
Authenticated Adversarial Routing?Yair Amir1, Paul Bunn2, and Rafail Ostrovsky3

1 Johns Hopkins University Department of Computer Science,Baltimore, MD 21218, USA. yairamir@cs.jhu.edu
2 UCLA Department of Mathematics,Los Angeles, CA 90095, USA. paulbunn@math.ucla.edu

3 UCLA Department of Computer Science and Department of MathematicsLos Angeles, CA 90095, USA. rafail@cs.ucla.eduAbstract: The aim of this paper is to demonstrate the feasibility of authenticatedthroughput-e�cient routing in an unreliable and dynamically changing synchronousnetwork in which the majority of malicious insiders try to destroy and alter messagesor disrupt communication in any way. More speci�cally, in this paper we seek to answerthe following question: Given a network in which the majority of nodes are controlledby a node-controlling adversary and whose topology is changing every round, is itpossible to develop a protocol with polynomially-bounded memory per processor thatguarantees throughput-e�cient and correct end-to-end communication? We answer thequestion a�rmatively for extremely general corruption patterns: we only request thatthe topology of the network and the corruption pattern of the adversary leaves at leastone path each round connecting the sender and receiver through honest nodes (thoughthis path may change at every round). Out construction works in the public-key settingand enjoys bounded memory per processor (that is polynomial in the network size anddoes not depend on the amount of tra�c). Our protocol achieves optimal transferrate with negligible decoding error. We stress that our protocol assumes no knowledgeof which nodes are corrupted nor which path is reliable at any round, and is alsofully distributed with nodes making decisions locally, so that they need not know thetopology of the network at any time.The optimality that we prove for our protocol is very strong. Given any rout-ing protocol, we evaluate its e�ciency (rate of message delivery) in the �worst case,�that is with respect to the worst possible graph and against the worst possible (poly-nomially bounded) adversarial strategy (subject to the above mentioned connectivityconstraints). Using this metric, we show that there does not exist any protocol thatcan be asymptotically superior (in terms of throughput) to ours in this setting.We remark that the aim of our paper is to demonstrate via explicit example thefeasibility of throughput-e�cient authenticated adversarial routing. However, we stressthat out protocol is not intended to provide a practical solution, as due to its complexity,no attempt thus far has been made to reduce constants and memory requirements.Our result is related to recent work of Barak, Goldberg and Xiao in 2008 [9]who studied fault localization in networks assuming a private-key trusted setup set-ting. Our work, in contrast, assumes a public-key PKI setup and aims at not only faultlocalization, but also transmission optimality. Among other things, our work answersone of the open questions posed in the Barak et. al. paper regarding fault localizationon multiple paths. The use of a public-key setting to achieve strong error-correctionresults in networks was inspired by the work of Micali, Peikert, Sudan and Wilson [14]
? Full version of the paper is available on-line [5].



2 Yair Amir, Paul Bunn, and Rafail Ostrovskywho showed that classical error-correction against a polynomially-bounded adversarycan be achieved with surprisingly high precision. Our work is also related to an interac-tive coding theorem of Rajagopalan and Schulman [15] who showed that in noisy-edgestatic-topology networks a constant overhead in communication can also be achieved(provided none of the processors are malicious), thus establishing an optimal-rate rout-ing theorem for static-topology networks.Finally, our work is closely related and builds upon to the problem of End-To-End Communication in distributed networks, studied by Afek and Gafni [1], Awebuch,Mansour, and Shavit [8], and Afek, Awerbuch, Gafni, Mansour, Rosen, and Shavit [2],though none of these papers consider or ensure correctness in the setting of a node-controlling adversary that may corrupt the majority of the network.Keywords: Network Routing; End-to-End Communication; Fault Localization; Error-Correction; Multi-Party Computation; Communication Complexity1 IntroductionOur goal is to design a routing protocol for an unreliable and dynamicallychanging synchronous network that is resilient against malicious insiders whomay try to destroy and alter messages or disrupt communication in any way.We model the network as a communication graph G = (V, E) where each vertex(node) is a processor and each edge is a communication link. We do not assumethe topology of this graph is �xed or known by the processors. Rather, we assumea complete graph on n vertices, where some of the edges are �up� and some are�down�, and the status of each edge can change dynamically at any time.We concentrate on the most basic task, namely how two processors in thenetwork can exchange information. Thus, we assume that there are two desig-nated vertices, called the sender S and the receiver R, who wish to communicatewith each other. The sender has an in�nite read-once input tape of packets andthe receiver has an in�nite write-once output tape which is initially empty. Weassume that packets are of some bounded size, and that any edge in the sys-tem that is �up� during some round can transmit only one packet (or controlvariables, also of bounded size) per round.We will evaluate our protocol using the following three considerations:1. Correctness. A protocol is correct if the sequence of packets output by thereceiver is a pre�x of packets appearing on the sender's input tape, withoutduplication or omission.2. Throughput. This measures the number of packets on the output tape asa function of the number of rounds that have passed.3. Processor Memory. This measures the memory required of each node bythe protocol, independent of the number of packets to be transferred.All three considerations will be measured in the worst-case scenario as standardsthat are guaranteed to exist regardless of adversarial interference. One can alsoevaluate a protocol based on its dependence on global information to make de-cisions. The protocol that we present in this paper will not assume the internal



