
Realistic Failures in Secure Multi-Party Computation?

Vassilis Zikas1, Sarah Hauser2, and Ueli Maurer1

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
1 {vzikas,maurer}@inf.ethz.ch,

2 shauser@student.ethz.ch

Abstract. In secure multi-party computation, the different ways in which the
adversary can control the corrupted players are described by different corrup-
tion types. The three most common corruption types are active corruption (the
adversary has full control over the corrupted player), passive corruption (the ad-
versary sees what the corrupted player sees) and fail-corruption (the adversary
can force the corrupted player to crash irrevocably). Because fail-corruption is
inadequate for modeling recoverable failures, the so-called omission corruption
was proposed and studied mainly in the context of Byzantine Agreement (BA). It
allows the adversary to selectively block messages sent from and to the corrupted
player, but without actually seeing the message.
In this paper we propose a modular study of omission failures in MPC, by intro-
ducing the notions of send-omission (the adversary can selectively block outgo-
ing messages) and receive-omission (the adversary can selectively block incom-
ing messages) corruption. We provide security definitions for protocols tolerat-
ing a threshold adversary who can actively, receive-omission, and send-omission
corrupt up to ta, tρ, and tσ players, respectively. We show that the condition
3ta+ tρ+ tσ < n is necessary and sufficient for perfectly secure MPC tolerating
such an adversary. Along the way we provide perfectly secure protocols for BA
under the same bound. As an implication of our results, we show that an adver-
sary who actively corrupts up to ta players and omission corrupts (according to
the already existing notion) up to tω players can be tolerated for perfectly secure
MPC if 3ta+2tω < n. This significantly improves a result by Koo in TCC 2006.

1 Introduction

In secure multi-party computation (MPC) n players p1, . . . , pn wish to securely com-
pute a function of their inputs. The computation should be secure, in the sense that
the output is correct and the privacy of the players’ inputs is not violated. The security
should be guaranteed even when some of the players misbehave. The misbehavior of
players is modeled by assuming a central adversary who corrupts players. The most
typical corruption types are active corruption (the adversary has full control over the
corrupted player), passive corruption (the adversary sees whatever the player sees), and
fail-corruption (the adversary can make the player crash irrevocably).

? This research was partially supported by the Swiss National Science Foundation
(SNF), project no. 200020-113700/1. The full version of this paper is available at
http://www.crypto.ethz.ch/pubs/ZiHaMa09

The study of MPC was initiated by Yao [Yao82]. The first general solutions were
given by Goldreich, Micali, and Wigderson [GMW87]; these protocols are secure un-
der some intractability assumptions. Later solutions [BGW88,CCD88,RB89,Bea91b]
provide information-theoretic security.

One of the most studied sub-problems of secure multi-party computation is Byzan-
tine Agreement (BA). BA comes in two flavors, namely consensus and broadcast. In-
formally, consensus guarantees that n players, each holding an input, can agree on a
common output without destroying pre-agreement. On the other hand, broadcast al-
lows a dedicated player to consistently send his input to every player. BA serves as an
important tool for the design of multi-party protocols.

Failures in MPC. For motivating the different corruption-types one typically thinks of
MPC as each player running his protocol on his (local) computer, where the computers
can communicate over some network (e.g., the Internet). Passive and active corruption
correspond, for example, to (the adversary) planting a spyware or a virus, respectively,
to the player’s computer. Fail-corruption, however, can be criticized as being not so
realistic due to the requirement that the crash is irrevocable. Indeed, in real-world sce-
narios computer-crashes are not irrevocable and are usually fixed soon after they are
discovered, e.g., by replacing the computer.

Corruption types modeling more realistic failures than irrevocable computer-
crashes have been studied in the literature. An example is the so-called omission cor-
ruption which allows the adversary to selectively block messages sent or received by the
corrupted player, but without seeing the actual message. Omission corruption models
failures that are apparent in many real-world applications, e.g., a computer which might
lose messages while being restarted due to a hang of the operating system. It also mod-
els failures or temporary unavailability of the communication network, e.g., a router’s
buffer overflow, or instability of the links due to a thunderstorm. Partial asynchronity of
the network, i.e., the adversary causing unexpected delays on messages sent from and
to certain players, can also be modeled.

Omission corruption has been primarily studied in the context of fault-tolerant con-
sensus [Had85,PT86,Ray02,PR03] and, recently, also in MPC [Koo06].

Summary of known results. In the seminal papers solving the general MPC problem,
the adversary is specified by a single corruption type (active or passive) and a thresh-
old t on the tolerated number of corrupted players. Goldreich, Micali, and Wigderson
[GMW87] proved that, based on cryptographic intractability assumptions, general se-
cure MPC is possible if and only if t < n/2 players are actively corrupted, or, al-
ternatively, if and only if t < n players are passively corrupted. In the information-
theoretic model, Ben-Or, Goldwasser, and Wigderson [BGW88] and independently
Chaum, Crépeau, and Damgård [CCD88] proved that unconditional security is pos-
sible if and only if t < n/3 for active corruption, and for passive corruption if and only
if t < n/2. These results were unified and extended by fail-corruption in [FHM98] by
proving that perfectly secure MPC is achievable if and only if 3ta + 2tp + tf < n,
where ta, tp, and tf denote the upper bounds on the number of actively, passively and
fail corrupted players, respectively.

A similar development as in MPC can be observed in the area of Byzantine agree-
ment protocols [LSP82,DS82,LF82,MP91,GP92,FM98].

The first to consider omission corruption were Perry and Tueg [PT86]. They con-
sidered a threshold adversary who can omission corrupt up to t players and showed that
BA tolerating this adversary is possible if and only if t < n. However their consistency-
guarantee is limited to the outputs of uncorrupted players, i.e., omission corrupted play-
ers are allowed to output arbitrary values. Raynal and Parvedy [Ray02,PR03] proved
that if we require omission corrupted players to output either the correct value (i.e.,
consistent with the output of uncorrupted players) or no value, then consensus is possi-
ble if and only if 2t < n.

In the context of general MPC, omission corruption was first studied, in combination
with active corruption, by Koo [Koo06]. He considered a threshold adversary who can
actively corrupt up to ta players and, simultaneously, omission corrupt up to tω players,1

and proved that the conditions 3ta + 2tω < n and 3ta + 4tω < n are sufficient for
perfectly secure consensus and general MPC, respectively. However, as we show in
Section 9, the condition 3ta + 4tω < n is far from optimal.

Our Contributions. We propose a modular study of realistic failures in multi-party
computation, by introducing the notions of send-omission and receive-omission corrup-
tion. As the names suggest, send-omission (resp. receive-omission) corruption allows
the adversary to selectively block only outgoing (resp. only incoming) messages of the
corrupted player, but without seeing the messages (this is consistent with the existent
omission-corruption literature). Note that a player who is omission corrupted according
to the definitions of [PT86,Ray02,PR03,Koo06] can be thought of as a player who is
both send- and receive-omission corrupted at the same time; for clarity we refer to this
type of corruption as full-omission corruption.

