honest model. (See also [7]
for a more detailed discussion.)

Defining a weak noisy channel in the malicious model turns out to be much
more tricky than in the semi-honest model. It is possible to define them in the
same way as in the semi-honest model, however we think that this would not give
a very realistic model. For example, the dishonest player probably may choose
an attack where he does not get the output of the honest player. Therefore, we
think that it is preferable to state the security conditions such that the malicious
player does not need to get the value of the honest player. In the following we
will do this for the WEC. For the WBSC, we were not able to come up with a
simple definition.

Definition 4 (WEC, malicious model). (d0, d1, p, g, ε)-ActiveWEC is a prim-
itive with the following properties.



– Correctness: If both players are honest, then the sender has output X ∈ {0, 1}
and the receiver has output Y ∈ {0, 1, ∆}, where Pr[Y = ∆] ∈ [d0, d1] and
Pr[Y 6= X | Y 6= ∆] ≤ ε.

– Receiver Security: If the receiver is honest, then for all dishonest sender with
auxiliary input z and output U , the receiver has output Y ∈ {0, 1, ∆} where
Pr[Y = ∆] ∈ [d0, d1] and δ(PU |Z=z,Y 6=∆, PU |Z=z,Y=∆) ≤ p.

– Sender Security: If the sender is honest, then for all dishonest receiver with
auxiliary input z and output V , the sender has output X ∈ {0, 1} and
PredAdv(X | V,Z = z) ≤ g.

Note that the parameter g is different from the parameter q in the semi-
honest case, because we do not condition on the event Y = ∆. The honest
receiver can guess X using f(Y ) := Y if Y 6= ∆, and either 0 or 1 if Y = ∆. We
get PredAdv(X | Y ) ≥ (1 − 2ε)(1 − d1). Therefore, an ActiveWEC can only be
implemented if g ≥ (1− 2ε)(1− d1).

5.1 Simulation

Using the same simulation as for the semi-honest case, we get

Theorem 6. For any d, ε, p and g, where

dp+ g + 2ε ≥ 1 ∧ g ≥ (1− 2ε)(1− d) ,

(d, d, p, g, ε)-ActiveWEC is simulatable in the malicious model, given that the
players have access to a source of trusted shared randomness.

5.2 Bit Commitment

Our commitment protocol takes parameters n, c, m, ` and κ, where n is the
number of instances used, c the error-tolerance of the protocol, ` the number of
bits committed to, and κ the error. Let c := n−1/3, and

κ := exp(−2(1− d1 − c)nc2) .

Let a be the maximum value that satisfies

(1− d) · a−
√
a

2
· ln 1

κ
≤ (ε+ c)(1− d)n

for all d ∈ [d0 − c, d1 + c]. Let

m := (d1p+ c)n+ 2a+ 1

and let C ⊂ {0, 1}n be a (n, k,m)-linear code5, i.e., with 2k elements and minimal
distance m. Let

` := k − (g + c) · n− 3 log(1/κ)
5 Since we do not have to decode C, this could be a random linear code.



and n be big enough such that ` > 0. Let H be the parity-check matrix of C
and g : R × {0, 1}n → {0, 1}` be a 2-universal hash function. In the following
protocol, the sender is the committer.

Protocol ActiveWECtoBC
Commit(b).

– The parties execute ActiveWEC n times. The sender gets x = (x0, . . . , xn−1),
and the receiver gets y = (y0, . . . , yn−1).

– The committer chooses r ∈ R uniformly at random and sends it to the
receiver.

– The committer sends s := (H(x), b⊕ g(r, x)) to the receiver.

Open.

– The committer sends (b, x) to the receiver.
– Let n∆ be the number of yi equal to ∆. The receiver checks that n∆/n ∈

[d0 − c, d1 + c] and that the number i where yi 6= xi and yi 6= ∆ is smaller
than (n − n∆)(ε + c). He also checks that s = (H(x), b ⊕ g(r, x)). If this is
the case, he accepts, and rejects otherwise.

In the protocol, the committer has to send the receiver the parity-check of
a code, because then the committer cannot guess with probability more than ε
more than one value x that passes the test of the receiver in the open phase.
The committer extracts a string of size ` from x, where ` is chosen small enough
such that the receiver has almost no information about it.

Theorem 7. Protocol ActiveWECtoBC implements a commitment with an error
of 4κ, out of n instances of (d0, d1, p, g, ε)-ActiveWEC.

The correctness of the protocol follows from the Chernoff/Hoeffding bound.
It remains to proof that the protocol is also binding and hiding.

Lemma 5. Protocol ActiveWECtoBC is binding with probability 1− 4κ.

Proof. Let d := n∆/n. Let Bi be defined as in Lemma 3. If Yi 6= ∆, let Y ′i = Yi,
and let Y ′i be chosen randomly from {0, 1} otherwise, such that Pr[Y ′i = 1 | Yi =
∆] = Pr[Yi = 1 | Yi 6= ∆]. (Y ′i is therefore independent of the event Yi = ∆.) Let
us assume that the sender additionally receives the values Bi and Y ′i .