Authenticated Adversarial Routing 3nodes have a global view of the network. Such protocols are termed �local con-trol,� in that each node can make all routing decisions based only on the localconditions of its adjacent edges and neighbors.Our protocol is designed to be resilient against a malicious, polynomially-bounded adversary who may attempt to impact the correctness, throughput, andmemory of our protocol by disrupting links between the nodes or by takingdirect control over the nodes and forcing them to deviate from our protocol inany manner the adversary wishes. In order to relate our work to previous resultsand to clarify the two main forms of adversarial interference, we describe twoseparate (yet coordinated with each other) adversaries:4Edge-Scheduling Adversary. This adversary controls the links between nodesevery round. More precisely, for each round, this adversary decides whichedges in the network are up and which are down. We will say that the edge-scheduling adversary is conforming if for every round there is at least onepath from the sender to the receiver (although the path may change eachround).5 The adversary can make any arbitrary poly-time computation tomaximize interference in routing, so long as it remains conforming.Node-Controlling Adversary. This adversary controls the nodes of the networkthat it has corrupted. More precisely, each round this adversary decideswhich nodes to corrupt. Once corrupted, a node is forever under completeadversarial control and can behave in an arbitrary malicious manner. We saythat the node-controlling adversary is conforming if every round there is aconnection between the sender and receiver consisting of edges that are �up�for the round (as speci�ed by the edge-scheduling adversary) and that passesthrough uncorrupted nodes. We emphasize that this path can change eachround, and there is no other restriction on which nodes the node-controllingadversary may corrupt (allowing even a vast majority of corrupt nodes).There is another reason to view these adversaries as distinct: we deal with thechallenges they pose to correctness, throughput, and memory in di�erent ways.Namely, aside from the conforming condition, the edge-scheduling adversarycannot be controlled or eliminated. Edges themselves are not inherently �good�or �bad,� so identifying an edge that has failed does not allow us to foreverrefuse the protocol to utilize this edge, as it may come back up at any time(and indeed it could form a crucial link on the path connecting the sender andreceiver that the conforming assumption guarantees). In sum, we cannot hope4 The separation into two separate adversaries is arti�cial: our protocol is securewhether edge-scheduling and corruption of nodes are performed by two separateadversaries that have di�erent capabilities yet can coordinate their actions witheach other, or this can be viewed as a single coordinated adversary.5 A more general de�nition of an edge-scheduling adversary would be to allow com-pletely arbitrary edge failures, with the exception that in the limit there is no per-manent cut between the sender and receiver. However, this de�nition (while moregeneral) greatly complicates the exposition, including the de�nition of throughputrate, and we do not treat it here.



