
On the (Im)Possibility of
Key Dependent Encryption?

Iftach Haitner??1 and Thomas Holenstein? ? ?2

1 Microsoft Research, New England Campus
2 Department of Computer Science, Princeton University

Abstract. We study the possibility of constructing encryption schemes
secure under messages that are chosen depending on the key k of the
encryption scheme itself. We give the following separation results that
hold both in the private and in the public key settings:
– Let H be the family of poly(n)-wise independent hash-functions.

There exists no fully-black-box reduction from an encryption scheme
secure against key-dependent messages to one-way permutations (and
also to families of trapdoor permutations) if the adversary can obtain
encryptions of h(k) for h ∈ H.

– There exists no reduction from an encryption scheme secure against
key-dependent messages to, essentially, any cryptographic assump-
tion, if the adversary can obtain an encryption of g(k) for an arbi-
trary g, as long as the reduction’s proof of security treats both the
adversary and the function g as black boxes.

Keywords: Key-dependent input, Black-box separations, One-way func-
tions

1 Introduction

A cryptographic primitive is key-dependent input secure, or KDI-secure for short,
if it remains secure also in case where the input depends on the secret key. In the
case of encryption schemes, KDI-security means that the adversary can obtain,
in addition to the usual queries, encryptions of h(k), where k is the key of the
scheme and h is chosen by the adversary from some (hopefully large) family of
functions H.

On a first look it might seem that by using the right design it is possible to
prevent any “KDI-attacks” on the encryption scheme, and thus achieving such
strong security would be only of pure theoretical interest. It turns out, however,
that such attacks might “naturally” arise when considering complex systems.
? All omitted proofs can be found in [HH08].
?? E-mail: iftach@microsoft.com. This work was performed while at Weizmann Insti-

tute of Science and at Microsoft Research, Silicon Valley Campus.
? ? ? E-mail: tholenst@princeton.edu. This work was performed while at Microsoft Re-

search, Silicon Valley Campus.

For instance, in the BitLocker disk encryption utility (used in Windows Vista),
the disk encryption key can end up being stored on the disk and thus encrypted
along with the disk contents. For more details on the importance of KDI-security,
see [BHHO08] and references within.

In this work we study the possibility of obtaining such an encryption scheme
both from one-way functions and from other hardness assumptions. In particular,
we exclude different types of reductions from a KDI-secure encryption scheme to
different hardness assumption. Intuitively, a black-box reduction of a primitive
P to a primitive Q is a construction of P out of Q that ignores the internal
structure of the implementation of Q and just uses it as a “subroutine” (i.e., as
a black box). The reduction is fully-black-box (following [RTV04]) if the proof
of security (showing that an adversary that breaks the implementation of P
implies an adversary that breaks the implementation of Q) is also black-box
(i.e., the internal structure of the adversary that breaks the implementation of
P is ignored as well).

Our first result shows that there is no fully-black-box reduction from KDI-
secure encryption schemes to one-way permutations, even if the KDI-security
is only against the relatively small class of poly(n)-wise independent hash-
functions. When considering reduction from a KDI-secure encryption scheme,
it is natural to ask whether the proof of security accesses the challenge func-
tion h in a black-box manner as well. Our second result, however, shows that
under this restriction essentially no hardness assumption implies a KDI-secure
encryption scheme.

1.1 Related Work

KDI security. The development of encryption secure against key-dependent in-
puts started by the works of Abadi and Rogaway [AR02]. They studied formal
security proofs for cryptographic protocols (as described by [DY83]), and showed
that these imply security by a reduction, as long as no key-cycles exist in the
protocol, i.e., there is a partial order � on the keys exists such that a message
depending on k1 would only be encrypted with k2 if k1 � k2. Since this is a
restriction (even though it may be a very natural one), the community became
aware that it would be desirable to create encryption schemes that provide se-
curity even in the existence of such key cycles. Consequently, Black, Rogaway,
and Shrimpton [BRS02] define the (possibly stronger) notion of KDI-security
for symmetric encryption schemes, and show how to obtain this notion in the
random-oracle model. In such a scheme, an adversary can obtain encryptions
of h(k) under the key k, where h is given as a circuit to an encryption oracle.
Such a scheme implies the security of the scheme under cycles as well. Indepen-
dently of [BRS02], a notion of circular security has been defined by Camenisch
and Lysyanskaya [CL01], considering asymmetric encryption schemes as well.

Recently, Halevi and Krawczyk [HK07] generalized the notion of KDI-security
to other cryptographic primitives, such as pseudorandom functions. They also
coined the name KDI for this sort of security (previously, it was named key-
dependent message security). Their results in this setting are mainly for the

construction of pseudorandom functions. In addition, [HK07] shows that a de-
terministic encryption scheme cannot be KDI-secure. Independently and concur-
rently of [HK07], Hofheinz and Unruh [HU08] provided private-key encryption
schemes secure under a limited class of KDI-attacks. The main limitation of
their work is that the scheme only remains secure as long as h(k) is significantly
shorter than the key; also, after every application of the encryption scheme the
key is updated. This makes the construction insufficient for the initial motiva-
tion of allowing key cycles in cryptographic protocols. Very recently, Boneh et al.
[BHHO08] presented a public-key encryption scheme that is KDI-secure (assum-
ing that the DDH assumption holds) against the family of affine transformations
over the messages’ domain. Their system remains secure also when key-cycles
are allowed.

Black-box impossibility results. Impagliazzo and Rudich [IR89] showed that there
is no black-box reduction of key-agrement to one-way permutations and addi-
tional work in this line followed (cf., [GKM+00,Rud88,Sim98]). Kim, Simon and
Tetali [KST99] initiated a new line of impossibility results, by providing a lower
bound on the efficiency any black-box reduction of universal one-way hash func-
tions to one-way permutations, substantial additional work in this line followed
(cf., [GGKT05,HHRS07,HK05,Wee07]). Dodis et al. [DOP05] (and also [Hof08])
give a black-box separation of a similar flavor to the one given in Theorem 2, in
the sense that it excludes a large family of hardness assumptions.

1.2 Contributions of this Paper

In this paper we give two impossibility results for security proofs of constructions
of KDI-secure private-key encryption schemes. However, since every public-key
encryption scheme can be also viewed as a private-key scheme (i.e., both parties
use the same private/public key), our impossibility results immediately extend to
the public-key case. Our first result is a black-box separation of KDI encryption
scheme from one-way permutations and from (even enhanced) family of trapdoor
permutations.

