
Adaptive Zero-Knowledge Proofs and
Adaptively Secure Oblivious Transfer

Yehuda Lindell and Hila Zarosim

Department of Computer Science
Bar-Ilan University, Israel

{zarosih,lindell}@cs.biu.ac.il

Abstract. In the setting of secure computation, a set of parties wish
to securely compute some function of their inputs, in the presence of an
adversary. The adversary in question may be static (meaning that it con-
trols a predetermined subset of the parties) or adaptive (meaning that it
can choose to corrupt parties during the protocol execution and based on
what it sees). In this paper, we study two fundamental questions relating
to the basic zero-knowledge and oblivious transfer protocol problems:
– Adaptive zero-knowledge proofs: We ask whether it is possible to con-

struct adaptive zero-knowledge proofs (with unconditional sound-
ness). Beaver (STOC 1996) showed that known zero-knowledge proofs
are not adaptively secure, and in addition showed how to construct
zero-knowledge arguments (with computational soundness).

– Adaptively secure oblivious transfer: All known protocols for adap-
tively secure oblivious transfer rely on seemingly stronger hardness
assumptions than for the case of static adversaries. We ask whether
this is inherent, and in particular, whether it is possible to construct
adaptively secure oblivious transfer from enhanced trapdoor permu-
tations alone.

We provide surprising answers to the above questions, showing that
achieving adaptive security is sometimes harder than achieving static se-
curity, and sometimes not. First, we show that assuming the existence of
one-way functions only, there exist adaptive zero-knowledge proofs for all
languages in NP. In order to prove this, we overcome the problem that
all adaptive zero-knowledge protocols known until now used equivocal
commitments (which would enable an all-powerful prover to cheat). Sec-
ond, we prove a black-box separation between adaptively secure oblivious
transfer and enhanced trapdoor permutations. As a corollary, we derive
a black-box separation between adaptively and statically securely obliv-
ious transfer. This is the first black-box separation to relate to adaptive
security and thus the first evidence that it is indeed harder to achieve
security in the presence of adaptive adversaries than in the presence of
static adversaries.

1 Introduction

In the setting of secure two-party and multiparty computation, parties with pri-
vate inputs wish to securely compute some joint function of their inputs, where
“security” must hold in the presence of adversarial behavior by some of the



parties. An important parameter in any definition of security relates to the ad-
versary’s power. Is the adversary computationally bounded or all powerful? Is
the adversary semi-honest (meaning that it follows all protocol instructions but
tries to learn more than it’s supposed to by analyzing the messages it receives)
or is it malicious (meaning that it can arbitrarily deviate from the protocol
specification)? Finally, are the adversarial corruptions static (meaning that the
set of corrupted parties is fixed) or adaptive (meaning that the adversary can
corrupt parties throughout the computation and the question of who to corrupt
and when may depend on the adversary’s view in the protocol execution). It is
desirable to achieve security in the presence of adaptive adversaries where pos-
sible, since it models the real-world phenomenon of “hackers” actively breaking
into computers, possibly while they are executing secure protocols. However, it
seems to be technically harder to achieve security in the presence of adaptive
adversaries. Among other things, it requires the ability to construct a simulator
who can first generate a transcript blindly (without knowing any party’s input)
and then later, upon receiving inputs, “explain” the transcript as an execution
of honest parties with those inputs.

In this paper, we ask two basic questions related to the feasibility of achieving
security in the presence of adaptive adversaries. Our questions were borne out
of the following two observations:

1. Adaptive zero-knowledge proofs: It has been shown that the zero-knowledge
proof system of [15] (and all others known) is not secure in the presence
of adaptive adversaries, or else the polynomial hierarchy collapses [1]. Due
to this result, all known zero-knowledge protocols for NP in the adaptive
setting are arguments, meaning that soundness only holds in the presence of a
polynomial-time prover (adaptive zero-knowledge arguments were presented
by [1] and later in the context of universal composability; e.g., see [7, 8]).
However, the question of whether or not adaptive zero-knowledge proofs
exist for all NP has not been addressed.

2. Adaptively secure oblivious transfer: One of the goals of the theory of cryp-
tography is to understand what assumptions are necessary and sufficient
for carrying out cryptographic tasks; see for example [16]. Despite this, no
such study has been carried out regarding adaptively secure protocols. In
particular, we do not know what assumptions are necessary for achieving
adaptively secure oblivious transfer (since oblivious transfer is complete for
secure computation, this question has important ramifications to adaptively
secure computation in general). Currently, what is known is that although
statically secure oblivious transfer can be constructed from enhanced trap-
door permutations [10, 14], all constructions for adaptively secure oblivious
transfer use additional assumptions like the ability to sample a permutation
without knowing its trapdoor [2, 8].

Our results – adaptive zero-knowledge proofs. All known zero-knowledge
protocols for NP essentially follow the same paradigm: the prover sends the
verifier commitments that are based on the statement being proved (and its



witness), and the verifier then asks the prover to open part or all of the com-
mitments. Based on the prover’s answer, the verifier is either convinced that
the statement is true or detects the prover cheating. It therefore follows that
soundness only holds if the commitment scheme used is binding, and this is a
problem in the setting of adaptive security. Consider an adversary that corrupts
the verifier at the beginning of the execution and the prover at the end. In this
case, the zero-knowledge simulator must generate a transcript without knowing
the NP-witness. However, at the end, after the prover is corrupted (and the sim-
ulator then receives a witness), it must be able to show that the commitments
were generated using that witness. Until now, this has been solved by using
equivocal commitments that can be opened to any value desired (in order for
soundness to hold, the ability to equivocate is given to the simulator and not
the real prover). However, this means that the protocol has only computational
soundness, because an all-powerful prover is able to equivocate like the simula-
tor. Indeed, the above observation led us to initially conjecture that adaptive
zero-knowledge proofs exist only for SZK. However, our conjecture was wrong,
and in this paper we prove the following theorem:

Theorem 1 Assuming the existence of one-way functions that are hard to invert
for non-uniform adversaries, there exist adaptive zero-knowledge proofs for all
NP.