We provide security definitions for the model where the adversary can actively,
send-omission, and receive-omission corrupt players, simultaneously. We show that in
this model, an adversary who can actively, receive-omission, and send-omission corrupt
up to ta, tρ, and tσ players, respectively, can be tolerated for perfectly secure MPC if
and only if 3ta + tρ + tσ < n. Along the way, we also construct BA primitives for
the same bound. Our bound implies that the condition 3ta + 2tω < n is sufficient for
perfectly secure MPC.

The novelty of our approach is that, unlike past results on fault-tolerant MPC, we
primarily deal with the omissions on the network-level instead of internally in the proto-
col. In particular, using the paradigm of layered communication (e.g., the OSI-model),
first we engineer the actual network to build a new network-layer with better security
guarantees, and then we design protocols in which the players communicate over this
higher network-layer. This approach leads to simpler and more intuitive protocols. For
the construction of our main protocol we also use ideas from the player-elimination
technique [HMP00].

Outline of this paper. In Section 2 we define the model and introduce some notation.
In Section 3 we discuss the security definitions and prove an impossibility result. In
Sections 4 and 5 we show how to get an authenticated network with strong security
guarantees and then build BA protocols over it. In Section 6 we provide tools that will

1 In [Koo06], omission corrupted players are called constrained and actively corrupted are called
corrupted.

be used as building blocks for the construction of the SFE and MPC protocols;2 these
protocols are described in Sections 7 and 8, respectively. In Section 9 we look at the
case of full-omission corruption.

2 The Model

We consider the standard secure-channels model introduced in [BGW88,CCD88]: The
players in P = {p1, . . . , pn} are connected by a complete network of bilateral secure
channels. The communication is synchronous, i.e., all players have synchronized clocks
and there is a known upper bound on the delay of the network. The computation is
described as an arithmetic circuit over some finite field F, consisting of addition (or
linear) and multiplication gates.

We look at the case of perfect security, i.e., information-theoretic without error prob-
ability. A protocol is defined to be secure if it realizes a trusted functionality (comput-
ing the function f), where the term “realize” is defined via the simulation paradigm
[Can00,MR91,Bea91a,DM00,PW01] which, in a nutshell, guarantees that whatever the
adversary can achieve in the real world where the protocol is executed, he could also
achieve in the ideal setting with the trusted functionality.3 This security notion implies
in particular that the adversary cannot obtain any information about the players’ in-
puts beyond what is implied by the outputs (privacy), and that he cannot influence the
outputs other than by choosing the inputs of the corrupted players (correctness).

We consider a rushing4 threshold adversary who can actively, receive-omission, and
send-omission corrupt up to ta, tρ, and tσ players, respectively. The adversary chooses
the players to corrupt non-adaptively, i.e., before the beginning of the protocol.5

To simplify the description we adopt the following convention: whenever a player
does not receive a message (when expecting one), or receives a message outside of the
expected range, then the special symbol ⊥6∈ F is taken for this message.

Every pi ∈ P can be in one of the following two internal states: alive or zombie. At
the beginning of the computation every player is alive, which means that he correctly
executes all the protocol instructions (unless he is actively corrupted). If pi realizes that
he is receive-omission corrupted, e.g., by receiving fewer messages than what he should
in some round, then pi sets his internal state to zombie (we say that pi becomes a zom-
bie). Once the state is set to zombie it never switches back. A zombie behaves in the

2 SFE stands for Secure Function Evaluation, i.e., multi-party computation of non-reactive func-
tionalities.

3 While our protocols can be proved secure in any of these simulation-based frameworks, with
perfect indistinguishability of the real and the ideal world, we will not give full-fledged
simulation-based security proofs in this paper; this is consistent with the previous literature
on secure SFE and MPC.

4 A rushing adversary is an adversary who, in each round of the protocol, first sees all the
messages sent to actively corrupted players in this round and then decides how the corrupted
players should behave in this round.

5 In contrast, an adaptive adversary can corrupt more and more players during the protocol
execution, subject only to the constraint that the number of corrupted players of each type is
upper-bounded by the corresponding threshold. We do not consider the adaptive setting in this
paper, but our results could be generalized to it.

protocols as a player who has crashed, i.e., sends and receives no messages and has no
outputs. However, there are two conceptual differences between zombies and crashed
players: (1) Being a zombie is a self-imposed state and corresponds to a correct behav-
ior, i.e., players become zombies when the protocol (and not the adversary) instructs
them to; (2) zombie-players are “aware of the actual time”, as they have clocks which
are synchronized with the clocks of the alive players; this will be useful in the context
of reactive computation (Section 8) where time plays an important role.

The sets A, S, R, SR, and H. To simplify the description we denote the sets of ac-
tively, send-omission only, receive-omission only, and full-omission6 (but not actively)
corrupted players by A, S, R, and SR, respectively, and the set of uncorrupted players
by H (H stands for “honest”). Note that these sets are a partition of the player set P ,
they are not known to the players and appear only in the security analysis.

3 Security Definition

Intuitively, the security definition for our model should not allow the adversary to do
more with send- and receive-omission corrupted players than to decide which of them
give input to and receive output from the computation, respectively. The strongest secu-
rity one can hope for is to require that the adversary’s decision is taken independently
of the inputs of non actively corrupted players and before seeing the outputs of ac-
tively corrupted players. More precisely one would be interested in securely realizing
the functionality STRONG SFE (see below).7

STRONG SFE - IDEAL MODEL. Each pi ∈ P has input xi. The function to be
computed is f(·). The adversary decides which of the send-omission (resp. receive-
omission) corrupted players give input to (resp. receive output from) the trusted party
before seeing the outputs of actively corrupted players.

1. Every pi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeing pi’s input) whether pi sends
TP his input or a default value from F (e.g., 0). TP denotes the received values by
x′1, . . . , x

′
n.

2. TP computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) (if f is randomized then TP internally

generates the necessary random coins). TP asks the adversary which of the players
pi ∈ R ∪ SR should receive their output yi (without revealing any information
about yi).

3. For each pi ∈ H∪S ∪A, TP sends yi to pi. For each pi ∈ R∪SR, TP sends yi to
pi if the adversary allowed that pi receives output in the previous step, otherwise
TP sends nothing to pi.

6 Recall that a full-omission corrupted player is one who is both send- and receive-omission
corrupted at the same time.

7 We assume that the reader is familiar with the ideal-world/real-world paradigm for defining
security of multi-party protocols [Bea91a,MR91,Can00,DM00,BPW03].

We say that a protocol Π strongly (ta, tρ, tσ)-securely evaluates the function f if it
securely realizes the functionality STRONG SFE in the presence of an adversary who
can actively, receive-omission, and send-omission corrupt up to ta, tρ, and tσ players,
respectively.