4 Yair Amir, Paul Bunn, and Rafail Ostrovskyto control or alter the behavior of the edge-scheduling adversary, but must comeup with a protocol that works well regardless of the behavior of the ever-present(conforming) edge-scheduling adversary.By contrast, our protocol will limit the amount of in�uence the node-control-ling adversary has on correctness, throughput, and memory. Speci�cally, we willshow that if a node deviates from the protocol in a su�ciently destructive manner(in a well-de�ned sense), then our protocol will be able to identify it as corruptedin a timely fashion. Once a corrupt node has been identi�ed, it will be eliminatedfrom the network. Namely, our protocol will call for honest nodes to refuse allcommunication with nodes that have been eliminated.6 Thus, there is an inherentdi�erence in how the two adversaries are handled: We can restrict the in�uence ofthe node-controlling adversary by eliminating the nodes it has corrupted, whilethe edge-scheduling adversary must be dealt with in a more ever-lasting manner.1.1 Previous WorkTo motivate the importance of the problem we consider in this paper, and toemphasize the signi�cance of our result, it will be useful to highlight recent worksin related areas. To date, routing protocols that consider adversarial networkshave been of two main �avors: End-to-End Communication protocols that con-sider dynamic topologies (a notion captured by our �edge-scheduling adversary�),and Fault Detection and Localization protocols, which handle devious behaviorof nodes (as modeled by our �node-controlling adversary�).End-to-End Communication: One of the most relevant research directionsto our paper is the notion of End-to-End Communication in distributed net-works, considered by Afek and Gafni [1], Awerbuch, Mansour and Shavit [8],Afek, Awebuch, Gafni, Mansour, Rosen, and Shavit [2], and Kushilevitz, Ostro-vsky and Rosen [13]. Indeed, our starting point is the Slide protocol (also knownin practical works as �gravitational �ow� routing) developed in these works. Itwas designed to perform end-to-end communication with bounded memory in amodel where (using our terminology) an edge-scheduling adversary controls theedges (subject to the constraint there is no permanent cut between the senderand receiver). The Slide protocol has proven to be incredibly useful in a varietyof settings, including multi-commodity �ow (Awerbuch and Leigthon [7]) and indeveloping routing protocols that compete well (in terms of packet loss) againstan online bursty adversary ([4]). However, prior to our work there was no versionof the Slide protocol that could handle malicious behavior of the nodes.Fault Detection and Localization Protocols: At the other end, therehave been a number of works that explore the possibility of a node-controllingadversary that can corrupt nodes. In particular, there is a recent line of work thatconsiders a network consisting of a single path from the sender to the receiver,culminating in the recent work of Barak, Goldberg and Xiao [9] (for further6 The conforming assumption guarantees that the sender and receiver are incorrupt-ible, and in our protocol they will identify and eliminate corrupt nodes.



Authenticated Adversarial Routing 5background on fault localization see references therein). In this model, the ad-versary can corrupt any node on the path (except the sender and receiver) in adynamic and malicious manner. Since corrupting any node on the path will severthe honest connection between S and R, the goal of a protocol in this model isnot to guarantee that all messages sent to R are received. Instead, the goal is todetect faults when they occur and to localize the fault to a single edge.There have been many results that provide Fault Detection (FD) and FaultLocalization (FL) in this model. In Barak et. al. [9], they formalize the de�nitionsin this model and the notion of a secure FD/FL protocol, as well as providinglower bounds in terms of communication complexity to guarantee accurate faultdetection/location in the presence of a node-controlling adversary. While theBarak et. al. paper has a similar �avor to our paper, we emphasize that theirprotocol does not seek to guarantee successful or e�cient routing between thesender and receiver. Instead, their proof of security guarantees that if a packetis deleted, malicious nodes cannot collude to convince S that no fault occurred,nor can they persuade S into believing that the fault occurred on an honestedge. Localizing the fault in their paper relies on cryptographic tools, and inparticular the assumption that one-way functions exist. Although utilizing thesetools (such as MACs or Signature Schemes) increases communication cost, it isshown by Goldberg, Xiao, Barak, and Redford [12] that the existence of a pro-tocol that is able to securely detect faults (in the presence of a node-controllingadversary) implies the existence of one-way functions, and it is shown in Baraket. al. [9] that any protocol that is able to securely localize faults necessarilyrequires the intermediate nodes to have a trusted setup. The proofs of theseresults do not rely on the fact that there is a single path between S and R, andwe can therefore extend them to the more general network encountered in ourmodel to justify our use of cryptographic tools and a trusted setup assumption(i.e. PKI) to identify malicious behavior.Another paper that addresses routing in the Byzantine setting is the workof Awerbuch, Holmes, Nina-Rotary and Rubens [6], though this paper does nothave a fully formal treatment of security, and indeed a counter-example thatchallenges its security is discussed in the appendix of [9].Error-correction in the active setting: Due to space considerations, wewill not be able to give a comprehensive account of all the work in this area. In-stead we highlight some of the most relevant works and point out how they di�erfrom our setting and results. For a lengthy treatment of error-correcting codesagainst polynomially bounded adversaries, we refer to the work of Micali at. al[14] and references therein. It is important to note that this work deals with agraph with a single �noisy� edge, as modelled by an adversary who can partiallycontrol and modify information that crosses the edge. In particular, it does notaddress throughput e�ciency or memory considerations in a full communica-tion network, nor does it account for malicious behavior at the vertices. Alsoof relevance is the work on Rajagopalan and Schulman on error-correcting net-work coding [15], where they show how to correct noisy edges during distributedcomputation. Their work does not consider actively malicious nodes, and thus