We prove Theorem 1 by constructing a new type of instance-dependent com-
mitment scheme. Instance-dependent commitment schemes are commitments
whose properties depend on whether the instance (or statement) in question
is in the language or not [3, 18]. Typically, they are defined for a language L
as follows. Let x be a statement. If x ∈ L then the commitment associated
with x is computationally hiding and if x /∈ L then the commitment associ-
ated with x is perfectly binding. This has proven very useful in the context of
zero-knowledge where hiding alone is needed for the case of x ∈ L, and binding
alone is needed in the case of x /∈ L; see for example [21, 26, 22]. We construct
an instance-dependent commitment scheme with the additional property that if
x ∈ L then the commitment is equivocal and the simulator can open it to any
value it wishes. To be more exact, we need the commitment itself to be adap-
tively secure, meaning that it must be possible to generate a commitment value
c and then later find “random coins” r for any bit b so that c is a commitment
string generated by an honest committer with input b and random coins r.1 In
contrast to the above, if x /∈ L then the commitment is still perfectly binding.
Given such a commitment (which is actually very similar to the commitment
schemes presented in [11] and [8]) we are able to construct the first computa-
tional zero-knowledge proof for all NP that is secure also in the case of adaptive
corruptions.2

1 We stress that this is a strictly stronger requirement than equivocality. In most equiv-
ocal commitments, the committer reveals only some of its coins upon decommitting.
This does not suffice for achieving adaptive commitments.

2 In [22], adaptively secure commitment schemes are constructed for the languages of
Graph Isomorphism and Quadratic Residuosity (although they are not presented in



Our results – adaptively secure oblivious transfer. As we have mentioned,
all known protocols for adaptively secure oblivious transfer require assumptions
of the flavor that it is possible to sample a permutation without its trapdoor. In
contrast, standard trapdoor permutations do not have this property. We remark
that enhanced trapdoor permutations do have the property that it is possible
to sample an element in the domain of the permutation without knowing its
preimage. This begs the question as to whether such “oblivious sampling” of the
permutation’s domain suffices for achieving adaptively secure oblivious transfer,
or is something stronger needed (like oblivious sampling of permutations them-
selves). We remark that oblivious sampling is used in this context by having the
simulator sample unobliviously and then “lie” in its final transcript by claiming
to have sampled in the regular way. However, this strategy is problematic when
the oblivious sampling is carried out on elements in the domain because if the
trapdoor is known then it may be possible to see if the preimage of the sampled
value appears implicitly in the protocol transcript. (For example, in the protocol
of [10], the preimages fully define the sender’s input and so if the trapdoor is
known, the values can be checked.) Of course, such arguments do not constitute
any form of evidence. In order to demonstrate hardness, we use the methodol-
ogy of black-box separations, introduced by [17] and later used in [25, 19, 12, 24]
amongst others. We prove the following informally stated theorem:

Theorem 2 There exists an oracle relative to which enhanced trapdoor permu-
tations exist but adaptively secure oblivious transfer does not exist.

Recalling that statically secure oblivious transfer can be constructed from
any enhanced trapdoor permutation in a black-box way [10, 14], we obtain the
following corollary:

Corollary 3 There exists an oracle relative to which statically secure oblivious
transfer exists but adaptively secure oblivious transfer does not exist.

This is the first evidence that it is strictly harder to achieve security in
the presence of adaptive adversaries than to achieve security in the presence
of static adversaries. We prove Theorem 2 by showing that if it is possible to
achieve adaptively secure oblivious transfer using only enhanced trapdoor per-
mutations, then it is possible to achieve statically secure oblivious transfer using
only symmetric encryption (this is very inexact but sufficient for intuition). We
then show that statically secure oblivious transfer does not exist relative to most
symmetric encryption oracles. We prove this using the recent result of [9] that
shows the equivalence of the random oracle and ideal cipher models, to replace a
symmetric encryption oracle by a “plain” random oracle (using six rounds of the
Luby-Rackoff construction [20]). This enables us to extend the black-box separa-
tion of [17] to show that key agreement does not exist relative to most symmetric

this way nor for this purpose). The constructions in [22] are incomparable to ours.
On the one hand, they require no hardness assumptions whereas we use one-way
functions. On the other hand, our construction is for all languages in NP whereas
they are restricted to the above two specific languages (which are also in SZK).



encryption oracles. We conclude the proof by recalling that key agreement can
be constructed from oblivious transfer [12]. Thus, adaptively secure oblivious
transfer cannot be constructed in a black-box way from enhanced trapdoor per-
mutations. We remark that all of our results for oblivious transfer are proven for
semi-honest adversaries (and thus hold also for malicious adversaries).

Our proof makes no use of the fact that the functionality being computed is
oblivious transfer and holds for any functionality. We conclude that either a given
function can be securely computed statically assuming only the existence of one-
way functions (or to be more exact, only given a “symmetric” random oracle),
or enhanced trapdoor permutations do not suffice for computing it adaptively.

Organization. Due to lack of space in this extended abstract, we present only
proof sketches of our results; the full proofs can be found in the full version. Like-
wise, we do not present the definitions of secure computation and refer to [14]
for the definition of security in the presence of semi-honest static adversaries
(needed in Section 3.2), and to [6] for the definition of security in the presence
of adaptive adversaries. Very briefly, the formulation of security for adaptive
adversaries in [6] includes an environment Z that communicates with the ad-
versary before and after the execution. An important property of the definition
is that of post-execution corruption, meaning that the environment can ask the
adversary to corrupt parties after the protocol transcript has already been fixed.
This property is crucial for proving sequential composition; see [6].

2 Adaptive Zero-Knowledge Proofs

In this section we show how to construct adaptive zero-knowledge proof for
the language of Hamiltonicity (HC). Our construction is based on Blum’s zero-
knowledge proof for Hamiltonicity [5]. In this protocol, the prover first commits
to a random permutation of G, and the verifier then chooses randomly whether
to check that the committed graph is indeed a permutation of G or that the
committed graph contains a Hamiltonian cycle. Soundness holds because a non-
Hamiltonian graph cannot simultaneously be a permutation of G and contain
a Hamiltonian cycle. The simulator for this proof system does not know the
witness and so cannot decommit to a Hamiltonian cycle after committing to a
permutation of G. Therefore, it works by randomly choosing whether to send
commitments to a permutation of G or to a graph containing only a random
cycle of length n. Note that in the latter case, the commitments generated by
the simulator are to different values than those generated by the real prover. This
is not a problem when considering static corruptions because the hiding property
of the commitments means that this cannot be distinguished. However, in the
setting of adaptive corruptions, the prover can be corrupted after the simulation
ends. In this case, the simulator must be able to provide random coins that
demonstrate that the commitments sent initially are those that an honest prover
would have sent. However, when the simulator commits to a graph containing
only a Hamiltonian cycle, it cannot do this (because an honest prover never sends
such a commitment). Thus, the commitment scheme used must be such that the
simulator – given an appropriate trapdoor – can “explain” commitments to 1 as



commitments to 0 and vice versa (actually it suffices that commitments to 0 be
explainable as commitments to 1). However, if we use this type of commitment
scheme, then we can no longer achieve statistical soundness (since an all-powerful
cheating prover can find the trapdoor and use the adaptive property of the
commitment scheme to fool the verifier).