Unfortunately, as stated in the following lemma, when the adversary is rushing then
for any non-trivial choice for ta and tρ there exist functions which cannot be perfectly
strongly (ta, tρ, tσ)-securely evaluated. In fact our impossibility result is inherent in
any setting where we have a threshold adversary with active (or even just passive) and
receive-omission corruption, simultaneously. In particular it also applies to the (non-
adaptive) case of active and full-omission corruption [Koo06].8 The idea is the follow-
ing: the adversary might, with non-zero probability, corrupt the player pi who is the
first (or among the first) to get the output, e.g., by randomly choosing whom to corrupt.
In this case, as she is rushing, she can decide, depending on the output, whether the
receive-omission corrupted players get full information on the output or not. However,
the simulator has to take this decision without seeing the outputs of corrupted players,
and hence he is not able to perfectly simulate this behavior. Due to space restrictions
the proof of the lemma is deleted from this extended abstract.

Lemma 1. If ta > 0 and tρ > 0 and the adversary is rushing, then there exist functions
which cannot be perfectly strongly (ta, tρ, ·)-securely evaluated. The statement holds
even when we have passive instead of active corruption.

We relax the definition of the functionality to allow the adversary to decide which
receive-omission corrupted players receive output, even after having seen the outputs
of actively corrupted players (and possibly depending on those outputs). Our relaxation
is minimal as Lemma 1 suggests. We call the resulting functionality SFE (see below).

SFE – IDEAL MODEL. Each pi ∈ P has input xi. The function to be computed is f(·).
The adversary decides which of the receive-omission corrupted players receive output
from the trusted party after receiving the outputs of actively corrupted players.

1. Every pi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeing pi’s input) whether pi sends
TP his input or a default value from F (e.g., 0). TP denotes the received values by
x′1, . . . , x

′
n.

2. TP computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) (if f is randomized then TP internally

generates the necessary random coins). For each pi ∈ H ∪ S ∪ A, TP sends yi
to pi.

3. For pi ∈ R∪SR, TP asks the adversary if pi should receive his output yi (without
revealing any information about yi), if the answer is yes then TP sends yi to pi,
otherwise it sends nothing to pi.

8 In [Koo06] the assumed adversary is also rushing and the (non-adaptive) ideal-world function-
ality requires the adversary to decide which omission corrupted players receive output before
seeing the outputs of actively corrupted players.

Definition 1. We say that a protocol Π (ta, tρ, tσ)-securely evaluates the function f
if Π securely realizes the functionality SFE in the presence of an adversary who can
actively, receive-omission, and send-omission corrupt up to ta, tρ, and tσ players, re-
spectively.

4 Engineering the Network – Authenticated Channels

A source of difficulties in designing protocols tolerating both active cheaters and omis-
sions is that a player pj who receives ⊥ when expecting a message from a player pi
cannot decide whether pi is send-omission or actively corrupted, or himself (i.e., pj)
is receive-omission corrupted. In [Koo06] the following straight-forward approach was
taken in order to overcome this difficulty in the context of pi sharing a secret: Every
player complains when he received no share from the dealer pi. If more players com-
plain than the number of potentially corrupted players, pi is disqualified. Otherwise,
the players who did not complain pairwise check the consistency of their shares (as
in [BGW88,FHM98]), where inconsistencies are publicly reported and resolved by the
dealer. This approach, however, leads to thresholds on the number of actively and (full)
omission corrupted players which are far from optimal, as discussed in the introduction.

Our approach is different. We deal with this difficulty outside the protocol, on
the network level. In particular, using the paradigm of layered communication (e.g.,
the OSI-model), first we engineer the actual network to get a new network-layer with
stronger guarantees, and then we invoke the actual protocol over this layer.

The protocol which is used to build the new network-layer is called FixReceive. It
works on the channels of the actual network (the lowest layer), i.e., the secure channels
with omissions, and builds on top of them a network of authenticated channels (the
higher layer), where for any receive-omission corrupted pi the adversary has to choose
either to allow pi to receive all messages that are sent to him or to let pi know that he is
receive-omission corrupted. More precisely, FixReceive guarantees that when some pi
sends a message x to a receive-omission corrupted pj then either pj receives it, as if he
were uncorrupted, or pj finds out that he is receive-omission corrupted (and becomes a
zombie). If pj becomes a zombie in FixReceive then he notifies every pk ∈ P about this
by sending a bilateral message; this information will be used by the players in future
invocations of FixReceive. The protocol FixReceive is described in the following. For
the proof of the lemma we refer to the full version of this paper.

Protocol FixReceive (P, ta, tρ, tσ, pi, pj, x)
1. pi sends his input x to every pk ∈ P .
2. Each pk ∈ P forwards x to pj (if pk received no value, he sends a special symbol

“n/v” to pj); pj denotes the received value as xk (if pk has become a zombie in
the past then pj sets xk = “n/v”).

3. If |{pk : xk ∈ F∪{“n/v”}}| < n− ta− tσ then pj becomes zombie (and notifies
all players). Otherwise, if there exists x′ 6∈ {⊥, “n/v”} such that |{pk : xk =
x′}| > ta then pj outputs x′, otherwise pj outputs ⊥.

Lemma 2. If 3ta + tρ + tσ < |P|, protocol FixReceive has the following properties.
If pj is alive at the end of the protocol then he outputs a value x′, where x′ ∈ {x,⊥}
unless pi ∈ A, and x′ = x when pi ∈ H ∪ R. Moreover, pj might become a zombie
only when pj ∈ R ∪ SR and when he becomes a zombie every player notices.

5 Byzantine Agreement

In this section we build primitives solving the Byzantine Agreement (BA) problem,
which we will later use as tools for constructing the main SFE protocol. BA comes in
two flavors, namely consensus and broadcast. Informally, consensus guarantees that n
players, each holding an input, can decide on a common output y, where y = x if all
non-actively corrupted players had (the same) input x. On the other hand, broadcast
allows a dedicated player ps holding input xs, to consistently send xs to every player.

In our BA protocols, the players communicate over the strengthened authenticated
network which is constructed using FixReceive. More precisely, whenever pi ∈ P is
instructed to bilaterally send a message to pj ∈ P , the protocol FixReceive is invoked.
Because alive players might become zombies only within FixReceive, all the designed
protocols have the following property: Only receive-omission corrupted players might
become zombies. The proofs of the lemmas can be found in the full version of the paper.

5.1 Consensus

For constructing a consensus protocol, we use the standard approach [BGP89,FM00]:
We construct weaker consensus primitives, and then compose them in a clever way to
construct the desired consensus primitive. We construct three such weaker primitives
called Weak Consensus, Graded Consensus, and King Consensus.

Weak Consensus. Informally, weak consensus guarantees that there are no inconsis-
tencies among the outputs of the non-actively corrupted players, but some of them (even
alive) might have no output (we say that they output⊥). However, we get the guarantee
that if the players pre-agreed on some value x, i.e., all non-actively corrupted players
had input (the same) x, then we get post-agreement on x, i.e., all non-actively cor-
rupted players output x.9 In the following we describe protocol WeakConsensus which
achieves weak consensus in our model. The input of each pi ∈ P is denoted as xi

Protocol WeakConsensus (P, ta, tρ, tσ,
→
x = (x1, . . . , xn))

1. Each pi ∈ P sends xi to every pj ∈ P , by invoking FixReceive; pj denotes the
received value by x(i)

j .
2. Each pj ∈ P sets

yj :=


x , if (|{pi : x(i)

j = x}| ≥ n− ta − tσ − tρ)
∧

(|{pi : x(i)
j 6∈ {x,⊥}}| ≤ ta)

⊥ , otherwise

9 Recall that the zombies send no values in any protocol and receive no output.

Lemma 3. If 3ta + tρ + tσ < |P|, the protocol WeakConsensus has the following
properties. Weak Consistency: Every (alive) pj ∈ P \ A outputs yj ∈ {x′,⊥} for
some x′ ∈ F. Correctness: If every pi ∈ P \ A who is alive at the beginning of
WeakConsensus has input xi = x, then x′ = x.