We divide the n instances into 3 sets. Let S0 be the set of values where
Bi = 1 ∧ Yi = ∆, S1 the set of values where Bi = 1 ∧ Yi 6= ∆, and S2 the set of
values where Bi = 0. The sender may choose a subset of S1 of size a′ and a subset
of S2 of size a, where xi 6= y′i. It follows from the Chernoff/Hoeffding bound that

with probability at least κ, the receiver will notice at least a · (1−d)−
√

a
2 · ln

1
κ

of these errors in S2. Therefore, the receiver will only accept with probability at
least κ, if

a′ + a · (1− d)−
√
a

2
· ln 1

κ
≤ (ε+ c)(1− d)n .



The sender would only be able to find two values with the same parity-check if

(dp+ c)n+ 2(a′ + a) ≥ m .

The best strategy for the sender is to choose a′ = 0, and to make a maximal.
It follows from the definition of m that the sender cannot find two such values.
The statement follows. ut

To proof that the protocol is hiding we need some additional lemmas. The
conditional smooth min-entropy of X given Y [20] is defined as

Hε
min(X | Y ) := max

Ω:Pr[Ω]≥1−ε
min
xy

(− logPXΩ|Y=y(x)) .

Lemma 6 ([2, 15]). Hε+ε′

min (X | Y Z) ≥ Hε
min(XY | Z)− log |Y| − log(1/ε′).

Lemma 7 (Leftover hash lemma [1, 13]). Let X be a random variable over
X and let m > 0. Let h : R × X → {0, 1}m be a 2-universal hash function. If
m ≤ Hε

min(X | Y )− 2 log(1/ε′), then for R uniform over R, h(R,X) is (ε+ ε′)-
close to uniform with respect to (R, Y ).

Lemma 8. Protocol ActiveWECtoBC is hiding with probability 1− 3κ.

Proof. The sender holds X = (X1, . . . , Xn), and the receiver V = (V1, . . . Vn), S
and the auxiliary input z. Using Lemma 2, for every pair (Xi, Vi), there exists a
random variable Bi, such that Pr[Bi = 1] = g and Xi is uniform, given (Vi, Bi =
0, Z = z). From the Chernoff/Hoeffding bound follows that with probability
1 − κ, the number of Bi = 0 is at least n(1 − g − c) and therefore Hκ

∞(X |
V,Z = z) ≥ n(1 − g − c). Using Lemma 6, we get H2κ

∞ (X | V, S, Z = z) ≥
n(1− g − c)− (n− k)− log(1/κ). Finally, we can apply Lemma 7, and get that
g(X,R) is 3κ-close to uniform, since ` ≤ H2κ

∞ (X | V, S, Z = z)−2 log(1/κ). This
implies that the protocol is hiding with probability 1− 3κ. ut

Note that for any e > 0, and k ≤ (1− h(m/n))n− e, a random linear (n, k)-
code has a minimal distance of at least m with probability at least 1 − 2−e.
If we choose a random linear code and let n → ∞, then b/n → ε, and hence
m/n → d1p + 2ε. From the property of the random linear code, we get k/n →
1 − h(d1p + 2ε). We need ` > 0, which is equivalent to g < k/n. We get the
following corollary.

Corollary 2. For any d1, d1, ε, p and q where

d1p+ 2ε <
1
2
, and g + h(d1p+ 2ε) < 1 ,

(d0, d1, p, g, ε)-ActiveWEC implies bit commitment.

Our bound is optimal for p = 0 ∧ ε = 0. Otherwise, it does not reach the
simulation bound, since h(x) > x for all 0 < x < 1

2 . It would be interesting
to know whether this bound can be improved. Note that it is also possible to
implement bit commitment in the other direction. We will leave this to the full
version of this work.



5.3 Committed PassiveWEC from ActiveWEC

In the following, we present the protocol to implement a committed version of
PassiveWEC in the malicious model, using ActiveWEC. It uses a similar idea
already used in [7]: The players execute ActiveWEC n times and commit to their
output values. Then, they open all except one that is chosen at random, and
check if the statistics are fine. If they are, then with high probability, also the
statistics of the remaining instance is fine.

The following lemma is essential to the proof, because it can be used to bound
the parameter p for any committed value Y produced by the dishonest receiver,
if he passes the test by the honest sender. It is easy to verify that the lemma is
tight if V is equal to X with probability p and ∆ otherwise.

Lemma 9. Let PXV be a distribution over {0, 1} × V. If PredAdv(X | V ) ≤ g,
then for any function Y = f(V ) ∈ {0, 1, ∆} where Pr[Y = ∆] ∈ [d0, d1] and
Pr[Y 6= X | Y 6= ∆] ≤ ε, we have

δ(PV |X=0,Y=∆, PV |X=1,Y=∆) ≤ g − (1− 2ε)(1− d1)
d1

.