We overcome this problem and construct adaptive zero-knowledge proofs for
all NP by constructing an adaptive instance-dependent commitment scheme. In-
formally speaking, an adaptive instance-dependent commitment scheme (AIDCS)
for an NP-language L is comprised of 3 algorithms: (1) An ordinary commit-
ment algorithm Com that on an instance x, a bit b, and random coins r returns
a commitment c to b, denoted Com(x, b; r); (2) A “fake” commitment algo-
rithm Com′ that on an instance x and random coins r′ returns a commitment
c′ = Com′(x; r′); (3) An “adaptive-opening” algorithm Adapt that given x ∈ L
and a witness w ∈ Rx, can present every output c′ of Com′ as a valid com-
mitment to any bit b. That is, given c′, the random coins r′ used by Com′ to
generate c′ and any bit b, algorithm Adapt outputs “random coins” r such that
c′ = Com(x, b; r). Note the difference between Com and Com′: While Com is an
ordinary committing algorithm (creating a commitment value for a given bit),
when x ∈ L, algorithm Com′ creates commitment values that are not associated
to any specific bit. However, given a witness attesting to the fact that x ∈ L,
these commitments can later be claimed to be commitments to 0 or to 1 by
using algorithm Adapt. We stress that without such a witness, a commitment
generated by Com′ cannot necessarily be decommitted to any bit.

The security requirements of (Com, Com′, Adapt) are as follows. For every
x ∈ L, the commitment scheme must be hiding, meaning that commitments
to 0, to 1 and fake commitments are all indistinguishable (i.e., {Com(x, 0)}x∈L

c≡
{Com(x, 1)}x∈L

c≡ {Com′(x)}x∈L). Furthermore, the output of Adapt must be
indistinguishable from the output of an “honest committer” using algorithm
Com. More specifically, for every c′ in the range of Com′ and every bit b, when
given a witness w ∈ Rx and coins r′ such that c′ = Com′(x; r′), algorithm Adapt
outputs a string r that is computationally indistinguishable from a uniformly
distributed string and for which c′ = Com(x, b; r). In addition to the above
hiding properties we require that for every x 6∈ L, the commitment scheme
Com is perfectly binding (i.e., {Com(x, 0)}x/∈L ∩ {Com(x, 1)}x/∈L = φ). A formal
definition appears in the full version of this paper.

Constructing adaptive instance-dependent schemes. Our construction is
almost identical to the trapdoor commitment scheme of [11] (as adapted by [8]),
with one small but crucial difference. We begin by describing the adaptation
by [8] of the trapdoor commitment of [11]. Let C be a perfectly binding com-
mitment scheme with pseudorandom range and let G be a graph (in [11] G is
a Hamiltonian graph generated by the receiver whereas in [8] it is a Hamilto-
nian graph that is placed in the common reference string). Then, in order to
commit to 0, the committer chooses a random permutation π of the vertices
of G and commits to the adjacency matrix of π(G) using C. To decommit, it
opens all entries and sends π. To commit to 1, the committer chooses a random



n-cycle and for all entries in the adjacency matrix corresponding to the edges of
the n-cycle, it uses C to commit to 1. In contrast, all other entries are set to a
random string (recall that the commitment scheme has a pseudorandom range
and thus this is indistinguishable from a commitment to 0). To decommit, it
opens only the entries corresponding to the edges of the n-cycle. As stated, this
scheme is computationally hiding due to the underlying commitment scheme C.
In addition, it is computational binding as long as the sender does not know
any Hamiltonian cycle in G. We stress that the scheme is not perfectly binding
because an all-powerful corrupted committer can find the Hamiltonian cycle in
G and send commitments that it can later open to both 0 and 1.

Our key observation is that in the setting of zero-knowledge we can use the
graph G that is the statement being proven as the graph in the above commitment
scheme. This implies that if G ∈ HC, then the commitment scheme is compu-
tationally hiding and if G /∈ HC then it is perfectly binding, as required. (As
an added bonus, the graph need not be generated by the protocol.) Regarding
adaptivity, when G ∈ HC a commitment to 0 can be opened as a 0 or 1 given a
cycle in G. This is due to the fact that when a cycle is known in G, it is possible
to decommit to the cycle only (and claim that the rest of the commitments are
just random coins), or to decommit to the entire graph.

In summary, we construct the following tuple of probabilistic polynomial-time
algorithms: Com works as described above. Algorithm Com′ simply generates a
commitment to 0 (that is, Com′(G; r) = Com(G, 0; r)). Given a witness w ∈ RG

(a Hamiltonian cycle in G) and a commitment c in the range of Com′, if Adapt
has to explain c as a commitment to 0, then it simply outputs the random coins
used by Com′. In contrast, in order to explain c as a commitment to 1, Adapt
outputs the randomness used by C for the edges in the Hamiltonian cycle in
π(G) (recall Adapt receives a Hamiltonian cycle w in G as input) and simply
claims that all the other commitments are merely random strings (recall that C
has pseudorandom range and therefore the output of Adapt is computationally
indistinguishable from the uniform distribution).

Adaptive zero-knowledge proof for Hamiltonicity. Our adaptive ZK proof
system is exactly that of [5], with the ordinary commitment scheme replaced by
an adaptive instance-dependent commitment scheme. The fact that this scheme
has unconditional soundness follows from the fact that when x /∈ L, the commit-
ment is perfectly binding. The simulation works like the standard zero-knowledge
simulator for Hamiltonicity except that Com′ is used to commit to all edges out-
side of the n-cycle (in the case that the simulator sends a graph containing only
a cycle). This enables the simulator to use Adapt later in case the prover is
corrupted, and show that the commitment was “really” to a permutation of G.

3 Adaptive Oblivious Transfer

We prove our black-box separation of adaptively secure oblivious transfer from
enhanced trapdoor permutations in the following steps. First, in Section 3.1 we
define Γ and ∆ oracles, where a Γ -oracle essentially represents an enhanced trap-
door permutation and a ∆-oracle is essentially a type of symmetric encryption



scheme. Then, in Section 3.2 we show that if there exists a protocol for securely
computing any functionality in the presence of adaptive adversaries relative to
Γ -oracles, then there exists a protocol for securely computing the same function-
ality in the presence of static adversaries relative to ∆-oracles. The next step of
the proof is to then show that for measure 1 of random ∆-oracles no statically
secure OT 2

1 exists. This is done by using the original black-box separation of key
agreement from one-way functions [17], and the fact that key agreement can be
obtained from statically secure oblivious transfer; see Section 3.3. We conclude
that for measure 1 of random Γ -oracles no adaptively secure OT 2

1 exists (see
Section 3.4).

3.1 Oracle Definitions

We begin by defining (asymmetric) Γ and (symmetric) ∆ oracles which are used
in our proof.