Graded Consensus. In Graded Consensus each pi ∈ P outputs a pair (yi, gi), where
yi is pi’s actual output-value and gi ∈ {0, 1} is a bit, called pi’s grade. The grade gi
has the meaning of the confidence level of pi on the fact that all non-actively corrupted
players also output yi. In particular, if gi = 1 for some non-actively corrupted pi then
yj = yi for every (alive) non-actively corrupted pj ∈ P . Moreover, when the non-
actively corrupted players pre-agreed on a value x, then they all output x with grade 1.

In the following we describe the protocol GradedConsensus. The idea is to have
the players first invoke the protocol WeakConsensus and then exchange their outputs of
WeakConsensus to decide on the actual output and the corresponding grade.

Protocol GradedConsensus
(
P, ta, tρ, tσ,

→
x = (x1, . . . , xn)

)
1. Invoke WeakConsensus (P, ta, tρ, tσ,

→
x); pi denotes his output by x′i.

2. Each pi ∈ P sends x′i to every pj ∈ P by invocation of FixReceive; pj denotes the
received value by x(i)

j .

3. Each pj ∈ P sets yj :=
{
x , if there exists x ∈ F s.t. |{pi : x(i)

j = x}| > ta
0 , otherwise

and sets gj :=


1 , if (|{pi : x(i)

j ∈ {yj ,⊥}}| ≥ n− ta)
∧

(|{pi : x(i)
j = yj}| ≥ n− ta − tρ − tσ)

0 , otherwise

Lemma 4. If 3ta+tρ+tσ < |P|, protocol GradedConsensus has the following proper-
ties. Graded Consistency: If some pj ∈ P \A outputs (yj , gj) = (y, 1) for some y ∈ F,
then every (alive) pk ∈ P \ A outputs (yk, gk) = (y, gk), where gk ∈ {0, 1}. Graded
Correctness: If every pi ∈ P \A who is alive at the beginning of GradedConsensus has
input xi = x, then every (alive) pj ∈ P \ A outputs (yj , gj) = (x, 1).

King Consensus. In King Consensus there is a distinguished player pk ∈ P , called the
king. King Consensus guarantees that if the king is uncorrupted, then all non-actively
corrupted players output the same value. Additionally, independent of the king’s cor-
ruption, if the non-actively corrupted players pre-agreed on a value x, then they all
output x. The protocol KingConsensus is described in the following.

Protocol KingConsensus (P, ta, tρ, tσ,
→
x = (x1, . . . , xn), pk)

1. Invoke GradedConsensus(P, ta, tρ, tσ,
→
x); pi denotes his output by (x′i, gi).

2. The king pk sends x′k to every pj ∈ P by invocation of FixReceive.
3. Each pj ∈ P sets

yj ; =
{
x′j , if (gj = 1) or (pk sent x′k =⊥)
x′k , otherwise

Lemma 5. If 3ta + tρ + tσ < |P|, the protocol KingConsensus has the following
properties. King Consistency: If the king pk is uncorrupted, then every pj ∈ P \ A
outputs yj = y. Correctness: If every pi ∈ P \ A who is alive at the beginning of
KingConsensus has input xi = x then they all output y = x.

Consensus. Building a consensus protocol from king consensus is straight-forward:
Invoke KingConsensus with ta + tρ + tσ + 1 different players as king, where the input
of the i-th iteration is the output of the (i−1)-th iteration. As there are at most ta+ tρ+
tσ corrupted players, at least one of the kings will be uncorrupted, hence consistency
on the output value will be achieved in the corresponding iteration; the correctness of
KingConsensus guarantees that this value will not be changed in any future iteration.
Note that when we have pre-agreement on some value then consistency on this value is
achieved from the first iteration independent of the king.

Lemma 6. If 3ta+ tρ+ tσ < |P|, the protocol Consensus has the following properties.
Consistency: All (alive) pi ∈ P \ A output (the same) y ∈ F. Correctness: If every
pi ∈ P \ A who is alive at the beginning of Consensus has input xi = x then y = x.

5.2 Broadcast

The standard approach for achieving broadcast when consensus is given, is to have the
sender ps send his input to every player, and then run consensus on the received values.
Unfortunately, this generic approach does not work in our setting, as it provides no guar-
antees when a send-omission corrupted ps fails to send his input to some uncorrupted
players.

To guarantee that a non actively corrupted ps never broadcasts a wrong value we ex-
tend the above generic protocol by adding the following steps: ps sends a confirmation
bit to every player, i.e., a bit b where b = 1 if ps agrees with the output of the consen-
sus and b = 0 otherwise; subsequently, the players invoke consensus on the received
bits to establish a consistent view on the confirmation-bit and they accept the output of
the generic broadcast protocol only if this bit equals 1, otherwise they output ⊥. This
results in the protocol Broadcast (see below).

Protocol Broadcast (P, ta, tρ, tσ, ps, xs)
1. ps sends x to every pj ∈ P (by FixReceive), who denotes the received value by xj

(xj = 0 if pj received ⊥).
2. The players invoke Consensus on the received values. Let yj denote pj’s output.
3. Each pj sends yj to ps (by FixReceive).
4. ps sends a confirmation bit b to every pi ∈ P (by FixReceive), where b = 1 if
ps received yj = x from more that ta players in the previous step and b = 0
otherwise; pi denotes the received bit by bi (bi = 0 if pi received ⊥).

5. Invoke Consensus (P, ta, tσ, tρ, (b1, . . . , bn)). For each pi ∈ P , if pi’s output in
Consensus is 1 then pi outputs yi, otherwise he outputs ⊥.

Lemma 7. If 3ta + tρ + tσ < |P|, protocol Broadcast has the following properties.
Consistency: All (alive) pj ∈ P \ A output the (same) value yj = y. Correctness:
y ∈ {x,⊥} when ps ∈ P \ A, where y = x when ps ∈ H ∪ R and he is alive at the
end of the protocol, and y =⊥ when ps has been a zombie from the beginning of the
protocol.

6 Tools

In this section we describe sub-protocols that will be used as building-blocks in the
construction of the main SFE and MPC protocols. Some of the sub-protocols are non-
robust, and might abort with a non-empty set B ⊆ P . When they abort, then all (alive)
players in P notice it and they also learn the set B. As in the case of BA, some alive
players might become zombies during the invocation of the sub-protocols, but only
when they are receive-omission corrupted.