6 Yair Amir, Paul Bunn, and Rafail Ostrovskyis di�erent from our setting. It should also be noted that their work utilizesSchulman's tree-codes [18] that allow length-�exible online error-correction. Theimportant di�erence between our work and that of Schulman is that in our net-work setting, the amount of malicious activity of corrupt nodes is not restricted.1.2 Our ResultsTo date, there has not been a protocol that has considered simultaneouslya network susceptible to faults occurring due to edge-failures and faults occur-ring due to malicious activity of corrupt nodes. The end-to-end communicationworks are not secure when the nodes are susceptible to corruption, and the faultdetection and localization works focus on a single path for some duration oftime, and do not consider a fully distributed routing protocol that utilizes theentire network and attempts to maximize throughput e�ciency while guarantee-ing correctness. Indeed, our work answers one of the open questions posed in theBarak et. al. paper regarding fault localization on multiple paths. In this paperwe bridge the gap between these two research areas and obtain the �rst routingprotocol simultaneously secure against both an edge-scheduling adversary and anode-controlling adversary, even if these two adversaries attack the network usingan arbitrary coordinated poly-time strategy. Furthermore, our protocol achievescomparable e�ciency standards in terms of throughput and processor memoryas state-of-the-art protocols that are not secure against a node-controlling ad-versary, and it does so using local-control. An informal statement of our resultcan be found below. We emphasize that the linear transmission rate that weachieve (assuming at least n2 messages are sent) is asymptotically optimal, asany protocol operating in a network with a single path connecting sender andreceiver can do no better than one packet per round.A ROUTING THEOREM FOR ADVERSARIAL NETWORKS (In-formal): If one-way functions exist, then for any n-node graph and k su�cientlylarge, there exists a trusted-setup linear throughput transmission protocol that cansend n2 messages in O(n2) rounds with O(n4(k+log n)) memory per processor thatis resilient against any poly-time conforming Edge-Scheduling Adversary and anyconforming poly-time Node-Controlling Adversary, with negligible (in k) probabilityof failure or decoding error. Secure Against: Processor Throughput RateEdge- Node- Memory x rounds→Sched? Contr? f(x) packetsSlide Protocol of [2] Y ES NO O(n2 log n) f(x) = O(x− n2)Slide Protocol of [13] Y ES NO O(n log n) f(x) = O(x/n− n2)(folklore)(Flooding + Signatures) Y ES Y ES O(1) f(x) = O(x/n− n2)(folklore)(Signatures + Sequence No.'s) Y ES Y ES unbounded f(x) = O(x− n2)Our Protocol Y ES Y ES O(n4(k+log n)) f(x) = O(x− n2)Fig. 1. Comparison of Our Protocol to Related Existing Protocols and Folklore.