Γ -oracles. Informally speaking, a Γ oracle is supposed to model an enhanced
trapdoor permutation. Thus, it has an oracle for specifying a function and its
trapdoor, and an oracle for computing the function (given the function identifier)
and inverting it (given the trapdoor). The functions themselves are all over
{0, 1}n and thus it is trivial to sample an element without knowing its inverse
(as is required for enhanced trapdoor permutations). Formally, we define a Γ -
oracle to be an oracle containing the following functions:

– GΓ (·) = (G1
Γ , G2

Γ ) is a pair of injective functions such that on an input
r ∈ {0, 1}n, GΓ (r) = (G1

Γ (r), G2
Γ (r)) = (fid, tid) ∈ {0, 1}2n × {0, 1}2n. Note

that a party can query only GΓ and cannot query one of its components
separately.

– A function F (·, ·), such that for every fid ∈ Range(G1
Γ ), F (fid, ·) is a per-

mutation over {0, 1}n and for every fid 6∈ Range(G1
Γ ) and every x ∈ {0, 1}n,

F (fid, x) =⊥.
– A function F−1 satisfying F−1(tid, F (fid, x)) = x for every x ∈ {0, 1}n and

every (fid, tid) ∈ Range(GΓ ). If tid is not in the range of G2
Γ (·), then F−1

returns ⊥. Note that since G1
Γ and G2

Γ are injective functions, pairs of the
form (fid, tid) and (fid′, tid), where fid 6= fid′ do not exist and F−1 is well
defined.

Uniform distribution over oracles – notation: We denote by UΓ the uni-
form distribution over Γ -oracles. Namely, an oracle OΓ = (GΓ , F, F−1) is dis-
tributed according to UΓ if G1

Γ and G2
Γ are two uniformly distributed injective

functions from {0, 1}n to {0, 1}2n and for every fid ∈ Range(G1
Γ ), F (fid, ·) is

a uniformly distributed permutation over {0, 1}n. We write “OΓ is a random
Γ -oracle” as shorthand for “OΓ is distributed according to UΓ ”.

∆-oracles. Informally, a ∆ oracle is a symmetric oracle, meaning that anyone
with the ability to compute the function also has the ability to invert it. Specifi-
cally, we define a function P and its inverse that is analogous to F and F−1 in a
Γ oracle. For reasons that will become apparent later, we also define a function



Q and its inverse (this has no analogue in a Γ oracle). Formally, we define a
“∆-oracle” to be an oracle containing the following functions:

– G∆ is an injective function from {0, 1}n to {0, 1}2n.
– A function P (·, ·) such that for every fid ∈ Range(G∆), P (fid, ·) is a

permutation over {0, 1}n. For fid 6∈ Range(G∆) and every x ∈ {0, 1}n,
P (fid, x) =⊥.

– P−1 is the inversion algorithm of P . Namely for every fid ∈ Range(G∆)
and x ∈ {0, 1}n, P−1(fid, P (fid, x)) = x. For fid 6∈ Range(G∆) and every
x ∈ {0, 1}n, P−1(fid, x) =⊥.

– Q is an injective function from the range of G∆ to {0, 1}2n. Namely, for every
fid ∈ Range(G∆), Q(fid) ∈ {0, 1}2n, for every fid 6= fid′ ∈ Range(G∆),
Q(fid) 6= Q(fid′) and for every fid 6∈ Range(G∆), Q(fid) =⊥.

– Q−1 is the inversion algorithm of Q. Namely, for every fid ∈ Range(G∆),
Q−1(Q(fid)) = fid. for every y 6∈ Range(Q), Q−1(y) =⊥.

We denote by U∆ the uniform distribution over ∆-oracles. Namely, the oracle
O∆ = (G∆, P, P−1, Q, Q−1) is distributed according to U∆, if G∆ is a uni-
formly distributed injective function from {0, 1}n to {0, 1}2n, for every fid ∈
Range(G∆), P (fid, ·) is a uniformly distributed permutation over {0, 1}n and
Q is a uniformly distributed injective function from the range of G∆ to {0, 1}2n.

Note the difference between Γ -oracles and ∆-oracles. Γ -oracle have an asym-
metric nature: F and its inversion oracle F−1 use different keys. On the contrary,
∆-oracles have a symmetric nature: identical keys are used by P and its inversion
oracle P−1. (For this reason, we used a “symmetric” character ∆ for ∆-oracles
and an “asymmetric” character Γ for Γ -oracles.)

Γ -oracles versus ∆-oracles. We now show a bijection φ that maps every Γ -
oracle to a corresponding ∆-oracle. Let OΓ = (GΓ , F, F−1) be a Γ -oracle. φ(OΓ )
is the tuple of functions (G∆, P, P−1, Q, Q−1) satisfying:

– For every r ∈ {0, 1}n, it holds that G∆(r) = G1
Γ (r).

– For every r ∈ {0, 1}n, Q(G∆(r)) = G2
Γ (r), and for every fid 6∈ Range(G∆),

Q(fid) =⊥.
– For every fid ∈ {0, 1}2n and x ∈ {0, 1}n, it holds that P (fid, x) = F (fid, x).
– P−1 and Q−1 are the inversion algorithms of P and Q.

Claim 1 φ is a bijection from the set of Γ -oracles to the set of ∆-oracles.

The above claim is proven in the full version of this paper and immediately
implies the following:

Corollary 2 The random variables U∆ and φ(UΓ ) are identically distributed.

Enhanced trapdoor permutations relative to Γ -oracles. It is not difficult
to show there exist enhanced trapdoor permutations, as defined in [14], relative
to random Γ -oracles. Indeed, it can be shown that there exist enhanced trapdoor
permutations relative to measure 1 of the Γ -oracles. This is shown in the full
version. We remark also that semi-honest oblivious transfer with static corrup-
tions can be constructed from any enhanced trapdoor permutation [10] and thus
exists relative to measure 1 of the Γ -oracles.



3.2 Static OT 2
1 Relative to ∆-Oracles from Adaptive OT 2

1

In this section we prove that if there exists an adaptively secure OT 2
1 relative to

random Γ -oracles, then there exists a statically secure OT 2
1 relative to random ∆-

oracles. We actually prove a more general theorem that if there exists a protocol
for securely computing a functionality f in the presence of adaptive adversaries
relative to a random Γ -oracle, then there exists a protocol for securely computing
f in the presence of static adversaries relative to a random ∆-oracle. We restrict
our proof to two-party protocols only, but stress that the claim can be proved
similarly for multiparty protocols as well.