Theorem 1. Let (Enc,Dec) be an encryption scheme that is fully-black-box con-
structed from one-way permutations. Then there exists an efficient family H of
poly(n)-wise independent hash functions such that the following holds: there ex-
ists no black-box reduction from breaking the KDI-security of (Enc,Dec) against
H to inverting one-way permutations. Furthermore, the above holds also with
respect to (enhanced) families of trapdoor permutations.

For our second result, we assume that the challenge function itself under which
the scheme should be KDI-secure is treated by the proof of security as a black
box. Moreover, the proof of security does not forward an access to the challenge
function to a “third party”. We call such a reduction strongly-black-box.

Theorem 2 (informal). There exists no reduction with strongly-black-box proof
from the KDI-security of an encryption scheme to the security of ”any crypto-
graphic assumption”.

We stress that the construction of the encryption scheme considered in Theo-
rem 2 can be arbitrary. The formal statement of Theorem 2 is given in Section 4.

1.3 Interpretation of Our Results

So what should we think on the possibility of building KDI-secure encryption
scheme given the above negative results? Let us start with Theorem 1 and let’s
first consider the fully-black-box restrictions. We remark that while quite a few
black-box impossibility results of these types are known (see Section 1.1), there
is not even a single known example where we have an impossibility result of
the type given in Theorem 1, and yet a “non-black-box” reduction was found.3

We also remark that the reductions given in [BHHO08,HK07,HU08] are fully-
black-box. The second issue is that we only rule out security against poly-wise
independent hash function, where the value for “poly” is determined as a function
of the encryption scheme. It seems, however, that in most settings one cannot
limit the power of the queries used in the KDI attack (but merely assume that
these functions should be efficiently computable). Typically, when designing an
encryption scheme, the exact configuration of each of the systems in which the
scheme is going to be used is unknown. These configurations, however, determine
the challenge functions “used” in the KDI attacks.

In Theorem 2 we consider arbitrary constructions, but require only black-
box access to the challenge functions. This additional restriction actually reflects
three separate restrictions. The first is that the proof has only input/output ac-
cess to the challenge function, the second is that the challenge function cannot
be assumed to be efficient, and the third is that the reduction “knows” all the
queries made to the challenge functions (we force the last restriction by disal-
lowing the reduction to give a third party an handle to the challenge function).
While the first two restrictions seem to be a real limitation on the generality of
our second result, the third restriction is harmless in most settings. In particular,
this is the case where the hardness assumption does not accept (even implicitly)
handler to functions. This list includes all the “non-interactive hardness assump-
tions” such as one-way functions, factoring, DDH etc.4

1.4 Our Technique

In the proof of both our results, we are using the same oracle, Breaker, that
helps us to break the KDI-security of every encryption scheme. Let (Enc,Dec)
3 The superiority of non-black-box techniques was demonstrated by Barak [Bar01] in

the settings of zero-knowledge arguments for NP. In these settings, however, the
black-box access is to the, possibly cheating, verifier and not to any underlying
primitive.

4 The only exception we could think of for a reduction that benefits from passing the
handler to the challenge function to a third party, is a reduction from one KDI-
secure encryption scheme B to another KDI-secure encryption scheme A. In such a
reduction, the security proof of scheme B typically forwards the challenge function
to the security proof of scheme A.

be some fixed encryption scheme. On input (h, c), where h is some length doubling
function and c is a ciphertext, Breaker considers all possible keys, and returns
the first key k for which Dec(k, c) = h(k), or ⊥ if no such key exists. It is
not hard to see that (Enc,Dec) is not KDI-secure, with respect to h, in the
presence of Breaker. Therefore, our impossibly results follow if Breaker does not
help to violate the underlying hardness assumption. For this, we need to assume
that Breaker is only called with functions h that are chosen uniformly from the
respective set of challenge functions. We ensure this by restricting the functions h
for which Breaker performs the above computation to one that is randomly
chosen (and then give the adversary access to it). Under this restriction, we
manage to prove that Breaker does not help in breaking the assumption. Proving
this is our main technical contribution (note that Breaker cannot be implemented
efficiently) and we prove it differently in each of our separation results.

One-way permutations. Let π be a random permutation and let (Decπ,Encπ) be
a candidate of a KDI-secure encryption scheme given π as the one-way permu-
tation. We find a polynomial p(n) (which depends on Dec and Enc) and use a
family of length-doubling p(n)-wise independent hash-functions as the challenge
functions. Imagine now that a call of A to Breaker helps A to invert π. Then, the
behavior of Breaker must be very different for a large number of potential preim-
ages of y, as otherwise the call gave roughly no information about the preimage
of y. We show, however, that for all but a negligible fraction of the functions h,
the behavior of Breaker will be the same for most possible preimages of y, no
matter how the ciphertext is chosen.

Arbitrary assumptions. In this we use the family of all length-doubling functions
as the challenge functions. The idea is that for a random h in the family, all calls
to Breaker (done outside of the KDI game) are very likely to be answered with ⊥.
The reason is that for a fixed k ∈ {0, 1}t, the probability that Dec(k, c) = h(k)
is roughly 2−2t. This somewhat naive intuition is actually false, as it can fail
in the following way: A picks a key k′ itself, queries h(k′), encrypt this with k′

itself, and gives the resulting ciphertext to Breaker. We prove, however, that this
is essentially the only way in which the above intuition fails. Thus, instead of
calling Breaker, A can as well check the keys on which h was previously queried,
which can be done efficiently. We conclude that if there is a reduction with
strongly-black-box proof of security from a KDI encryption scheme to a given
hardness assumption, then the hardness assumption is false.

2 Preliminaries

2.1 Notation

We denote the concatenation of two strings x and y by x ◦ y. If X is a random
variable taking values in a finite set U , then we write x← U to indicate that x is
selected according to the uniform distribution over U . We often use probabilities
where we choose an oracle π from some uncountable set of oracles at random. It

is possible to defined these using Lebesgue measure and an appropriate mapping
of oracles to [0, 1).

2.2 Many-wise Independence

We use standard facts on s-independence, as well as the following upper bound
on the probability that many s-wise independent events occur, where each event
has low probability.5. The proof is omitted in this version.