Authenticated Adversarial Routing 72 Challenges and Naïve SolutionsBefore proceeding, it will be useful to consider a couple of naïve solutionsthat achieve the goal of correctness (but perform poorly in terms of throughput),and help to illustrate some of the technical challenges that our theorem resolves.Consider the approach of having the sender continuously �ood a single signedpacket into the network for n rounds. Since the conforming assumption guaran-tees that the network provides a path between the sender and receiver throughhonest nodes at every round, this packet will reach the receiver within n rounds,regardless of adversarial interference. After n rounds, the sender can begin �ood-ing the network with the next packet, and so forth. Notice that this solution willrequire each processor to store and continuously broadcast a single packet at anytime, and hence this solution achieves excellent e�ciency in terms of processormemory. However, notice that the throughput rate is sub-linear, namely after xrounds, only O(x/n) packets have been outputted by the receiver.One idea to try to improve the throughput rate might be to have the senderstreamline the process, sending packets with ever-increasing sequence numberswithout waiting for n rounds to pass (or signed acknowledgments from the re-ceiver) before sending the next packet. In particular, across each of his edgesthe sender will send every packet once, waiting only for the neighboring node'scon�rmation of receipt before sending the next packet across that edge. The pro-tocol calls for the internal nodes to act similarly. Analysis of this approach showsthat not only has the attempt to improve throughput failed (it is still O(x/n) inthe worst-case scenario), but additionally this modi�cation requires arbitrarilylarge (polynomial in n and k) processor memory, since achieving correctness inthe dynamic topology of the graph will force the nodes to remember all of thepackets they see until they have broadcasted them across all adjacent edges orseen con�rmation of their receipt from the receiver.2.1 Challenges in Dealing with Node-Controlling AdversariesIn this section, we discuss some potential strategies that the node-controllingand edge-scheduling adversaries may incorporate to disrupt network communi-cation. Although our theorem will work in the presence of arbitrary maliciousactivity of the adversarial controlled nodes (except with negligible probability),it will be instructive to list a few obvious forms of devious behavior that ourprotocol must protect against. It is important to stress that this list is not in-tended to be exhaustive. Indeed, we do not claim to know all the speci�c waysan arbitrary polynomially bounded adversary may force nodes to deviate froma given protocol, and we rigorously prove that our protocol is secure against allpossible deviations.Packet Deletion/Modi�cation. Instead of forwarding a packet, a corrupt node�drops it to the �oor� (i.e. deletes it or e�ectively deletes it by forever storing it inmemory), or modi�es the packet before passing it on. Another manifestation ofthis is if the sender requests fault localization information of the internal nodes,



8 Yair Amir, Paul Bunn, and Rafail Ostrovskysuch as providing documentation of their interactions with neighbors. A corruptnode can then block or modify information that passes through it in attempt tohide malicious activity or implicate an honest node.Introduction of Junk/Duplicate Packets. The adversary can attempt to disruptcommunication �ow and �jam� the network by having corrupted nodes introducejunk packets or re-broadcast old packets. Notice that junk packets can be handledby using cryptographic signatures to prevent introduction of �new� packets, butthis does not control the re-transmission of old, correctly signed packets.Disobedience of Transfer Rules. If the protocol speci�es how nodes should makedecisions on where to send packets, etc., then corrupt nodes can disregard theserules, including lying to adjacent nodes about their current state.Coordination of Edge-Failures. The edge-scheduling adversary can attempt to dis-rupt communication �ow by scheduling edge-failures in any manner that is con-sistent with the conforming criterion. Coordinating edge-failures can be used toimpede correctness, memory, and throughput in various ways: e.g. packets maybecome lost across a failed edge, stuck at a suddenly isolated node, or arrive atthe receiver out of order. A separate issue arises concerning fault localization:When the sender requests documentation from the internal nodes, the edge-scheduling adversary can slow progress of this information, as well as attempt toprotect corrupt nodes by allowing them to �play-dead� (setting all of its adjacentedges to be down), so that incriminating evidence cannot reach the sender.2.2 Highlights of Our SolutionOur starting point is the Slide protocol [2], which has enjoyed practical suc-cess in networks with dynamic topologies, but is not secure against nodes thatare allowed to behave maliciously. Due to space constraints, we will only high-light the main ideas of the protocol here; the interested reader can �nd a fullexposition in [5]. We begin by viewing the edges in the graph as consisting oftwo directed edges, and associate to each end of a directed edge a stack data-structure able to hold 2n packets and to be maintained by the node at thatend. The protocol speci�es the following simple, local condition for transferringa packet across a directed edge: if there are more packets in the stack at theoriginating end than the terminating end, transfer a packet across the edge.Similarly, within a node's local stacks, packets are shu�ed to average out thestack heights along each of its edges. Intuitively, packet movement is analogousto the �ow of water: high stacks create a pressure that force packets to ��ow�to neighboring lower stacks. At the source, the sender maintains the pressure by�lling his outgoing stacks (as long as there is room) while the receiver relievespressure by consuming packets and keeping his stacks empty. Loosely speaking,packets traveling to nodes �near� the sender will therefore require a very largepotential, packets traveling to nodes near the receiver will require a small poten-tial, and packet transfers near intermediate nodes will require packages to havea moderate potential. Assuming these potential requirements exist, packets will