Let Π1 = 〈Alice1, Bob1〉 be a protocol for securely computing a functionality
f in the presence of adaptive adversaries relative a Γ -oracle. We use Π1 to
construct a new protocol Π2 = 〈Alice2, Bob2〉 for securely computing f in the
presence of static adversaries relative to a ∆-oracle.

Recall that the parties Alice2 and Bob2 have access to a ∆-oracle, while in
the original protocol, Alice1 and Bob1 have access to a Γ -oracle. There is a
fundamental difference between these two cases because a Γ -oracle is inherently
asymmetric (it is possible to send a party fid while keeping tid secret, thereby
enabling them to compute the permutation but not invert it), while a ∆-oracle
is inherently symmetric (the same fid is used to compute and invert the permu-
tation). The idea behind our proof is to eliminate the asymmetric nature of the
Γ -oracle by using the fact that in the adaptive setting (e.g., in the post-execution
corruption phase), the distinguisher can ultimately corrupt all parties. If it does
so, it obtains the entire view of all parties and in particular the view of any party
who samples a permutation using GΓ . The critical observation is that the prob-
ability of a party finding an fid in the range of GΓ without explicitly querying
it is negligible. However, if it does make such a query, then its view contains both
fid and tid and this will be obtained by the distinguisher upon corrupting the
parties. Thus, the distinguisher is able to compute and invert the permutation,
just like in the case of a ∆-oracle. The fact that the adaptive simulator must
simulate well even when the distinguisher works in this way (learning all fid, tid
pairs) is the basis for constructing a simulator for the static case when using a
∆-oracle.

We begin by defining Π2 = 〈Alice2, Bob2〉 which is constructed from Π1 by
replacing the Γ -oracle with a ∆-oracle:

Protocol Π2: On input xA, Alice2 invokes Alice1 on xA. On input xB, Bob2

invokes Bob1 on xB. The execution is described below for a party P2 emulating
P1, and is the same for both Alice2 and Bob2. In each round:

– When P2 gets the message sent by the other party in the previous round, it
hands it to P1.

– If P1 makes a query r to the oracle GΓ , P2 first queries G∆(r) and gets an
output fid. Then, P2 queries Q(fid) and gets an output tid. P2 hands the
pair (fid, tid) to P1.

– If P1 makes a query (fid, x) to F , P2 queries P (fid, x), receives an output
y and hands y to P1 (note that y may equal ⊥).



– If P1 makes a query (tid, y) to F−1, P2 first queries its oracle Q−1 on tid
and receives an output fid. If the outputs is ⊥, it hands ⊥ to P1. Otherwise,
P2 queries P−1(fid, y), obtains an output x and hands x to P1.

– If P1 writes a string m on its outgoing communication tape, P2 sends m to
the other party.

– At the end of the simulation, P2 outputs the output of P1.

We now prove that Π2 securely computes the functionality f in the presence
of semi-honest static adversaries.

Theorem 3 If Π1 securely computes the functionality f in the presence of adap-
tive adversaries relative to a random Γ -oracle OΓ , then Π2 securely computes f
in the presence of static semi-honest adversaries relative to the ∆-oracle φ(OΓ ).

Proof Sketch: The intuition has already been described above and we there-
fore proceed directly to the proof. Let OΓ be an oracle that is distributed ac-
cording to UΓ . We show that if Π1 is a secure adaptive protocol for computing
f relative to OΓ , then Π2 is a secure static semi-honest protocol for computing
f relative to O∆ = φ(OΓ ). It is easy to see that Π2 computes f relative to
O∆ because an execution of Π2 is, in fact, an execution of Π1 with a simulated
Γ -oracle which is exactly φ−1(O∆) = OΓ .

Next, we show that Π2 is a statically secure protocol relative to O∆. We use
the ideal-process simulator SIM of Π1 for the adaptive setting to construct two
probabilistic polynomial-time simulators SAlice2 and SBob2 for Π2 in the static
setting. Due to space restrictions, we present below only SBob2 (the simulator
SAlice2 is almost identical). Let A and Z be the following adversary strategy and
environment: Z starts with an input z ∈ {0, 1}. At the onset of the run of Π1, A
corrupts Bob1 and at the end of the computation outputs the entire view of Bob1.
In the postexecution phase, if z = 0, no corruptions are made and if z = 1, Z
creates a “corrupt Alice1” message, hands it to A who corrupts Alice. Eventually
Z outputs the entire view of the corrupted parties (that is: if z = 0, the view
of Bob alone and if z = 1, the view of both parties). No auxiliary information
is sent by Z to A. Let SIM be the ideal-process adversary guaranteed to exist
for A and Z by the security of Π1. We now use A, Z and SIM to define SBob2

(the static simulator for the case that Bob is corrupted). SBob2 receives the input
xB and output yB of Bob as defined by the functionality f and emulates the
run of SIM in the adaptive ideal model with environment Z with input z = 0.
Note that SIM must corrupt only Bob, because in the real world only Bob is
corrupted when z = 0. We also can assume, w.l.o.g. that SIM corrupts Bob in
the first corruption phase.

SBob2 receives input (xB , yB) and works as follows, simulating a Γ -oracle for
SIM using its ∆-oracle:

– If SIM makes a query r to the oracle GΓ , SBob2 queries its oracle G∆(r)
and receives an output fid. It then queries Q on fid, gets an output tid and
hands the pair (fid, tid) to SIM.



– If SIM makes a query (fid, x) to F , SBob2 queries it oracle P (fid, x), gets
an output y and hands it to SIM.

– If SIM makes a query (tid, y) to F−1, SBob2 first queries its oracle Q−1 on
tid, gets an output fid. If the outputs is ⊥, it hands ⊥ to SIM. Otherwise,
SBob2 queries P−1(fid, y), gets an output x and hands x to SIM.

– When SIM decides to corrupt Bob1, SBob2 plays the role of Z by sending
xB to SIM.

– In the computation phase, SBob2 plays the role of the trusted party and sends
yB to SIM (recall that SBob2 gets yB as input).

– At the end of the simulation, SBob2 outputs the output of SIM.