Proof. Let B be the random variable defined by Lemma 2. We have Pr[B =
1] = g and PV |X=0,B=0 = PV |X=1,B=0. Given B = 0, V does not have any
information about X. Hence, for any Y = f(V ), we have

Pr[Y 6= X | Y 6= ∆] ≥ 1
2
· Pr[Y 6= ∆ ∧B = 0]

Pr[Y 6= ∆]
.

Therefore, it must hold that 2εPr[Y 6= ∆] ≥ Pr[Y 6= ∆ ∧B = 0]. We get

Pr[B = 1 | Y = ∆] =
g − Pr[Y 6= ∆] + Pr[Y 6= ∆ ∧B = 0]

Pr[Y = ∆]

≤ g − (1− 2ε)(1− Pr[Y = ∆])
Pr[Y = ∆]

≤ g − (1− 2ε)(1− d1)
d1

.

The statement follows now by applying Lemma 1. ut

In addition to ActiveWEC, our protocol needs bit commitments and coin-
tosses. Coin-toss can easily be implemented using bit commitments.

Again, c is the error-tolerance, and κ is the error in the protocol. We choose
c := n−1/3 and κ := exp(−2(1 − d1 − c)nc2). Furthermore, let n be big enough
such that c ≥ 1/((1− d1 − c)n).

Protocol ActiveToPassiveWEC

1. The sender and the receiver execute ActiveWEC n times. The sender gets
(x0, . . . , xn−1), and the receiver (y0, . . . , yn−1).



2. Both players commit to their values.
3. Using coin-toss, they randomly select one instance s of the n instances.
4. They open all commitments, except for instance s. If any of the players does

not accept one opening of a commitment, they abort.
5. Let n∆ be the number of yi that is equal to ∆. They check if n∆ is in the

interval [(d0 − c) · n− 1, (d1 + c) · n], and the number of yi that is not equal
to ∆ nor xi is smaller than (ε+ c) · (n− n∆). If not, they abort.

6. The sender outputs x := xs, the receiver y := ys.

Theorem 8. Protocol ActiveToPassiveWEC implements a committed version of(
d0 − 2c, d1 + 2c, p,

g − (1− 2ε)(1− d1)
d1

+
6
d2
1

c, ε+ 2c
)

-PassiveWEC

with an error of at most 3κ in the malicious model. It uses coin-toss, bit com-
mitment and n independent instances of (d0, d1, p, g, ε)-ActiveWEC.

Theorem 8 can be shown using the Chernoff/Hoeffding bound and Lemma 9.
Note that c is only polynomially small and cannot be made negligible. Here we
see an advantage of our definition compared to the PassiveUNC in [8, 7]: We do
not have to introduce the additional error parameter p(k) as it has to be done for
the committed version of the PassiveUNC, nor do we have to add an additional
amplification step to the reduction to make this additional error negligible. The
following corollary follows from Corollary 1 and Theorem 8.

Corollary 3. Let d0 ≤ d1, p, g and ε be constants, and let w := 1/(d1(1−d0)+
d0(1− d1)) and q := g−(1−2ε)(1−d1)

d1
. If at least one of the conditions

p+ q + w(d1 − d0) + 2ε < 0.24 , 11q + 22ε < d0(1− d1)w(1− p)2 ,

44p+ 22w(d1 − d0) + 44ε < 1− q , 98p+ 49q + 49w(d1 − d0) < (1− 2ε)2

holds, then there exists a protocol that uses (d0, d1, p, g, ε)-ActiveWEC and bit
commitments and efficiently implements OT secure in the malicious model.

To achieve any two party computation from a (d0, d1, p, g, ε)-ActiveWEC, the
conditions of Corollary 3 and Corollary 2 must be satisfied simultaneously.

6 Conclusions and Open Problems

We gave new, weaker security definitions for the erasure channel and the binary
symmetric channel, and showed that they imply oblivious transfer. The advan-
tage of our new definitions is that they allow the use of channels from which
the statistics are not known with arbitrary precision, which make it possible to
use channels where the parameters come from experimental evidence. Note that
together with the computational WOT amplification from [22], our results can
also be used in a computational setting.



It seems to be difficult to close the gap between the possibility and the
impossibility bounds for OT. But maybe it is possible to get a tight bound
for bit commitment. Still missing is a definition of the weak binary symmetric
channel in the malicious model. Furthermore, it would be nice to have a bit
commitment protocol that works for a weak form of the Gaussian channels.
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2. C. Cachin. Smooth entropy and rényi entropy. In Advances in Cryptology —
EUROCRYPT ’97, volume 1233 of LNCS, pages 193–208. Springer-Verlag, 1997.
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