Authenticated Adversarial Routing 9pass from the sender with a high potential, and then ��ow� downwards acrossnodes requiring less potential, all the way to the receiver.Because the Slide protocol provides a fully distributed protocol that workswell against an edge-scheduling adversary, our starting point was to try to extendthe protocol by using digital signatures7 to provide resilience against Byzantineattacks and arbitrary malicious behavior of corrupt nodes. This proved to bea highly nontrivial task that required us to develop a lot of additional machin-ery, both in terms of additional protocol ideas and novel techniques for provingcorrectness. We give a detailed explanation of our techniques in Section 3, butdue to space considerations we have omitted the formal pseudo-code and rig-orous proofs of security (these can be found in the full version, see [5]). Belowwe give a sample of some of the key ideas we used in ensuring our additionalmachinery would be provably secure against a node-controlling adversary, andyet not signi�cantly a�ect throughput or memory, compared to the original Slideprotocol:Addressing the �Coordination of Edge-Scheduling� Issues. In the ab-sence of a node-control- ling adversary, previous versions of the Slide protocol(e.g. [2]) are secure and e�cient against an edge-scheduling adversary, and itwill be useful to discuss how some of the challenges posed by a network with adynamic topology are handled. First, note that the total capacity of the stackdata-structure is bounded by 4n3. That is, each of the n nodes can hold at most
2n packets in each of their 2n stacks (along each directed edge) at any time.� To handle the loss of packets due to an edge going down while transmittinga packet, a node is required to maintain a copy of each packet it transmitsalong an edge until it receives con�rmation from the neighbor of successfulreceipt.� To handle packets becoming stuck in some internal node's stack due to edgefailures, error-correction is utilized to allow the receiver to decode a fullmessage without needing every packet. In particular, if an error-correctingcode allowing a fraction of λ faults is utilized, then since the capacity ofthe network is 4n3 packets, if the sender is able to pump 4n3/λ codewordpackets into the network and there is no malicious deletion or modi�cationof packets, then the receiver will necessarily have received enough packets todecode the message.� The Slide protocol has a natural bound in terms of memory per processorof O(n2 log n) bits, where the bottleneck is the possibility of a node holding7 In this paper we use public-key operations to sign individual packets with controlinformation. Clearly, this is too expensive to do per-packet in practice. There aremethods of amortizing the cost of signatures by signing �batches� of packets; usingprivate-key initialization [9, 12], or using a combination of private-key and public keyoperations, such as �on-line/o�-line� signatures [10, 17]. For the sake of clarity andsince the primary focus of our paper is theoretical feasibility, we restrict our attentionto the straight-forward public-key setting without considering these additional cost-saving techniques.



10 Yair Amir, Paul Bunn, and Rafail Ostrovskyup to 2n2 packets in its stacks, where each packet requires O(log n) bits todescribe its position in the code.Of course, these techniques are only valid if nodes are acting honestly, whichleads us to our �rst extension idea.Handling Packet Modification and Introduction of Junk Packets.Before inserting any packets into the network, the sender will authenticate eachpacket using his digital signature, and intermediate nodes and the receiver neveraccept or forward messages not appropriately signed. This simultaneously pre-vents honest nodes becoming bogged down with junk packets, as well as ensuringthat if the receiver has obtained enough authenticated packets to decode, a node-controlling adversary cannot impede the successful decoding of the message asthe integrity of the codeword packets is guaranteed by the inforgibility of thesender's signature.Fault Detection. In the absence of a node-controlling adversary, our protocollooks almost identical to the Slide protocol of [2], with the addition of signaturesthat accompany all interactions between two nodes. First, the sender attemptsto pump the 4n3/λ codeword packets of the �rst message into the network,with packet movement exactly as in the original Slide protocol. We consider allpossible outcomes:1. The sender is able to insert all codeword packets and the receiver is able to de-code. In this case, the message was transmitted successfully, and our protocolmoves to transfer the next message.2. The sender is able to insert all codeword packets, but the receiver has notreceived enough to decode. In this case, the receiver �oods the network witha single-bit message indicating packet deletion has occurred.3. The sender is able to insert all codeword packets, but the receiver cannot decodebecause he has received duplicated packets. Although the sender's authenti-cating signature guarantees the receiver will not receive junk or modi�edpackets, a corrupt node can duplicate valid packets. Therefore, the receivermay receive enough packets to decode, but cannot because he has receivedduplicates. In this case, the receiver �oods the network with a single messageindicating the label of a duplicated packet.4. After some amount of time, the sender still has not inserted all codeword packets.In this case, the duplication of old packets is so severe that the networkhas become jammed, and the sender is prevented from inserting packetseven along the honest path that the conforming assumption guarantees. Ifthe sender believes the jamming cannot be accounted for by edge-failuresalone, he will halt transmission and move to localizing a corrupt node.8 One8 We emphasize here the importance that the sender is able to distinguish the casethat the jamming is a result of the edge-scheduling adversary's controlling of edgesverses the case that a corrupt node is duplicating packets. After all, in the case ofthe former, there is no reward for �localizing� the fault to an edge that has failed,as all edges are controlled by the edge-scheduling adversary, and therefore no edge