Lemma 1. For s, V ∈ N let B1, . . . , BV be s-wise independent Bernoulli random
variables with Pr[Bi = 1] ≤ 1

V . If α > s, then Pr
[∑V

i=1Bj ≥ α
]
< log(V)

αs−1 .

2.3 Encryption Schemes and KDI Security

We define a (private-key) encryption scheme as a pair of an encryption and
a decryption algorithm (Enc,Dec). On security parameter n, the encryption
algorithm Enc gets as input a key of length t(n) and a message of length m,
and outputs a ciphertext of length `(n,m). The decryption algorithm Dec, gets
a key and a ciphertext and outputs the message.6 Informally, an encryption
scheme (Enc,Dec) is KDI-secure against a family of functionsH ⊆ {h : {0, 1}t →
{0, 1}∗}, if no efficient adversary can distinguish between an oracle that correctly
returns an encryption of h(k), given input h, and one that returns an encryption
of the all zero string of the same length. Note that if H contains functions that
map to constants, plain-text queries can be obtained as well.

Definition 1 (KDI-security). Given an encryption scheme (Enc,Dec) and a
key of length t, let QEnc,k [resp. Q̃Enc,k] be an algorithm that gets as input a
function h : {0, 1}t 7→ {0, 1}m(t), and returns Enc(k, h(k)) [resp. Enc(k, 0m(t))]
(if the schemes is randomized, it returns a random encryption). We say that
(Enc,Dec) is KDI-secure for a class of functions H, if∣∣∣Prk←{0,1}t(n) [AQ

Enc,k
(1n) = 1]− Prk←{0,1}t(n) [A

eQEnc,k
(1n) = 1]

∣∣∣
is negligible for every efficient algorithm A that only queries functions in H.

2.4 Cryptographic Games

For reductions that treat the family H of query-functions as black-box, we are
able to prove a very strong impossibility result. In this case, we show that essen-
tially no cryptographic assumption is sufficient to guarantee the KDI-security of
5 The usual bounds seem not strong enough in our setting, as they focus on the range

where the probability of a single event is constant. Here, the probability of a single
event decreases as the number of events increases, and we use a different bound.

6 In some definitions, a private-key encryption scheme also includes a key-generation
algorithm “Gen”. We omit this since we are not concerned by polynomial factors,
and in this case one can simply take the random-coins used by Gen as the private
key.

the scheme. In order to do this, we first define the set of cryptographic assump-
tions we consider.7 For the sake of readability, however, we will not try to be as
general as possible here. Yet, as far as we can see our definition still captures all
natural hardness assumptions.

Definition 2 (cryptographic games). A cryptographic game is a (possibly
inefficient) random system Γ that on security parameter n interacts with an at-
tacker A and may output a special symbol win. In case Γ (1n) outputs this symbol
in an interaction with A(1n), we say that A(1n)↔ Γ(1n) wins. The game is se-
cure if Pr[A(1n)↔ Γ (1n) wins] is negligible for all ppt A, where the probability
is over the randomness of A and Γ .

Examples: One might define the security of a one-way function f by the following
game. On security parameter n, the system Γ selects a random x ∈ {0, 1}n and
sends y = f(x) to the adversary. Γ outputs win if A outputs x′ ∈ f−1(y).

To define the DDH hardness assumption one needs a bit more work.8 On
security parameter n, the system Γ expects first a sequence of at least n ones, we
denote the actual number received by α. The system Γ then sends A a description
of an appropriately chosen group 〈g〉 of order Ω(2n) and the generator g, as well
as α randomly chosen triples (gxi , gyi , gzi), where zi = xiyi or a uniform random
element, each with probability 1

2 . The attacker A wins, if the number of instances
where he incorrectly predicts whether zi was chosen independently of xi and yi,
is at most α

2 −α
2/3. Using [IJK07, Theorem 1], one can now show that winning

the above is equivalent to the DDH assumption, we omit the details in this
version.

2.5 Black-Box Reductions

A reduction from a primitive P to a primitive Q consists of showing that if
there exists an implementation C of Q, then there exists an implementation MC

of P . This is equivalent to showing that for every adversary that breaks MC ,
there exists an adversary that breaks C. Such a reduction is semi-black-box if
it ignores the internal structure of Q’s implementation, and it is fully-black-box
(using the terminology of [RTV04]) if it also has black-box proof of security.
That is, the adversary for breaking Q ignores the internal structure of both
Q’s implementation and of the (alleged) adversary breaking P . The following
definition expands the above general discussion for the case of a fully-black-box
reduction of a KDI-secure encryption scheme from a one-way permutation.

Definition 3 (fully-black-box reduction). A fully-black-box reduction of a
KDI-secure encryption scheme from a one-way permutation consists of poly-
nomial-time oracle-aided algorithms (Enc(·),Dec(·)) and a polynomial-time or-
acle-aided adversary A

(·)
OWP, such that the following hold:

7 We remark that definitions of similar spirit to the one below were previously used
in [DOP05,Hof08].

8 The same argument can be applied for many other assumptions, but we refrain from
formalizing this in order no to get bogged down in unrelated details.

– If f is a permutation, then (Encf ,Decf) is an encryption scheme.
– For any (possibly unbounded) AKDI that breaks the KDI-security of the en-

cryption scheme, Af,AKDI
OWP inverts the permutation with non-negligible proba-

bility.

When considering reductions from a KDI-secure cryptosystem, it is natural
to consider whether the proof of security accesses the challenge functions also as
a black box. We say that a proof of KDI-security of a cryptosystem is strongly-
black-box, if it treats the challenge function also as a black-box.

Definition 4 (strongly-black-box reduction). A reduction from a KDI-se-
cure encryption scheme to a cryptographic game Γ with strongly-black-box proof
of security, consists of polynomial-time oracle-aided algorithms (Enc,Dec) and
a polynomial-time oracle-aided adversary A

(·)
Γ such that the following holds:

– (Enc,Dec) is an encryption scheme.
– For any adversary AQKDI that breaks the KDI-security of (Enc,Dec), the

oracle-aided adversary A
(AKDI)
Γ violates the security of Γ . Additionally, AΓ

treats the challenge functions provided by AKDI as a black box.