Informally speaking, we show that a distinguisher D2 for Π2 and SBob2 (rela-
tive to O∆) implies the existence of a distinguisher D1 for Π1 and SIM (relative
to OΓ ). The idea is to have D1 simulate the run of D2 on the view of Bob. How-
ever, D2 has oracle access to a ∆-oracle O∆, while D1 has oracle access to a
Γ -oracle OΓ . This might be problematic for example if D2 wishes to compute
P−1(fid, y) but D1 doesn’t know the corresponding tid (recall that D1 can only
invert y in the Γ -oracle world if it holds the trapdoor tid whereas D2 can invert
y given fid only). Despite the above, we use the fact that the range of GΓ is
a negligible fraction of {0, 1}2n × {0, 1}2n, and therefore any fid used in the
protocol (except with negligible probability) must have been generated via a
query to GΓ , as described in the intuition above. More specifically, we show that
if there exists a distinguisher D2 that distinguishes the output of SBob2 from
the output of a corrupted Bob2 in a real execution of Π2, then there exists a
distinguisher D1 that distinguishes the result of an ideal execution with SIM
from a real execution of Π1 with adversary A and environment Z with input
z = 1, meaning that Alice is also corrupted at the end. (Note that we set z = 0
in order to define SBob2 , but now set z = 1 to construct the distinguisher. Since
SIM has to work for all inputs z to Z, this suffices.) Since both Alice and Bob
are corrupted in this execution, D1 obtains all of the (fid, tid) pairs generated
by queries to GΓ and so it can invert always, enabling it to run D2 and use its
Γ -oracle to answer all of D2’s ∆ queries.

Formally, the distinguisher D1 begins by initializing a table TQ that will hold
all pairs (fid, tid) generated by queries to the oracle. D1 invokes 〈AliceOΓ

1 , BobOΓ
1 〉

on the appropriate input and random tapes (recall that they are a part of
D1’s input) and for every access of one of the parties to GΓ , namely a query
GΓ (r) = (fid, tid), D1 records the entry (fid, tid) in TQ. D1 starts simulating
D2 on the view of Bob and proceeds as follows:

– If D2 makes a query G∆(r), D1 makes a query GΓ (r), gets a pair (fid, tid),
records the entry (fid, tid) in TQ and hands fid to D2.

– If D2 tries to compute Q(fid), D1 looks for an entry (fid, tid) in TQ. If such
an entry exists, it hands tid to D2 and continues. Else, it hands ⊥ to D2.

– If D2 tries to compute Q−1(tid), D1 looks for (fid, tid) in TQ. If such an
entry exists, it hands fid to D2 and continues. Otherwise, it hands ⊥ to D2.

– If D2 tries to compute P (fid, x), D1 queries its oracle F (fid, x) and returns
its answer.



– If D2 tries to compute P−1(fid, y), D1 checks whether an entry (fid, tid)
exists in TQ. If not, it returns ⊥. If yes, it queries F−1(tid, y) and returns
its answer.

There are two cases: If the simulated D2 does not make a query on an fid (or
its corresponding tid) in the range of G∆ that does not appear in TQ, then the
run of D1 with OΓ is identical to a run of D2 with O∆ and therefore D1 outputs
the same as D2. On the other hand, if the simulated D2 does make such a query,
then the output of D1 might be different than that of D1 (since, for such queries
D1 replies by ⊥, while the real O∆’s reply is different). However, D2 can find
such an fid (or tid) with only negligible probability and therefore if D2 is a
distinguisher for Π2, D1 is a distinguisher for Π1.

Remark 4 Theorem 3 is true only for random Γ -oracles. Specifically, if OΓ

is not a random Γ -oracle, then the claim that finding an fid in the range of
GΓ without making a query to it can happen only with negligible probability does
not necessarily hold, and therefore the theorem is not necessarily true for an
arbitrary Γ -oracle.

Needless to say, Theorem 3 holds for oblivious transfer as a special case.

3.3 No Static OT 2
1 Relative to ∆ Oracles

For the next step of our proof, we show that static OT 2
1 does not exist relative

to most ∆ oracles. In order to do this, we show that key agreement does not
exist relative to most ∆ oracles, and then derive the result from the fact that
secure OT 2

1 implies key agreement. In order to show that key agreement does not
exist relative to most ∆ oracles, we show that a ∆-oracle can be replaced with
a “plain random oracle”, with at most a negligible difference. Thus, the results
of [17] for key agreement relative to a plain random oracle hold also relative to
a ∆ oracle. We begin by formally defining a random oracle type, denoted ρ, and
show its relationship to ∆-oracles.

ρ-oracles. We define a ρ-oracle to be an oracle with the following functions:

– Gρ is an injective function from {0, 1}n to {0, 1}2n.
– GTEST is a function that returns a string in {0, 1}n on inputs in the range

of Gρ(·). For any other input, it returns ⊥. Note that GTEST is in fact a
tool for examining whether a string of size 2n is in the range of Gρ or not.3

– FP is a function that on a triple (I, k, x) ∈ {0, . . . , 5} × {0, 1}2n × {0, 1}n
2

returns a string y ∈ {0, 1}n
2 . Note that for a given I and k ∈ {0, 1}2n,

FP (I, k, ·) is a function from {0, 1}n
2 to {0, 1}n

2 .
– FQ is a function that on a pair (I, x) ∈ {0, . . . , 5} × {0, 1}n returns a string

y ∈ {0, 1}n. Thus, for a given I, FQ(I, ·) is a function from {0, 1}n to {0, 1}n.

3 It was shown in [12] that the black-box separation of [17] holds when GTEST is
added to the oracle defined in [17].



Note that the output of Gρ is an fid – or symmetric key k – of length 2n
which defines 6 random functions FP (0, k, ·), . . . , FP (5, k, ·) which are then used
to simulate the P permutation of a ∆-oracle, using Luby-Rackoff. Likewise, the
index I in FQ is used for deriving 6 different function for Luby-Rackoff (there is
no “secret key” k for FQ because it is used for simulating the Q permutation in
a ∆ oracle which is not keyed).

We denote by Uρ the uniform distribution on ρ-oracles. Namely, we say that
a ρ-oracle Oρ = (Gρ, GTEST , FP , FQ) is distributed according to Uρ if Gρ is
a uniformly distributed injective function from {0, 1}n to {0, 1}2n, GTEST is a
uniformly distributed function from the range of Gρ to {0, 1}n (and for inputs
not in the range of Gρ, it returns ⊥), FP is a uniformly distributed function
from {0, . . . , 5}×{0, 1}2n×{0, 1}n

2 to {0, 1}n
2 and FQ is a uniformly distributed

function from (I, x) ∈ {0, . . . , 5} × {0, 1}n to {0, 1}n. We sometimes use the
phrase “Oρ is a random ρ-oracle” as an abbreviation for “Oρ is distributed
according to Uρ”.

∆-oracles versus ρ-oracles. We now use the Luby-Rackoff construction [20]
to replace a random ∆-oracle with a random ρ-oracle. We stress that unlike
Corollary 2, the distributions are only computationally indistinguishable.

Definition 5 (Feistel Permutation) Let f : {0, 1}l → {0, 1}l be a function
and let x1, x2 ∈ {0, 1}l. DESf is the permutation defined by DESf (x1, x2)

def=

(x2, x1⊕f(x2)). DESf1,...,fk
is the permutation defined by DESf1,...,fk

(x1, x2)
def=

DESf2,...,xk
(DESf1(x1, x2)).