Authenticated Adversarial Routing 11contribution this paper makes is to prove a lower bound on the insertion rateof the sender for the Slide protocol in the absence of the node-controllingadversary. This bound not only alerts the sender when the jamming he isexperiencing exceeds what can be expected in the absence of corrupt nodes,but it also provides a mechanism for localizing the o�ending node(s).The above four cases exhaust all possibilities. Furthermore, if a transmissionis not successful, the sender is not only able to detect the fact that maliciousactivity has occurred, but he is also able to distinguish the form (i.e. Case 2-4)of the malicious activity. Meanwhile, for the top case, our protocol enjoys (withina constant factor) an equivalent throughput rate as the original Slide protocol.Fault Localization. Once a fault has been detected, it remains to describehow to localize the problem to the o�ending node. To this end, we use digitalsignatures to achieve a new mechanism we call �Routing with Responsibility.�By forcing nodes to sign key parts of every communication with their neighborsduring the transfer of packets, they can later be held accountable for their ac-tions. In particular, once the sender has identi�ed the reason for failure (Cases2-4 above), he will request all internal nodes to return status reports, which aresignatures on the relevant parts of the communication with their neighbors. Wethen prove in each case that with the complete status report from every node,the sender can identify and eliminate a corrupt node. Of course, malicious nodesmay choose not to send self-incriminating information. We handle this separatelyas explained below.Processor Memory. The signatures on the communication a node has withits neighbors for the purpose of fault localization is a burden on the memoryrequired of each processor that is not encountered in the original Slide protocol.One major challenge was to reduce the amount of signed information each nodemust maintain as much as possible, while still guaranteeing that each node hasmaintained �enough� information to identify a corrupt node in the case of ar-bitrary malicious activity leading to a failure of type 2-4 above. The content ofTheorem 32 in Section 3 demonstrates that the extra memory required of ourprotocol is a factor of n2 higher than that of the original Slide protocol.Incomplete Information. As already mentioned, we will show that as longas the sender has the complete status reports from every node, he will be able toidentify a corrupt node, regardless of the reason for failure 2-4 above. However,this relies on the sender obtaining all of the relevant information; the absenceof even a single node's information can prevent the localization of a fault. Weaddress this challenge in the following ways:1. We minimize the amount of information the sender requires of each node.This way, a node need not be connected to the sender for very many roundsin order for the sender to receive its information. Speci�cally, regardless ofis inherently better than another. But in the case a node is duplicating packets,if the sender can identify the node, it can eliminate it and e�ectively reduce thenode-controlling adversary's ability to disrupt communication in the future.