The requirement that AΓ treats the challenge function as black-box, means that
AΓ can only obtain evaluations of it at arbitrary chosen points and the reduction
must work for every challenge function (not just efficiently computable ones).
In addition, AΓ does not provide Γ with a description of the function.9

2.6 Extending KDI-secure Encryption Schemes

We would like to make sure our impossibility results hold even for encryption
schemes that encrypt messages of length one bit. For technical reasons, however,
we will actually need to encrypt messages of length 2t, where t is the key length.
We therefore give a straightforward, but slightly tedious transformation that
allows us to do that. (In fact, the following transformation does slightly more,
in order to make the technical part in Sections 3 and 4 a bit easier.) We omit
the proof of it in this version.

Proposition 1. Let (Enc,Dec) be an encryption scheme for single bit messages.
Assume (Enc,Dec) is KDI-secure for a given set H ⊆ {{0, 1}t → {0, 1}}, then
there exists an encryption scheme (Enc1,Dec1) with the following properties:

(a) The key length t1 of (Enc1,Dec1) equals the security parameter. (b)
(Enc1,Dec1) is defined for messages of arbitrary length. (c) (Enc1,Dec1) is KDI-
secure for H1 :=

{
h : {0, 1}t → {0, 1}∗ : ∀i,∀τ ∈ {0, 1}t1−t : h|i(x, τ) ∈ H

}
,

where h|i is the function that outputs the i’th bit of the output of h.10 (d)

9 Alternatively, given AΓ ’s (partial) view, it is possible to (efficiently) list all the queries
done to the challenge function during the execution.

10 Namely,H1 is the set of functions with the property that every output bit is described
by a function in H, after some appropriate padding of the input.

(Enc1,Dec1) has perfect correctness. (e) (Enc1,Dec1) has deterministic decryp-
tion. (f) If (Enc,Dec) has a strongly-black-box [resp. black-box] proof of security
to a cryptographic game Γ , then (Enc1,Dec1) has a strongly-black-box [resp.
black-box] proof of security to Γ .

3 From One-way Permutations

In this section we prove Theorem 1, but we only give the proof for the case of
one-way permutations. The proof for (enhanced) family of trapdoor permuta-
tions follows immediately using standard techniques (cf., [GT00,HHRS07]). Let
(Enc(·),Dec(·)) be an encryption scheme with oracle access to a one-way permu-
tation. By Proposition 1, we can assume that the encryption scheme is always
correct, has a deterministic decryption algorithm, defined on messages of any
polynomial length and has a security parameter t equal to it’s key length. We
let `(t) be the length of an encryption of a message of length 2t. In order to
prove Theorem 1, we use the following inefficient algorithm Breakerf,h.

Algorithm 3 Breakerf,h.

Oracles: A function f : {0, 1}t × {0, 1}`(t) 7→ {0, 1}2t (defined for every t ∈ N)
and an infinite sequence of functions h =

{
ht : {0, 1}t 7→ {0, 1}2t

}
t∈N.

Input: A pair (t, c) ∈ N× {0, 1}∗.
Operation: Return the smallest k ∈ {0, 1}t such that f(k, c) = ht(k), or ⊥ if

no such k exists.

Let Π = {Πt}t∈N, where Πt is the set of all possible permutations over {0, 1}t,
and let H = {Ht}t∈N, where ht is a family of (`(t) + t)-wise independent hash
functions from {0, 1}t to {0, 1}2t with polynomial description size. We denote by
π = {πt}t∈N ← Π [resp., h = {ht}t∈N ← H] the sequence of functions induced by
selecting, for every t ∈ N, πt uniformly at random from Πt [resp., ht uniformly
at random from Ht]. In this section, we consider an instantiation of Breaker with
f = Decπ, where π is chosen at random from Π, and h chosen at random fromH.
In Section 3.1, we show how to use BreakerDecπ,h for violating the KDI-security
of (Encπ,Decπ), where in Section 3.2 we show that BreakerDecπ,h does not help
inverting a random π. We prove Theorem 1 in Section 3.3.

3.1 Breaker Violates the KDI-Security of the Scheme

The following adversary uses BreakerDecπ,h for breaking the KDI-security of
(Encπ,Decπ).

Algorithm 4 Algorithm ABreakerDecπ,h,h
KDI .

Oracles: An infinite sequence of functions h =
{
ht : {0, 1}t → {0, 1}2t

}
t∈N and

BreakerDecπ,h.
Input: Security parameter t.

Operation:
Step 1: Call Q(ht) [or Q̃(ht)] to obtain an encryption c of ht(k) [or 02t].
Step 2: Call BreakerDecπ,h(t, c) to obtain a candidate key k′ or ⊥.
Step 3: Output 1 iff Breaker did not return ⊥.

Lemma 2. For every value of π ∈ Π, algorithm ABreakerDecπ,h,h
KDI breaks the KDI-

security of the (Encπ,Decπ) with probability one over a random choice of h ∈ H.

Proof. Algorithm AKDI only gives the wrong answer if the oracle is Q̃ and Breaker
does not return ⊥. Assume now that the oracle is Q̃. Then, for any fixed k′ and k
we have Prht [ht(k

′) = Dec(k′,Enc(k, 02t))] = 1
22t , and using the union bound we

have that the for a fixed k the probability that Breaker does not return ⊥ is
at most 2−t.11 Using an averaging argument, the probability that ht is such
that something else but ⊥ is returned with probability higher than 2−t/2 is at
most 2−t/2.

Since the ht ∈ h’s are chosen independently from each other, the probability
that there exists t0 ∈ N for which AKDI breaks the scheme for no t > t0 is zero.
We conclude that with probability one over the random choice of h ∈ H, it holds
that AKDI breaks the KDI-security of (Enc,Dec) infinitely often.

3.2 Breaker Does not Invert Random Permutations

We prove the following upper bound on the probability that an algorithm with
access to Breaker inverts a random permutation. In the following let µA(n) be an
upper bound on number of π queries and the length of the maximal π query that
A does on input y ∈ {0, 1}n (either directly or through the calls to BreakerDecπ,h),
and let µDec(t) the same bound with respect to the π queries that Dec does on
input (k, c) ∈ {0, 1}t × {0, 1}`(t). We assume without loss of generality that
both upper bounds are monotonically increasing, that µDec(t) ≥ t + `(t) and
that µA(n) ≥ n. We also assume that µDec(t) < 2t.

Lemma 3. Let A be an adversary that gets h as an auxiliary input12 and has
oracle access to π and BreakerDecπ,h. Then for every y ∈ {0, 1}n it holds that

Prπ←Π,h←H[A(π,Breaker)
h (y) = π−1(y)] < 3µA(n)

(
2−µ

−1
Dec(n) + µDec(µA(n))22−n

)
,

where µ−1
Dec(n) := min {t ∈ N : µDec(t) ≥ n}.