Note that inverting a Feistel permutation is no harder than computing it, as
DES−1

f (y1, y2) = (y2 ⊕ f(y1), y1). Intuitively, a Feistel permutation upon a
random ρ-oracle can be used in order to obtain an oracle that behaves like a
∆-oracle. Formally, for a given ρ-oracle Oρ = (Gρ, GTEST , FP , FQ), an fid ∈
{0, 1}2n and x1, x2 ∈ {0, 1}n

2 , we define six functions: f0 = FP (0, fid, ·), f1 =
FP (1, fid, ·), f2 = FP (2, fid, ·), f3 = FP (3, fid, ·) ,f4 = FP (4, fid, ·) and f5 =
FP (5, fid, ·). Then, the permutation PDES relative to a given oracle Oρ, that
simulates the P permutation in the ∆-oracle, is defined by

PDESOρ,fid(x1, x2)
def= DESf0,...,f5(x1, x2)

Note that PDESOρ,fid is a permutation over {0, 1}n (similar to P (fid, ·) in a
∆-oracle). Let PDES−1

Oρ,fid be the inverse permutation. Similarly, for a given
ρ-oracle Oρ = (Gρ, GTEST , FP , FQ) and for x1, x2 ∈ {0, 1}n we define g0 =
FQ(0, ·), . . . , g5 = FQ(5, ·). (Recall that Q oracle queries in a ∆-oracle are not
keyed and thus when simulated using FQ in a ρ-oracle, no key is used.) We
define:

QDESOρ(x1, x2)
def= DESg0,...,g5(x1, x2)

As above, QDESOρ is a permutation over {0, 1}2n (similar to Q in a ∆-oracle).
Let QDES−1

Oρ
be the inverse permutation.

We define a mapping ψ from ρ to ∆ oracles. Let Oρ = (Gρ, GTEST , FP , FQ)
be a ρ-oracle. Then ψ(Oρ) = (G∆, P, P−1, Q,Q−1) is the following ∆-oracle:



– For every r ∈ {0, 1}n, G∆(r) = Gρ(r)
– For every fid ∈ Range(G∆) and all x ∈ {0, 1}n, P (fid, x) = PDESOρ,fid(x)
– For every fid 6∈ Range(G∆) and for every x ∈ {0, 1}n, P (fid, x) =⊥
– For every fid ∈ Range(G∆), Q(fid) = QDESOρ

(fid)
– For every fid 6∈ Range(G∆), Q(fid) =⊥
– P−1 and Q−1 are the inverse functions of P and Q

We denote by ψ(Uρ) the distribution where a random ρ-oracle is chosen and then
ψ is applied to it. The following claim states that access to a random ∆-oracle
O∆ is essentially the same as access to a ∆-oracle ψ(Oρ), when Oρ is random.

Theorem 6 ([9]) There exists a simulator S and a negligible function µ, such
that for every machine D with unbounded running time which makes a polyno-
mial number of queries,

∣∣∣Pr
[
DUρ,ψ(Uρ)(1n) = 1

]
− Pr

[
DSU∆ ,U∆(1n) = 1

]∣∣∣ < µ(n)

We remark that [9] refer to a plain random oracle and a plain random per-
mutation, without the additional fid generating and other functions. However,
Gρ = G∆ by definition, and so clearly Gρ can be simulated given G∆. Likewise,
GTEST can be simulated using P (because the latter returns ⊥ if the fid is not
in the range). We use Theorem 6 in order to prove the following theorem:

Theorem 7 If P = NP, then relative to measure 1 of ∆-oracles, there does not
exist any statically secure protocol for computing the OT 2

1 functionality.

In order to prove Theorem 7, we recall the original black-box separation of
key agreement from a random oracle, as proven in [17].

Theorem 8 ([17]) If P = NP, then given any key-agreement protocol relative
to a random ρ-oracle4, for every polynomial poly(·), there exists a polynomial
time Eve such that Eve finds all intersection queries with probability 1− 1

poly(n) .

We first show that a similar argument holds relative to ∆-oracles (that is, every
key agreement protocol relative to a random ∆-oracle can be broken with proba-
bility 1− 1

poly(n) ). Then, using the same methods as in [17], we show that relative
to measure 1 of ∆-oracles, any key-agreement can be broken in polynomial time.
As described in [12], it is possible to construct a secure key agreement from any
static oblivious transfer protocol and it is easy to verify that this construction
relativizes. Therefore, we conclude that relative to measure 1 of ∆-oracles, there
does not exist any statically secure protocol for computing the OT 2

1 functionality.
We begin by proving the following claim:

Proposition 9 If P = NP, then given any key-agreement protocol relative to
a random ∆-oracle, for every polynomial poly(·), there exists a polynomial time
Eve such that Eve finds all intersection queries with probability 1− 1

2poly(n) .

4 [17] refer to a single random permutation oracle; however, the same proof can be
extended to ρ-oracles.



Proof Sketch: Let 〈A1,B1〉 be a key-agreement protocol relative to random ∆-
oracles. We use 〈A1,B1〉 to construct a key-agreement protocol 〈A2,B2〉 relative
to random ρ-oracles. Recall that A2 and B2 have oracle access to a ρ-oracle while
A1 and B1 have oracle access to a ∆-oracle. The idea is to use the ρ-oracle in
order to simulate a ∆-oracle while replacing queries to P , P−1, Q and Q−1 by
appropriate Feistel permutations obtained from FP and FQ.

Let 〈A2,B2〉 be the following protocol:

Protocol 1 On input 1n, A2 invokes A1 on 1n and B2 invokes B1 on 1n. The
execution is described below for a party P2 emulating P1, and is the same for
both A2 and B2. In each round:

– When P2 gets the message sent by the other party in the previous round, it
sends it to P1.

– If P1 makes a query r to oracle G∆, P1 queries it oracle Gρ(r), and hands
the output to P1.

– If P1 makes a query P (fid, x), P1 queries its oracle GTEST on fid (recall
that GTEST (fid) returns ⊥ if and only if fid is not in the range of Gρ). If
the oracle returns ⊥, P1 returns ⊥ as well. Otherwise, uses its oracle FP to
compute y = PDESOρ,fid(x) and hands y to P1.

– If P1 makes a query P−1(fid, y), P1 queries GTEST on fid. If it returns
⊥, P1 returns ⊥ as well. Otherwise, P1 uses its oracle FP to compute x =
PDES−1

Oρ,fid(y) and hands x to P1.
– If P1 makes a query Q(fid), P1 queries GTEST on fid. If it returns ⊥,
P1 returns ⊥ as well. Otherwise, it uses its oracle FQ to compute tid =
QDESOρ(fid) and hands tid to P1.