6.1 Secret Sharing

A secret sharing scheme allows a player, called the dealer, to distribute his input among
the players in some player set P , so that only qualified sets of players can reconstruct
it. As usual in the threshold adversary literature, we use Shamir-sharings for sharing
values: With each pi ∈ P a unique publicly known αi ∈ F is associated. A secret s
is t-shared among the players in P when there exists a degree-t polynomial q(·) with
q(0) = s, and every non actively corrupted pi ∈ P holds si ∈ {q(αi),⊥}, where
si = q(αi) unless pi is receive-omission corrupted. The value si is pi’s share of s. We
refer to the vector of shares, denoted by 〈s〉 = (s1, . . . , sn), as a t-sharing of s.

We say that 〈s〉 is a t-consistent sharing of s among the players in P if there exists
a degree-t polynomial q(·) such that each non actively corrupted pi ∈ P holds share
si ∈ {q(αi),⊥}. We say that 〈s〉 is a t-valid sharing of s among the players in P , if 〈s〉
is t-consistent and for some degree-t polynomial q(·) with q(0) = s, each uncorrupted
pi ∈ P holds share si = q(αi).

Protocol Share allows a dealer p to t-share his input among the players in any set P .
Essentially it is a passive Shamir-sharing protocol: p picks a degree-t uniformly ran-
dom polynomial q(·) and sends q(αi) to pi. The following lemma states the achieved
security.

Lemma 8. Protocol Share(P, t, p, s) has the following properties. Correctness: When
p ∈ P \ A then Share outputs a t-consistent sharing 〈s〉 of s among the players in P ,
where 〈s〉 is even t-valid unless p ∈ A ∪ S ∪ SR or unless p is a zombie. Privacy: The
players in any set P ′ ⊆ P with |P ′| ≤ t get no (joint) information on s.

In the following we describe the protocols PublicReconstruct and Reconstruct used
to reconstruct a shared value publicly and towards some output player p, respectively.
The protocols take as input a sharing of a value among the players in some P ′ (P ′ might
be different than P). In protocol Reconstruct (resp. PublicReconstruct) every pi ∈ P ′
sends his share to p (resp. broadcasts his share to P) and then p (resp. every pj ∈ P)
reconstructs the shared value using standard error correction. Due to their similarity we

only describe protocol Reconstruct and state the security of both protocols in a joint
lemma.

Protocol Reconstruct (P ′, t, t′, p, 〈s〉)
1. Each pi ∈ P ′ sends his share si to p.
2. p finds, using standard polynomial interpolation techniques, a degree t polynomial
f(·) with the property that more than t + t′ of the received shares lie on f(·) and
outputs s′ = f(0). If no such polynomial exists then pj outputs ⊥.

Lemma 9. Assume that there exists tc such that there are at most tc corrupted players
in P ′, of whom at most t′ are actively corrupted and the condition t+ t′ + tc < |P ′|
holds. Then the protocol Reconstruct (resp. PublicReconstruct)10 reconstructs a value
s′ towards player p (resp. towards every pj ∈ P), where s′ ∈ {s,⊥} if 〈s〉 is a t-
consistent sharing of s among the players in P ′, and s′ = s if 〈s〉 is t-valid.

6.2 Engineering the network - Secure Channels

The trick of engineering the network allowed us to reduce the effect of receive-omission
corruption. However, because the channels which we achieve provide no privacy guar-
antees, we cannot use the resulting network directly to build a perfectly secure SFE pro-
tocol. In the following, we show how to engineer the initial network of secure channels
to get a new network-layer (also of secure channels) with stronger security guarantees.

The new network layer will allow any pj ∈ P who receives ⊥ instead of a message
x from pi ∈ P to decide whether he (i.e., pj) is receive-omission corrupted or the sender
pi is corrupted. Additionally, when the reception fails because of pi, then every (alive)
player will recognize that pi is (actively or send-omission) corrupted. Given Broadcast
and a uniformly random key ki,j ∈ F known exclusively to pi and pj , this can be
achieved as follows: For pi to privately send s to pj , pi uses ki,j as a one time pad to
perfectly blind s, and broadcasts the blinded value s + ki,j . Because only pi and pj
know ki,j , only pj can unblind the broadcasted message and any other player gets no
information about it. As syntactic sugar, we denote this protocol as PrivBroadcast.

In the remaining of this section we concentrate on enabling two players pi and
pj to establish a secret key ki,j (to use in PrivBroadcast). We design two proto-
cols, called WeakExchangeKey and ExchangeKey, which achieve the following:
WeakExchangeKey uses the bilateral secure channels and allows any pair pi, pj ∈ P
to exchange a key as long as one of them is at most receive-omission corrupted (i.e.,
is in H ∪R) and the other one is at most send-omission corrupted (i.e., is in H ∪ S).
Protocol ExchangeKey uses protocols WeakExchangeKey and Broadcast and allows
pi and pj to exchange a key, even when each of them is either at most receive-omission
or at most send-omission corrupted. Both protocols work in a publicly detectable way,
i.e., all (alive) players notice whether or not the key-exchange worked. In the following
we describe the protocols WeakExchangeKey and ExchangeKey in more detail.

10 For PublicReconstruct we need to assume a broadcast primitive, which when 3ta+ tσ+ tρ <
|P| we can instantiate by Broadcast.

Protocol WeakExchangeKey is based on the observation that when pi is at most
send-omission and pj is at most receive-omission corrupted, then pj can always se-
curely send messages to pi through the bilateral secure channel. The protocol works as
follows: pi and pj choose uniformly random values ki ∈ F and kj ∈ F, respectively,
and exchange them over their bilateral channel. Subsequently, each of them publicly
announces, by Broadcast, whether or not he received a value from the other. If any of
them confirms reception of a value then this value is used as the secret key and the
protocol succeeds; otherwise the protocol fails. WeakExchangeKey is non-robust and
might abort with a set B ∈ {{pi}, {pj}}, but only when pi and/or pj broadcast ⊥ (if
they both broadcast ⊥ take the one with the smallest index). The detailed description
of WeakExchangeKey and the proof of the following lemma can be found in the full
version.

Lemma 10. If 3ta + tρ + tσ < |P|, protocol WeakExchangeKey has the following
properties. Correctness: Either it succeeds in pi and pj exchanging a uniformly random
key k, or it fails, or it aborts with setB ∈ {{pi}, {pj}}. It might abort withB only when
B ⊆ R∪ S ∪ SR ∪A. When it does not abort then the following hold: (1) Every alive
pk ∈ P sees whether the protocol succeded or failed, and (2) it always succeeds when
pi ∈ H ∪ R and pj ∈ H ∪ S or vice versa (i.e., when pi ∈ H ∪ S and pj ∈ H ∪ R).
Privacy: The adversary gets no information on k (unless pi or pj is actively corrupted).

We describe the protocol ExchangeKey (see below) and state its achieved se-
curity in a lemma. The protocol is non-robust and might abort with set B ∈
{{pi}, {pj}, {pi, pj}}. However, from the fact that it aborted the players can deduce
useful information on the corruption of the players in B.