Applying the Borel-Cantelli lemma on the above we get the following corollary.

Corollary 1. Assume that A and Dec are polynomially bounded, then there ex-
ists a negligible function ε such that with probability one over the choice of π

and h, Pry←{0,1}n [A(π,BreakerDecπ,h)
h (y) = π−1(y)] < ε(n) for large enough n.

11 For this lemma, we are only using the “one-wise” independence of h.
12 We handle the fact that h is an infinite object, by only providing A the (description

of the) first q(n) functions in the sequence, where q(n) is an upper bound on the
running-time of A(y ∈ {0, 1}n).

In Appendix A, we give a proof of a non-uniform version of Lemma 3 (the ad-
versary can use an arbitrary additional non-uniform advice) using the technique
introduced by Gennaro and Trevisan [GT00]. Here, we use a different technique
that is similar to the one used by Simon [Sim98]. The main idea is to study what
happens if π is modified slightly by mapping a second, randomly chosen element
to y (the element that A tries to invert). We show that such a change will likely
go unnoticed by A(y), and it will not find the new preimage. After the change,
however, both preimages of y are equally likely to be the original one, so A(y)
could not have found the original one either.13

For a given function g : {0, 1}n 7→ {0, 1}n and two strings x∗, y ∈ {0, 1}n, we

define the function g|x∗→y as g|x∗→y(x) :=

{
y if x = x∗,

g(x) otherwise.
. We assume that

all calls to Decπ|x∗→y are well defined. In particular, if Dec queries π|x∗→y both
at position π−1(y) and at x∗ 6= π−1(y) (and thus might act arbitrarily as it “no-
tices” that π|x∗→y is not a permutation), we assume it stops and outputs 0. We
now wish to consider the elements {x∗ ∈ {0, 1}n} for which BreakerDecπ,h(t, c) 6=
Breakerπ|x∗→y,h(t, c). The set Diffπ(t, c, h, y) is a (possibly proper) superset of
this set.

Definition 5 (Diff). For an oracle function Dec, an infinite sequence of func-
tions h ∈ H, t ∈ N, c ∈ {0, 1}∗ and y ∈ {0, 1}n, we let Diffπ(t, c, h, y) :=

{
x∗ ∈

{0, 1}n
∣∣ ∃k ∈ {0, 1}t :

(
Decπ(k, c) 6= ht(k) = Decπ|x∗→y (k, c)

)
∨
(

Decπ(k, c) =
ht(k) 6= Decπ|x∗→y (k, c)

)}
.

For x∗ /∈ Diffπ(t, c, h, y), it holds that BreakerDecπ,h(t, c) = Breakerπ|x∗→y,h(t, c).
To see this, let k0 6= ⊥ be the lexicographic smaller output of the two calls.
Clearly, k0 must be the output of both calls to Breaker. The next claim states
that if h is uniformly chosen from H, then Diffπ(t, c, h, y) is very likely to be
small for all possible c.

Claim. Let A be an adversary with oracle access to π and BreakerDecπ,h, which
gets h as an auxiliary input. Then, for every π and y ∈ {0, 1}n:

Prh←H
[
A

(π,BreakerDecπ,h)
h (y) queries BreakerDecπ,h(t, c) with

|Diffπ(t, c, h, y)| ≥ µDec(µA(n))2
]
< µA(n)2−µ

−1
Dec(n)

Proof. For t ∈ N, c ∈ {0, 1}∗ and k ∈ {0, 1}t, let Dc,k be the set of all possible
images of Decπ|x∗→y (k, c), enumerating over all x∗ ∈ {0, 1}n (i.e., the set Dc,k :=
{Decπ|x∗→y (k, c) : x∗ ∈ {0, 1}n}).14 We first note that |Dc,k| ≤ µDec(t) + 1 ≤ 2t

– in an execution of Decπ(k, c) at most µDec(t) elements x1, . . . , xµDec(t) are

13 The main difference between our approach and the one in [Sim98], is that we do not
insist on keeping π a permutation. It turns out that this slackness makes our proof
significantly simpler.

14 Note that the original image Decπ(k, c) is in Dc,k.

queried, and only if x∗ ∈ {x1, . . . , xµDec(t)} the image of Dec can be changed.
Let Ht be the t’th entry in H. Applying Lemma 1 with V = 2t, s = t + `(t),
α = µDec(t) and letting Bk = 1 iff ht(k) ∈ Dc,k, we have that Prht←Ht

[∣∣{k ∈
{0, 1}t : ht(k) ∈ Dc,k}

∣∣ ≥ µDec(t)
]
< t

µDec(t)t+`(t)−1 ≤ 2−t−`(t).
We next show that |Diffπ(t, c, h, y)| ≤ µDec(t)·|{k ∈ {0, 1}t : ht(k) ∈ Dc,k}|.

We prove this by presenting an injective function φ from Diffπ(t, c, h, y) to
{1, . . . , µDec(t)} × {k : ht(k) ∈ Dc,k}. If x∗ ∈ Diffπ(t, c, h, y), then there exists
kx∗ such that Decπ(kx∗ , c) 6= ht(kx∗) = Decπ|x∗→y (kx∗ , c) or Decπ(kx∗ , c) =
ht(kx∗) 6= Decπ|x∗→y (kx∗ , c) and therefore kx∗ ∈ {k : ht(k) ∈ Dc,k}. Further-
more, Decπ(kx∗ , c) must query π on x∗. Let ix∗ denote the index (i.e., position)
of the query π(x∗) among the π queries that Decπ(kx∗ , c) does, and let φ be the
function that maps x∗ to (ix∗ , kx∗). Since a pair (i, k) specifies a single x (the
one queried at i’th position in Decπ(k, c)), it follows that φ is indeed injective.

We note that for t > µ−1
Dec(n), it always holds that x∗ /∈ Diffπ(t, c, h, y) (Dec

cannot invoke π on such a long input). Combining the above, we have that with
probability at least 1 − µA(n)2−µ

−1
Dec(n) over the choice of h, for each of the at

most µA(n) queries Breaker(t, c) that A(y) does, it holds that |Diff(t, c, h, y)| ≤
µDec(t)2 ≤ µDec(µA(n))2.