– If P1 makes a query Q−1(tid), P1 uses its oracle FQ to compute fid =
QDES−1(tid) and queries GTEST (fid). If it returns ⊥, P1 returns ⊥ as
well. Otherwise, P1 hands fid to P1.

– If P1 writes a string m on its outgoing communication tape, P1 sends m to
the other party.

– At the end of the protocol, P1 outputs the output of P1.

Now, assume P = NP. Let poly(·) be some polynomial and let Eve2 be as in
Theorem 8. We use Eve2 to construct an adversary Eve1 for 〈A1,B1〉. Eve1 sim-
ply invokes Eve2 and simulates the ρ-oracle using the simulator S guaranteed
to exist by Theorem 6. Note that if Eve1 outputs a list of intersection queries
with probability less than 1 − 1

2poly(n) , then it is possible to distinguish oracles
Uρ, ψ(Uρ) from SU∆ ,U∆ with non-negligible probability. Specifically, given a pair
of oracles (O1,O2) that are distributed according to Uρ, ψ(Uρ) or SU∆ ,U∆, dis-
tinguisher D first invokes a run of 〈AO2

1 ,BO2
1 〉 and then invokes EveO1

2 on the
transcript. D outputs 1 if and only if Eve2 outputs all intersection queries. Now,
if (O1,O2) are distributed according to Uρ, ψ(Uρ) then Eve2 outputs all intersec-
tion queries with probability at least 1− 1

poly(n) , and if (O1,O2) are distributed
according to SU∆ , U∆ then Eve2 outputs all intersection queries with probability
less than 1− 1

2poly(n) . Thus D distinguishes with non-negligible probability.



Remark 10 Theorem 6 holds even when P = NP since the running time of D
is unbounded.

The following corollary can be proved using the same methods as in [17] (the
only difference between it and what was proven in [17] is the type of oracle used):

Corollary 11 If P = NP, then for measure 1 of ∆-oracles, any key-agreement
protocol can be broken in polynomial time.

Recalling that the existence of a secure OT 2
1 relative to an oracle O implies

the existence of a secure key agreement relative to O, we obtain:

Corollary 12 If P = NP, then for measure 1 of ∆-oracles, there does not exist
any statically secure protocol for computing the OT 2

1 functionality.

3.4 Concluding the proof

Theorem 3 states that if there exists an adaptively secure protocol for OT 2
1

relative to a given Γ oracle O, then there exists a statically secure protocol
for OT 2

1 relative to the oracle φ(O). Now, by Theorem 7, for measure 1 of ∆
oracles, there exists no statically secure OT 2

1 . Using the fact that φ is a bijection
(Claim 1), we conclude that for measure 1 of Γ oracles, there exists no adaptively
secure OT 2

1 . That is, we have the following:

Theorem 13 If P = NP, then for measure 1 of Γ -oracles, there does not exist
any adaptively secure protocol for computing the OT 2

1 functionality.

Similarly to [17], we derive an oracle separation of enhanced trapdoor per-
mutations form adaptively secure OT 2

1 (even for semi-honest adversaries):

Corollary 14 There exists an oracle relative to which enhanced trapdoor per-
mutations exist, but not adaptively secure OT 2

1 .

Proof: LetO be a PSPACE-complete oracle combined with a random Γ -oracle.
Enhanced trapdoor permutations exist relative to O whereas adaptively secure
OT 2

1 does not, as we have shown.

Acknowledgements. We thank Omer Reingold for helpful discussions.

References
1. D. Beaver. Adaptive Zero Knowledge and Computational Equivocation. In 28th

STOC, pages 629–638, 1996.
2. D. Beaver. Adaptively Secure Oblivious Transfer. In ASIACRYPT’98, Springer-

Verlag (LNCS 1514), pages 300–314, 1998.
3. M. Bellare, S. Micali, and R. Ostrovsky. Perfect Zero-Knowledge in Constant

Rounds. In 22nd STOC, pages 482-493, 1990.
4. M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, 133–137, 1982.
5. M. Blum. How to Prove a Theorem So No One Else Can Claim It. Proceedings

of the International Congress of Mathematicians, pages 1444–1451, USA.



6. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

7. R. Canetti and M. Fischlin. Universally Composable Commitments. In
CRYPTO 2001, Springer-Verlag (LNCS 2139), pages 19–40, 2001.

8. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable
Two-Party and Multi-Party Computation. In 34th STOC, pages 494–503, 2002.
Full version available at http://eprint.iacr.org/2002/140.

9. J.S. Coron, J. Patarin and Y. Seurin. The Random Oracle Model and the Ideal
Cipher Model are Equivalent. In CRYPTO 2008, Springer-Verlag (LNCS 5157),
pages 1–20, 2008.

10. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing
Contracts. In Communications of the ACM, 28(6):637–647, 1985.

11. U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds.
In CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

12. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The
Relationship Between Public Key Encryption and Oblivious Transfer. In the
41st FOCS, page 325–335, 2000.

13. Y. Gertner, T. Malkin and O. Reingold. On the Impossibility of Basing Trapdoor
Functions on Trapdoor Predicates. In the 42nd FOCS, pages 126–135, 2001.

14. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

15. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal
of the ACM, 38(1):691–729, 1991.

16. R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity
Based Cryptography. In the 30th FOCS, pages 230–235, 1989.

17. R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-way
Permutations. In 21st STOC, pages 44–61, 1989.

18. T. Itoh, Y. Ohta, and H. Shizuya. A Language-Dependent Cryptographic Prim-
itive. Journal of Cryptology, 10(1):37–49, 1997.

19. J.H. Kim, D.R. Simon and P. Tetali. Limits on the Efficiency of One-Way
Permutation-Based Hash Functions. In the 40th FOCS, pages 535–542, 1999.

20. M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

21. D. Micciancio and S. Vadhan. Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More. In CRYPTO 2003, Springer-Verlag (LNCS
2729), pages 282–298, 2003.

22. D. Micciancio, S.J. Ong, A. Sahai and S. Vadhan. Concurrent Zero Knowledge
without Complexity Assumptions. In TCC 2006, Springer-Verlag (LNCS 3876),
pages 1–20, 2006.

23. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

24. O. Reingold, L. Trevisan and S.P. Vadhan. Notions of Reducibility between
Cryptographic Primitives. In the 1st TCC, Springer-Verlag (LNCS 2951), pages
1–20, 2004.

25. D.R. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Func-
tions Be Based on General Assumptions? In EUROCRYPT 1998, Springer-
Verlag (LNCS 1403), pages 334–345, 1998.

26. S.P. Vadhan. An Unconditional Study of Computational Zero Knowledge. In
the 45th FOCS, pages 176–185, 2004.