Protocol ExchangeKey (P, ta, pi, pj)
1. For ` ∈ {i, j}: p` invokes WeakExchangeKey with every pr ∈ P . If

WeakExchangeKey aborts withB, then ExchangeKey also aborts withB. Denote
by P `“ok” ⊆ P the set of players who successfully exchanged keys with p`, and by
P“ok” := (P i“ok” ∩ P j“ok”). If |P“ok” | ≤ 2ta then ExchangeKey aborts withB = {pi, pj}.

2. For ` ∈ {i, j}: p` picks a value k` ∈R F uniformly at random and a degree
ta random polynomial f`(·) with f`(0) = k`. For each pr ∈ P“ok” , p` sends, by
invoking PrivBroadcast with the exchanged keys, the share f`(αr) to pr, who
denotes the received value as s(`)

r . If p` broadcast ⊥ then ExchangeKey aborts
with B = {p`} (if both pi and pj broadcast ⊥ take the one with the smallest
index).

3. The players in P“ok” compute a sharing of the sum ki + kj , by each player (lo-
cally) adding his shares, and then publicly reconstruct it by PublicReconstruct. If
PublicReconstruct outputs ⊥ then ExchangeKey aborts with B = {pi, pj}.

Lemma 11. If 3ta + tσ + tρ < |P|, the protocol ExchangeKey has the following prop-
erties. Correctness: Either pi and pj succeed in exchanging a uniformly random key k
(and all players notice) or the protocol aborts with a set B ∈ {{pi}, {pj}, {pi, pj}}. It
might abort with set B only if one of the following two cases holds: (1) |B| = 1 and

B ⊆ R∪S ∪SR∪A and (2) |B| = 2 and B ∩ (SR∪A) 6= ∅. Privacy: The adversary
gets no information on k (unless pi or pj is actively corrupted).

6.3 Protocol SFE(BC)

The last tool is a protocol, called SFE(BC), which perfectly securely evaluates any given
function f without fairness but with unanimous abort [GL02]. In particular, protocol
SFE(BC) either perfectly (ta, tρ, tσ)-securely evaluates the function f , or it aborts with
set B ∈ {{pi}, {pj}, {pi, pj}} for some pi, pj ∈ P . The adversary might force the pro-
tocol to abort even after receiving the outputs of actively corrupted players. However,
when it aborts every player learns useful information about the corruption of the players
in B.

The idea is the following: Let ΠP,t(·) denote a protocol which perfectly t-securely
evaluates any given function, in the presence of an adversary who can (only) actively
corrupt up to t players.11 Such a protocol is known to exist if 3t < n [BGW88]. Also, let
Cf denote the arithmetic circuit which computes a given function f . To securely eval-
uate Cf , protocol SFE(BC) invokes protocol ΠP,t(Cf) over the engineered network of
secure channels. More precisely, each pi ∈ P executes the instructions of ΠP,t(Cf)
with the following modification: whenever pi is instructed to bilaterally send a message
x to some pj ∈ P , protocol ExchangeKey(P, pj , pj) is invoked to have pi and pj ex-
change a uniformly random key, and then the message x is sent using PrivBroadcast
with the established key; whenever pi is instructed to broadcast a message, he invokes
Broadcast. If some invocation of ExchangeKey aborts with B or some pi ∈ P broad-
casts ⊥ (in this case we set B = {pi}) then SFE(BC) aborts with B.

In the following lemma we state the security of SFE(BC). The proof follows directly
from the perfect t-security of protocol ΠP,t(·) and the perfect security of protocols
ExchangeKey and Broadcast. SFE(BC) is parametrized by a single threshold, namely t,
but it assumes as given the primitives Broadcast and ExchangeKey as specified in Lem-
mas 7 and 11, respectively.12

Lemma 12. Given Broadcast and ExchangeKey, assuming that the condition 3t < |P|
holds protocol SFE(BC)(P, t, Cf) has the following properties. Correctness: Either it
perfectly (t, tσ, tρ)-securely evaluates the circuit Cf among the players in P for any
tσ, tρ < n, or it aborts with a set B ⊆ P . It might abort with set B only when one of
the following two cases holds: (1) |B| = 1 and B ⊆ R ∪ S ∪ SR ∪A and (2) |B| = 2
and B ∩ (SR∪A) 6= ∅. Privacy: The adversary does not get no more information than
what he can compute from the specified inputs and outputs of actively corrupted players
(i.e., from the inputs and outputs she should get when the protocol does not abort).

11 Here, t-secure evaluation is according to any of the standard security definition (with
fairness and guaranteed output delivery) of protocols tolerating an active-only adver-
sary [MR91,Can00,DM00,BPW03].

12 In slight abuse of notation here, we write Broadcast and ExchangeKey to refer not to the
protocols but to primitives achieving the security specified in Lemmas 7 and 11 (independent
of pre-conditions). To be able to instantiate them with our protocols we will have to guarantee
that the pre-conditions of the lemmas are satisfied.

7 SFE

In this section we prove the necessary and sufficient condition for perfectly (ta, tρ, tσ)-
securely evaluating any given function f(·), namely we prove the following theorem:

Theorem 1. Perfectly (ta, tρ, tσ)-secure SFE is possible if and only if 3ta+tρ+tσ < n.

The necessity of the condition follows, with some additional work, from the neces-
sity of the conditions 3ta < n for SFE [BGW88]; we state the necessity in the following
lemma which is proved in the full version of this paper.

Lemma 13. If 3ta + tρ + tσ ≥ n then there are functions which cannot be perfectly
(ta, tρ, tσ)-securely evaluated.

The sufficiency is proved by constructing an SFE protocol for computing any given
function f . For simplicity, we assume that f takes one input per player and has one
global output. Using standard techniques, we can obtain a protocol for computing func-
tions with multiple inputs and/or multiple or even private outputs.

On a high level, the evaluation of the function f proceeds in three stages: In the first
stage, called the input stage, every pi ∈ P ta-shares his input to the players in P . Next,
in the computation stage, the players use SFE(BC) to compute a random ta-sharing of
the output of the function f . Finally, in the output stage, this sharing is reconstructed
towards every player using Reconstruct. In the remaining of this section we describe in
detail the three stages, and give a detailed description of protocol SFE.

The input stage In this stage protocol Share is invoked to have each pi ∈ P ta-share
his input s(i) to the players in P . Denote the resulting sharing by 〈s(i)〉. The security of
Share guarantees that for any non actively corrupted pi 〈s(i)〉 is a ta-consistent sharing
of s(i) , where 〈s(i)〉 is even t-valid when pi ∈ H ∪R.

The computation stage The goal is to securely compute, using SFE(BC), a uniformly
random ta-valid sharing of the output of f on input the values that where shared in the
input stage. This stage is non-robust and might abort with a player set B ⊆ P , when
SFE(BC) aborts with B. When it aborts, the players use the information about the set
B, which is provided by Lemma 12, to repeat this stage in a smaller setting, i.e., among
the players in P ′ := P \ B. The security of SFE(BC) guarantees that, even when it
aborts, the adversary learns at most the outputs of actively corrupted players, which,
as they are shares of a (uniformly random) ta-sharing, give her no information on the
input-sharings. Hence, in the successful iteration of SFE(BC), both the inputs of actively
corrupted players and the decision of which send-omission corrupted players give their
inputs are independent of the inputs of non actively corrupted players.