For a given value of π and x0, x1 ∈ {0, 1}n, let π|x0↔x1 := π|x0→π(x1),x1→π(x0).
We next show that with high probability, A(y) behaves exactly the same given
the oracle π or π|x∗↔y.

Definition 6 (trace). For a given oracle function Dec, the trace, tr(π, h, y, rA),
of an adversary A is the sequence of all queries A(y) makes to BreakerDecπ,h

and π (and their responses), when it uses rA as its random-coins and gets h as
an auxiliary input.

Claim. Let y ∈ {0, 1}n and let A be an adversary with oracle access to π

and BreakerDecπ,h, and assume that A queries π on its output before returning it.
Then, Prπ,h,rA,x∗←{0,1}n [tr(π, h, y, rA) 6= tr(π|x∗↔π−1(y), h, y, rA)] < p(n), where
p(n) := 2µA(n)

(
2−µ

−1
Dec(n) + µDec(µA(n))22−n

)
.

Proof. Let Xπ be all the queries to π in tr(π, h, y, rA), clearly |Xπ| ≤ µA(n). Let
further XDiff be the union of the sets Diffπ(t, c, h, y) for all calls (t, c) made by A
to Breaker. If x∗ /∈ Xπ ∪ XDiff , we have that tr(π, h, y, rA) = tr(π|x∗→y, h, y, rA)
(cf., the remark after Definition 5). Claim 3.2 yields that with probability at
least 1−µA(n)2−µ

−1
Dec(n) over the choice of h and rA, it holds that |Xπ ∪XDiff | ≤

µA(n)µDec(µA(n))2. The union bound yields that Prh,rA,x∗←{0,1}n [tr(π, h, y, rA) 6=
tr(π|x∗→y, h, y, rA)] < µA(n)

(
2−µ

−1
Dec(n) + µDec(µA(n))22−n

)
.

Finally, if tr(π, h, y, rA) and tr(π|x∗↔π−1(y), h, y, rA) are different, then one of
tr(π, h, y, rA) 6=tr(π|x∗→y, h, y, rA) or tr(π|x∗→y, h, y, rA) 6=tr(π|x∗↔π−1(y), h, y, rA)
must hold. Since π|x↔π−1(y) is also a permutation, and x∗ is a uniformly chosen
element given π|x∗↔π−1(y) and y, the inequality obtained before states that both
these events have probability at most p(n)/2.

Proof. (of Lemma 3) Assuming without lost of generality that A queries it’s
output, the probability that A(π,BreakerDecπ,h)(y)h = π−1(y) is at most the prob-
ability that the traces tr(π, h, y, rA) and tr(π|x∗↔π−1(y), h, y, rA) are different
plus 2−n (to handle the case x∗ = π−1(y)). By Claim 3.2, the latter probability
is at most 2−n + p(n).

3.3 Putting it Together

Proof. (of Theorem 1) Assume that there exists a black-box proof of security
from breaking the KDI-security of (Encπ,Decπ) using a poly-wise independent
hash function to breaking the hardness of π, and let M (·) be the algorithm
for inverting π as guaranteed by this proof of security. Lemma 2 yields that
ABreakerDecπ,h,h

KDI breaks the KDI-security of (Encπ,Decπ) with probability one

over the choice of h. Thus, MABreakerDecπ,h,h
KDI needs to break the one-way property

of π with probability one over the choice of h as well. However, since Aπ,B can be
efficiently emulated by an algorithm Ã with oracle access to BreakerDecπ,h and
π, and given h as an auxiliary input, Corollary 1 yields that with probability
one over the choice of π and h, algorithm Aπ,B does not break the one-wayness
of π, and a contradiction is derived.

4 From Arbitrary Assumptions

In this section, we rule out the existence of reductions with strongly-black-box
proof of security from the KDI-security of an encryption scheme, to a very large
class of hardness assumptions. That is, we prove the following theorem.

Theorem 5 (formal restatement of Theorem 2). There exists no reduction
with strongly-black-box proof of security from the KDI-security of an encryption
scheme to any cryptographic game.

Let (Enc,Dec) be an encryption scheme. As in Section 3, we use Proposition 1
and assume without loss of generality that the encryption scheme is always
correct, has deterministic decryption algorithm, is defined on messages of any
length, and has security parameter t equal to the key length. We let `(t) be the
length of an encryption of a message of length 2t.

Consider an instantiation of Breaker (Algorithm 3) with f = Dec and h ∈
H = {Ht}t∈N, where Ht is the set of all possible function from {0, 1}t to {0, 1}2t.
As in Section 3, we have that there exists an efficient algorithm, with oracle
access to BreakerDec,h and h, that breaks the KDI-security of (Enc,Dec) with
probability one over the choice of h ∈ H. The following Lemma states that in
many settings, having oracle access to BreakerDec,h does not yield any significant
additional power.

Lemma 4. Let ABreakerDec,h,h be an algorithm with oracle access to BreakerDec,h

and h, and let tA(n), for security parameter n, be a polynomial-time computable
upper bound on the running-time of ABreakerDec,h,h.

Then for every polynomial computable function δ : N 7→ [0, 1], there exists an
algorithm Ãhδ , which has oracle access only to h, runs in time poly(1/δ(n), tA(n),
n) and uses random-coins of the same length as ABreakerDec,h,h such that the
following holds. If ABreakerDec,h,h and Ãhδ are using the same random-coins, then
ABreakerDec,h,h(1n) = Ãhδ (1n) with probability 1− δ(n) over a random choice of h.

Proof. Algorithm Ã emulates A, while remembering all query and answer pairs
to h. When A queries BreakerDec,h(t, c), algorithm Ã distinguishes two cases:

Case 1: t < log(tA(n)) + log(1/δ(n)). Ã fully emulates BreakerDec,h. Namely,
Ã evaluates ht(k) for all k ∈ {0, 1}t and returns the first one for which
Dec(k, c) = ht(k). It returns ⊥ if no such k exists.

Case 2: t ≥ log(tA(n)) + log(1/δ(n)). Ã checks all the previous queries to h of
length t in lexicographic order. If for one of those queries it holds that
Dec(k, c) = ht(k), it returns k, otherwise it returns ⊥.