Initially P ′ := P and t′a := ta. Protocol SFE(BC) is invoked with player set P ′ and
threshold t′a, to compute the circuit Cta

〈f〉 which does the following: Cta
〈f〉 takes as input

from each pj ∈ P ′ his share of each of the input-sharings 〈s(1)〉, . . . , 〈s(n)〉. For each
such sharing 〈s(i)〉: Cta

〈f〉 attempts, exactly as in protocol Reconstruct, to reconstruct
the shared value; if the reconstruction succeeds it sets ŝi to the reconstructed value,
otherwise it sets ŝi to a default value (e.g., ŝi := 0). Note that for t = t′a, t

′ = t′a, and

tc = t′a + tσ + tρ all the sufficient conditions for Reconstruct are satisfied; therefore,
Cta〈f〉 correctly reconstructs the input of every pi ∈ H ∪ R (which is t-valid), and for
every pi ∈ S ∪ SR it either reconstructs pi’s input or it takes a default value (since
the sharing of pi is a t-consistent sharing of his input). Having computed the values
ŝ1, . . . , ŝn, Cta

〈f〉 inputs them to the circuit computing f ; denote the output by y. Finally,
Cta
〈f〉 computes and outputs a uniformly random ta-valid sharing of y among the players

in P ′. We point out that the circuit Cta〈f〉 can be efficiently computed from the circuit
which computes the function f [IKLP06].

To be able to re-invoke SFE(BC) in P ′ = P ′ \B when it aborts with B, we need to
guarantee that in the updated P ′: (1) the condition 3t′a < |P ′|, which is sufficient for
SFE(BC), holds and (2) no inputs of non actively corrupted players are lost. To ensure
Property (1), we use the idea of player elimination [HMP00]:13 The security of SFE(BC)

guarantees that when it aborts with setB, then either |B| = 1 andB ⊆ R∪S∪SR∪A
or |B| = 2 andB∩ (SR∪A) 6= ∅. Therefore, by eliminating the players inB we might
only change the ratio of uncorrupted vs. actively corrupted players in P ′ in favor of the
uncorrupted players. However, as the set P ′ becomes smaller, the players might have to
reduce the actual threshold t′a. To be on the safe side, t′a is reduced only when at least as
many players as there can be send-/receive-omission corrupted have been eliminated.
Property (2) is guaranteed because, first, the ta-consistency and ta-validity of input
sharings cannot be destroyed by deleting players and, second, the newly computed t′a
satisfies, as we show, the sufficient condition for Reconstruct.

The output stage The players invoke Reconstruct with the (latest) t′a to reconstruct
the sharing created in the successful iteration of SFE(BC). Because the protocol SFE(BC)

outputs a ta-valid sharing of the output, and, as we will show, t′a satisfies the sufficient
condition for protocol Reconstruct, the reconstruction is robust. For completeness we
describe the protocol SFE (see below) and state the achieved security in the follow-
ing lemma.

Protocol SFE (P, ta, tρ, tσ, f)
0. Set P ′ := P , and t′a := ta.
1. For each pi∈ P invoke Share(P, ta, pi, xi). Each pj ∈ P denotes the vector of all

shares he received by →
x (j) .

2. The players in P ′ invoke SFE(BC)(P ′, t′a, C
ta
〈f〉),where each pi ∈ P ′ has in-

put →
x (j) .a If SFE(BC) aborts with B, then set P ′ = P ′ \ B, set t′a := ta −

max{0, |P \ P ′|−(tσ + tρ)} and repeat this step; otherwise denote by 〈f〉 the
output sharing.

3. For each pj ∈ P invoke Reconstruct(P ′, ta, t′a, pj , 〈f〉).

a The required invocations of Broadcast and ExchangeKey are done in the player set P .

Lemma 14. Protocol SFE is perfectly (ta, tρ, tσ)-secure if 3ta + tρ + tσ < |P|.
13 To our knowledge, this is the first work which uses the idea of player elimination not for

improving efficiency but rather for arguing about feasibility of protocols.

Proof (sketch). Termination is guaranteed because Step 2 is repeated at most ta+tσ+tρ
times (in each repetition at least one corrupted player is removed from P ′). Correctness
follows from the security of the invoked sub-protocols; however one needs to verify that
the corresponding sufficient conditions hold whenever they are invoked. This follows
from a player-elimination argument, which, due to space restrictions, is deleted from
this proceedings version. Privacy follows also from the security of the invoked subpro-
tocols and from the fact that all the sharings that we do are of degree ta (except of those
done internally in SFE(BC) whose privacy is guaranteed by the security of SFE(BC)),
therefore they leak no information to the adversary about the inputs. ut

As already mentioned, when the adversary is rushing there are functions that cannot
be strongly (ta, tρ, tσ)-securely evaluated, except in trivial corruption scenarios (i.e., if
ta = 0 or tσ = 0). However, when the adversary is non-rushing the above protocol can
be used to achieve strong security. Indeed, before the output stage, the adversary gains
no useful information. As protocol Reconstruct is single round, if, within the output
stage, we run it in parallel for every pi ∈ P , then a non-rushing adversary has to choose
which receive-omission corrupted players do not get enough messages to reconstruct
the output before getting any information about the output. This implies strong security.
We point out that the necessity of condition 3ta + tρ + tσ < n for SFE is independent
of whether or not the adversary is rushing.

Corollary 1. Assuming that the adversary in non-rushing, perfectly strongly
(ta, tρ, tσ)-secure SFE is possible if and only 3ta + tρ + tσ < n.

8 Computing Reactive Circuits (MPC)

In this section we show how to compute reactive functionalities, i.e., functionalities that
receive inputs from and give outputs to the players several times during the computa-
tion (an output can depend on all previous inputs). An important consideration when
computing a reactive functionality, is to make sure that the players can keep a secret
joint state.

The circuit to be computed consists of input, output, addition, and multiplication
gates.14 We model the reactiveness of the computation by assigning to each gate a point
in time in which the gate should be evaluated. The circuit is evaluated in a gate-by-gate
fashion, using protocol SFE, where the evaluation of each gate (except for the output
gates) yields a uniformly random ta-valid sharing of the output of the gate among the
players in P . Keeping state is guaranteed by the fact that such a sharing is robustly
reconstructible, e.g., by using protocol Reconstruct, given that the condition 3ta+ tσ+
tρ < n holds (Lemma 9). The privacy of the state is guaranteed, as there are at most ta
actively corrupted players.

To evaluate addition and multiplication gates, protocol SFE(BC) is invoked to com-
pute the circuits C〈Mult〉 and C〈Add〉, respectively, which on input ta-valid sharings of
the inputs x1 and x2 of the gate output a uniformly random ta-valid sharing of the sum

14 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and taking the sum of the inputs as the output of the gate.

x1+x2 and of the product x1 ·x2, respectively. For an output gate, protocol Reconstruct
is invoked (with P ′ = P , and t = t′ = ta) to reconstruct the shared output towards the
output player.