The bound on the running-time of Ã is clear, in the following we show Ã emulates
A well. We first note that in Case 1, Ã always returns the same answer that
BreakerDec,h would. To handle Case 2, let k ∈ {0, 1}t and assume that the query
ht(k) was not perviously asked by A. Since h is length doubling, the probability
over the choice of h that Dec(k, c) = ht(k) is 2−2t. Using a union bound we have
that the probability, over the choice of h, that Ã returns a value different from
what BreakerDec,h would (i.e., Ã returns ⊥ where BreakerDec,h finds a consistent
key) is at most 2− log(tA(n))−log(1/δ(n)) = δ(n)/tA(n). Since there are at most tA(n)
calls to BreakerDec,h, the probability that in any of those Ã returns a wrong value
is at most δ(n), which proves the lemma.

Proof. (of Theorem 5) The proof follows the lines of the one of Theorem 1, but
we need to work a little harder for proving that having access to h does not give
the adversary additional power.15

Assume that there exists a strongly-black-box proof of security from (Enc,
Dec) to a cryptographic game Γ and let M (·) be the algorithm for break-
ing Γ as guaranteed by this proof of security. It easily follows from the proof
of Lemma 2 that also in the setting of this section there is an efficient al-
gorithm ABreakerDec,h,h

KDI , with oracle access to BreakerDec,h and h breaking the
KDI-security of (Enc,Dec) with probability one over the choice of h. Thus,

MABreakerDec,h,h
KDI breaks Γ with probability 1 over the choice of h. Namely,

Prh
[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins] > 1
ph(n) for infinitely many n

]
=1, (1)

where rA and rΓ denote the random-coins of A and Γ , respectively, and ph is some
polynomial that may depend on h. In the following we first remove the depen-

dence of the polynomial ph from h. For this let ε(n) := Prh,rA,rΓ [MABreakerDec,h,h
KDI

15 One gets this property “for free”, when the underlying hardness assumption is in-
verting a random permutation.

↔ Γ (1n) wins] = Eh
[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins]
]
. We show that ε is

non negligible. Using Markov’s inequality we get for every n ∈ N that Prh
[
PrrA,rΓ [

MABreakerDec,h,h
KDI ↔ Γ (1n) wins] < n2ε(n)

]
> 1− 1

n2 , and therefore16 Prh
[
PrrA,rΓ [

MABreakerDec,h,h
KDI ↔ Γ (1n) wins] < n2ε(n) for all n > 2

]
≥ 1−

∑∞
n=2

1
n2 >

1
3 Com-

bining this with Equation (1) we get that Prh
[

1
ph(n) < PrrA,rΓ [MABreakerDec,h,h

KDI ↔

Γ (1n) wins] < n2ε(n) for infinitely many n
]
> 1

3 , which implies that there is a

polynomial p(n) such that ε(n) > 1
p(n) infinitely often.

In order to finish the proof, we will now to apply Lemma 4 on MABreakerDec,h,h
KDI .

Recall that Lemma 4 was proved only in the stand alone settings, where in partic-
ular no interaction with a random system is considered. Since the proof of secu-
rity of (Enc,Dec) is strongly-black-box, we have that Γ does not access, through

interaction with MABreakerDec,h,h
KDI , the function h. Therefore, Γ ’s answers are de-

termined by the output behavior of MABreakerDec,h,h
KDI and the proof of Lemma 4

goes through also in this setting. Hence, Lemma 4 yields, letting δ(n) = 1
2p(n) ,

the existence of an efficient algorithm M̃h with oracle access only to h, such that
Prh,rA,rΓ [M̃h ↔ Γ (1n) wins] > 1

2p(n) for infinitely many n’s.

Our final step is to emulate M̃h, where rather than accessing h we randomly
chooses the answer of each time one is requested (and cache it). The latter
emulation breaks the cryptographic assumption with probability at least 1

2p(n)

for infinitely many n’s and since it is also efficient, it implies that Γ is not secure.

5 Applying Our Technique to Other Primitives

It seems tempting to try and use the above Breaker also to show the impossi-
bility of constructing other KDI-secure primitives. Consider for instance pseu-
dorandom functions or permutations that are supposed to be secure even if
the adversary can obtain its value on a function of its secret key. Halevi and
Krawczyk [HK07] show that a deterministic construction cannot exist, but give
a construction in case the permutation has an additional public parameter (i.e.,
salt) chosen after the challenge function is fixed. Their construction, however,
compresses (e.g., maps n bits to n/2).

It is indeed possible to generalize our techniques to this case, as long for as the
pseudorandom functions are injective for every key. In this case, Breaker finds
a key k such that fk,r(h(k)) = c, where f is the pseudorandom function and r
is the random salt. The reason this method fails if the construction compresses
(as the one given by Halevi and Krawczyk [HK07]), is that Breaker as defined
above does not seem to give useful information about the key anymore, since it
is unlikely that the correct key is the lexicographically smallest.
16 The σ-additivity of the measure implies that the event in the next probability is

measurable.

It seems that we also cannot utilize our Breaker for the general case of length
increasing (non-injective) pseudorandom functions (or equivalently, for the case
that we are allowed to make several KDI queries). Consider the question whether
a given pseudorandom function is constant on a negligible fraction of the keys
(e.g., on a single key k it holds that fk,r(·) := 0`). Deciding whether a given
function has this property or not might be infeasible. Yet, using for instance
the Breaker of Section 4, we can easily find the right answer: ask the Breaker
on (h, 0`), where h is a random hash function, and answer “Yes” is the Breaker
finds some consistent key. Thus, in this setting our Breaker gives us an extra
power that we cannot emulate.

Acknowledgments

We are very grateful to Oded Goldreich, Jonathan Hoch, Gil Segev, Omer Rein-
gold and Udi Wieder for useful discussions. We thank the anonymous referees
for many useful comments.

References

[AR02] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). JoC, 15(2):103–127, 2002.

[Bar01] B. Barak. How to go beyond the black-box simulation barrier. In 42nd
FOCS, pages 106–115. IEEE Computer Society, 2001.

[BHHO08] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure en-
cryption from decision Diffie-Hellman. In CRYPTO 2008.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. Selected Areas in Cryptography 2002.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. EUROCRYPT
2001.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. JCSS,
18(2):143–154, 1979.

[DOP05] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of the full
domain hash. In CRYPTO 2005.

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[GGKT05] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency
of generic cryptographic constructions. S. J. on Comp,35(1):217-246, 2005.

[GKM+00] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The
relationship between public key encryption and oblivious transfer. FOCS
2000.

[GT00] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS 2000.