To evaluate an input gate, protocol SFE is invoked to evaluate the circuit C〈I〉 which
takes as input the input of the corresponding player (and no value from other players)
and computes a uniformly random ta-valid sharing of it among the players in P . Excep-
tionally in the evaluation of input gates, even the zombies are required to take part as if
they were alive. This is possible as all players (including zombies) hold synchronized
clocks, and are aware of when it is time to evaluate an input gate.15 Instructing the zom-
bies to “wake up” during the evaluation of input gates ensures that every pi ∈ H ∪ R,
even if he is a zombie, is able to give input to the computation. When the evaluation of
the gate finishes, all zombies “sleep” again, i.e., they stop playing (until the next input
gate). The security of the MPC protocol follows from the security of protocols SFE
and Reconstruct.

Theorem 2. Perfectly (ta, tρ, tσ)-secure (reactive) MPC is possible if and only if
3ta + tσ + tρ < n.

As in the case of SFE, when the adversary is non-rushing, then by evaluating in
parallel each tuple of output gates that are due to be evaluated at the same time, we get
a strongly perfectly secure MPC protocol.

Corollary 2. Assuming that the adversary in non-rushing, perfectly strongly
(ta, tρ, tσ)-secure (reactive) MPC is possible if an only if 3ta + tρ + tσ < n.

9 (Full) Omission Corruption

Our results can be trivially used to obtain sufficient bounds for MPC and SFE in the
presence of an adversary who can full-omission corrupt up to tω players and, simulta-
neously, actively corrupted ta players (as in [Koo06]). Indeed, by setting tσ = tρ = tω
in our MPC protocols, we get a protocol which perfectly (ta, tω)-securely realized any
function when 3ta + 2tω < n. Note that this bound is strictly better than the bound
3ta + 4tω < n which was proved sufficient in [Koo06].

Lemma 15. Perfectly (ta, tω)-secure (even reactive) MPC is possible if 3ta + 2tω < n.

10 Extensions

Our results can be extended to deal with adversaries who can, additionally, passively
and fail-corrupt players; denote by tp and tf the corresponding thresholds. The proof
of the following lemma is omitted, but we give some evidence of its validity: Fail-
corruption comes almost “for free” as in our protocol a fail-corrupted players behaves
exactly as a receive-omission corrupted player with the only difference that, instead

15 A zombie might re-become zombie during the evaluation of the input gate, in which case he
gives up the evaluation of the gate.

of turning him into a zombie the adversary can make him crash. To incorporate pas-
sive corruption we need to do the following modifications: (1) the degree of the shares
that are computed in SFE is increased by tp; (2) for SFE(BC), instead of invoking, over
the engineered network, the protocol ΠP,t(·) [BGW88] which tolerates only actively-
corruption, we use a protocol which tolerates both active and passive corruption, si-
multaneously. Such a protocol is known to exist if 3ta + 2tp < n [FHM98]. These
modifications will guarantee privacy of our computation.

Lemma 16. Perfectly (ta, tp, tf , tρ, tσ)-secure MPC is possible if and only if 3ta +
2tp + tσ + tρ + tf < n.

Using techniques from Secure Message Transmission [DDWY93], we can extend
our results to allow every (even uncorrupted) pi ∈ P to suffer from some message loss,
as long as we have the following guarantee: in every round every pi ∈ H ∪ S might
lose at most ta of the messages sent to him by players pj ∈ H ∪R.

Acknowledgements We would like to thank Martin Hirt for many useful discussions
and comments.

References

[Bea91a] D. Beaver. Foundations of secure interactive computing. In CRYPTO ’91, LNCS 576,
pp. 377–391, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating
a faulty minority. Journal of Cryptology, 4(2):370–381, 1991.

[BGP89] P. J. Berman, J. Garray, and J. Perry. Towards optimal distributed consensus. In
FOCS ’89, pp. 410–415, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pp. 1–10, 1988.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic
library, 2003.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols
(extended abstract). In STOC ’88, pp. 11–19, 1988.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmis-
sion. Journal of the ACM, 40(1):17–47, January 1993.

[DM00] Y. Dodis and S. Micali. Parallel reducibility for information-theoretically secure
computation. In CRYPTO 2000, LNCS 1880, pp. 74–92, 2000.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agreement.
In STOC ’82, pp. 401–407, 1982.

[FHM98] M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in unconditional
multi-party computation. In CRYPTO ’98, LNCS 1462, pp. 121–136, 1998. Corrected
version is available online.

[FM98] M. Fitzi and U. Maurer. Efficient Byzantine agreement secure against general adver-
saries. In DISC ’98, LNCS 1499, pp. 134–148, 1998.

[FM00] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In STOC 2000,
pp. 494–503, 2000.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC 2002,
LNCS 2508, pp. 17–32, 2002.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a
completeness theorem for protocols with honest majority. In STOC ’87, pp. 218–
229, 1987.

[GP92] J. A. Garay and K. J. Perry. A continuum of failure models for distributed computing.
In Distributed Algorithms, 6th International Workshop — WDAG ’92, LNCS 647,
pp. 153–165, 1992.

[Had85] V. Hadzilacos. Issues of fault tolerance in concurrent computations (databases, reli-
ability, transactions, agreement protocols, distributed computing). PhD thesis, Cam-
bridge, MA, USA, 1985.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party computation. In
ASIACRYPT 2000, LNCS 1976, pp. 143–161, 2000.

[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In CRYPTO 2006,
LNCS 4117, pp. 483–500, 2006.

[Koo06] C.-Y. Koo. Secure computation with partial message loss. In TCC 2006, LNCS 3876,
pp. 502–521, 2006.

[LF82] L. Lamport and M. J. Fischer. Byzantine generals and transaction commit protocols.
Technical Report Opus 62, SRI International (Menlo Park CA), TR, 1982.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[MP91] F. J. Meyer and D. K. Pradhan. Consensus with dual failure modes. IEEE Transac-
tions on Parallel and Distributed Systems, 2(2):214–222, 1991.

[MR91] S. Micali and P. Rogaway. Secure computation. In CRYPTO ’91, LNCS 576, pp.
392–404, 1991.

[PR03] P. R. Parvedy and M. Raynal. Uniform agreement despite process omission failures.
In International Symposium on Parallel and Distributed Processing — IPDPS 2003,
pp. 212.2, 2003.

[PT86] K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Softw. Eng., 12(3):477–482, 1986.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and
Privacy, pp. 184–200, 2001.

[Ray02] M. Raynal. Consensus in synchronous systems: A concise guided tour. In Pacific
Rim International Symposium on Dependable Computing — PRDC 2002, pp. 221,
2002.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In STOC ’89, pp. 73–85, 1989.

[Yao82] A. C. Yao. Protocols for secure computations. In FOCS ’82, pp. 160–164, 1982.