[HHRS07] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in
interactive protocols – A tight lower bound on the round complexity of
statistically-hiding commitments. FOCS 2007.

[HH08] I. Haitner and T. Holenstein. On the (Im)Possibility of Key Dependent
Encryption (full version). http://eprint.iacr.org/2008/164

[HK05] O. Horvitz and J. Katz. Bounds on the efficiency of ”black-box” commit-
ment schemes. In ICALP ’05, pages 128–139, 2005.

[HK07] S. Halevi and H. Krawczyk. Security under key-dependent inputs. In 14th
ACM CCS, 2007.

[Hof08] D. Hofheinz. Possibility and impossibility results for selective decommit-
ments. Technical Report 2008/168, eprint.iacr.org, April 2008.

[HU08] D. Hofheinz and D. Unruh. Towards key-dependent message security in the
standard model. In EUROCRYPT 2008.

[IJK07] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product
theorems. In CRYPTO 2007, pages 500–516, 2007.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In STOC 1989.

[KST99] J. H. Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In FOCS 1999.

[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between
cryptographic primitives. In TCC 2004.

[Rud88] S. Rudich. Limits on the Provable Consequences of One-Way Functions.
PhD thesis, U.C. Berkeley, 1988.

[Sim98] D. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT ’98, 1998.

[Wee07] H. Wee. One-way permutations, interactive hashing and statistically hiding
commitments. In TCC 2007.

A Gennaro-Trevisan Style Proof of Lemma 3

In this section we prove an alternative non-uniform version of Lemma 3.

Lemma 5 (non-uniform version of Lemma 3). Let A be a non-uniform
adversary that gets h as an auxiliary input and has oracle access to π and
BreakerDecπ,h. Assume that A and Dec satisfy the bounds µA(n)=µDec(n)= nC

for some C ∈ N. For ε(n) = 2−n
1/(2C)

we have that Prh←H,π←Π,y←{0,1}n [

A(π,BreakerDecπ,h)(y, h) = π−1(y)] < 3ε.

Our main tool is the following lemma.

Lemma 6. Let A be a non-uniform adversary that gets h as an auxiliary input,
and has oracle access to π and Breaker, and assume Pry

[
A(π,BreakerDecπ,h)(y,

h) = π−1(y) ∧ Bad(y)
]
> ε(n), where Bad(y) is the event that A(y, h) makes

a query BreakerDecπ,h(t, c) for which |Diffπ(t, c, h, y)| ≥ µDec(µA(n))2. Then, π
can be described using log((2n − s(n))!) + 2s(n) log

(
e2n

s(n)

)
+ µA(n)2µDec(µA(n))

bits, where s(n) = ε(n)2n/
(
2µA(n)(µDec(µA(n)))2

)
.

We omit the proof of Lemma 5 in this version, it is obtained from Lemma 6.

Proof. (of Lemma 6) We assume w.l.o.g. ε(n) > 2µA(n)2−n, since otherwise
the statement is trivial. Our description of π consists of the following parts: the
description of a set S ⊆ {0, 1}n, the description of the image of S under π (which

roughly corresponds to the y’s on which A succeeds in inverting), the description
of the permutation that π implies if restricted on {0, 1}n \ S (i.e., the elements
not in S) and finally the description of {hm ∈ h | m ≤ µA(n)}.

The description of S and the image of S both require log
((

2n

|S|
))
≤ |S| log(e 2n

|S|)
bits. The description of the permutation requires at most log((2n − |S|)!) bits.
To store the functions hm takes µA(n)2µDec(µA(n)) bits, for some appropriate
family H. Thus, in total log((2n − |S|)!) + 2|S| log(e 2n

|S|) + µA(n)2µDec(µA(n))
bits are sufficient. In the following we succeed in making S as big as |S| =
ε(n)2n/

(
2µA(n)(µDec(µA(n)))2

)
, which implies our description size of π.

Defining the set S. We use the following, inefficient, algorithm to create S: we
start by letting I = {y ∈ {0, 1}n : A(y) = π−1(y) ∧ Bad(y)} and iteratively
do the following. First, remove the lexicographic smallest element y from I and
add π−1(y) to S. Next, emulate A(π,BreakerDecπ,h)(y, h) and remove all queries A
makes whose answers are in I from I (without putting them into S). In addition,
for each query to BreakerDecπ,h(t, c) done by A(π,BreakerDecπ,h)(y, h), remove the
images π(x) from I for all x∗ ∈ Diffπ(t, c, h, y) (note that y itself is not removed
from I, as we already removed it). Once the emulation is over, repeat with the
next element. Since for every emulation we remove at most µA(n) + µA(n) ·
µDec(µA(n))2 elements from I before moving another element to S, we have that
|S| ≥ ε(n)2n/2µA(n)(µDec(µA(n)))2.

The reconstruction of π. We now show that we can reconstruct π from the
given information. For this, we first reconstruct the oracle outside of S from the
given information. Then pick the lexicographic smallest element y ∈ S whose
preimage is not yet known, and emulate Aπ,BreakerDecπ,h

(y, h). We first consider
the queries π(x) done by A(y, h). The definition of S yields that we either know
the answer for this query, or we are guaranteed that π(x) = y (and we can
stop the emulation). So it is left to consider the queries BreakerDecπ,h(t, c). We
note the that if k ∈ {0, 1}t is the value we should return as the answer of
BreakerDecπ,h(t, c), then the answers to all π-queries made by BreakerDecπ,h(t, c)
when it calls Decπ(k, c) (see Algorithm 3) should be known, where the only
exception is a query on π−1(y) if such occurs. Therefore, we try all candidates x∗

(i.e., the elements whose image we don’t know at this point) for π−1(y), and
emulate Decπ|x∗→y (k, c). The latter emulation succeeds unless a query is made
whose answer we don’t know. In this case, we know by the above observation
that the current pair (k, x∗) is not the one we are looking for, and we can safely
move to the next candidate for x∗. Finally, note that if a successful emulation
of Decπ|x∗→y (k, c) = h(k) done by BreakerDecπ,h(t, c) satisfies Decπ|x∗→y (k, c) =
h(k), then k must be the correct answer to BreakerDecπ,h(t, c). The reason for
that x∗ would be in Diffπ(t, c, h, y), and therefore cannot be in S. All in all, we
can emulate A(y, h)’s run correctly and obtain the correct π−1(y) as the output
of A.