12 Yair Amir, Paul Bunn, and Rafail Ostrovskythe reason for failure 2-4 above, a status report consists of only n pieces ofinformation from each node, i.e. one packet for each of its edges.2. If the sender does not have the n pieces of information from a node, it cannota�ord to wait inde�nitely. After all, the edge-scheduling adversary may keepthe node disconnected inde�nitely, or a corrupt node may simply refuse torespond. For this purpose, we create a blacklist for non-responding nodes,which will disallow them from transferring codeword packets in the future.This way, anytime the receiver fails to decode a codeword as in Cases 2-4 above, the sender can request the information he needs, blacklist nodesnot responding within some short amount of time, and then re-attempt totransmit the codeword using only non-blacklisted nodes. Nodes should nottransfer codeword packets to blacklisted nodes, but they do still communicatewith them to transfer the information the sender has requested. If a newtransmission again fails, the sender will only need to request information fromnodes that were participating, i.e. he will not need to collect new informationfrom blacklisted nodes (although the nodes will remain blacklisted until thesender gets the original information he requested of them). Nodes will beremoved from the blacklist and re-allowed to route codeword packets assoon as the sender receives their information.The Blacklist. Blacklisting nodes is a delicate matter; we want to place ma-licious nodes �playing-dead� on this list, while at the same time we don't wanthonest nodes that are temporarily disconnected from being on this list for toolong. We prove in the full version (see [5]) that the occasional honest node thatgets put on the blacklist won't signi�cantly hinder packet transmission. Intu-itively, this is true because any honest node that is an important link betweenthe sender and receiver will not remain on the blacklist for very long, as his con-nection to the sender guarantees the sender will receive all requested informationfrom the node in a timely manner.Ultimately, the blacklist allows us to control the amount of maliciousactivity to which a single corrupt node can contribute. Indeed, we show thateach failed message transmission (Cases 2-4 above) can be localized (eventually)to (at least) one corrupt node. More precisely, the blacklist allows us to argue thatmalicious activity can cause at most n failed transmissions before a corrupt nodecan necessarily be identi�ed and eliminated. Since there are at most n corruptnodes, this bounds the number of failed transmissions at n2. The result of thisis that other than at most n2 failed message transmissions, our protocol enjoysthe same throughput e�ciency of the old Slide protocol. The formal statementof this and a sketch of the proof are the contents of Theorem 33 in Section 3.3 Routing Against a Node-Controlling + Edge-SchedulingAdversary3.1 De�nitionsIn this section, we brie�y describe our protocol. Due to space constraints,a detailed presentation, including formal pseudo-code and rigorous proofs, has



Authenticated Adversarial Routing 13been omitted (these can be found in the full version [5]). As mentioned inthe Introduction, our model considers end-to-end communication in a networkconsisting of n nodes in the presence of conforming edge-scheduling and node-controlling adversaries. We assume a synchronous network with discrete stages,where a stage is de�ned to be the unit of time in which every edge can transfera single packet of P bits.9 A round will consist of two consecutive stages dur-ing which packets are transferred between adjacent nodes (the Routing Phase),followed by the Re-Shu�e Phase in which nodes perform (instantaneous) localmaintenance of their bu�ers. A transmission (usually denoted by T) will con-sist of O(n3) rounds during which the sender inserts packets corresponding toa single codeword. At the end of each transmission, the receiver will broadcastan end of transmission message, indicating whether it could successfully decodethe codeword. In the case that the receiver cannot decode, we will say that thetransmission failed, and otherwise the transmission was successful.In the case a transmission fails, the sender will determine the reason for failure(Cases 2-4 from Section 2.2, and also F2-F4 below), and request nodes to returnstatus reports that correspond to a particular piece of signed communicationbetween each node and its neighbors. We will refer to status report packets asparcels to clarify discussion in distinguishing them from the codeword packets.The �rst step in providing a guarantee of e�ciency (in terms of throughput)is to prove that every failed transmission falls under one of the following cases(the number of packets per codeword, D, will be de�ned in the next section):F2. The receiver could not decode, and the sender has inserted D packetsF3. The receiver could not decode, the sender has inserted D packets, andthe receiver has not received any duplicated packets corresponding to thecurrent codewordF4. The receiver could not decode and cases F2 and F3 do not happenWe describe in Section 3.3 how we identify a corrupt node in each case. Theprimary tool that will be used to handle case F2 will be the notion of potential,de�ned now.De�nition 31. The height HB of any internal bu�er B is the number of packetscurrently stored in the bu�er. The potential ΦB of the bu�er is the arithmeticsum up to HB, i.e. ΦB =
∑H

i=1 i = H(H+1)
2 .3.2 Description of the Node-Controlling+Edge-Scheduling ProtocolSetup. The sender has a sequence of messages {m1, m2, . . . } of uniform size

M = 6σ(P−2k)n3

λ that he will expand into codewords {b1, b2, . . . } of size C = M
σ(σ is the information rate and λ the error-rate of any error-correcting code). The9 We assume P > O(k + log n), where k is the security parameter used for the signa-ture scheme and n is the number of nodes. In particular, this will allow packets tocarry two signatures (requires 2k bits) and a codeword index (requires log n bits) inaddition to the codeword information.



14 Yair Amir, Paul Bunn, and Rafail Ostrovskycodewords are divided into packets of size P − 2k (P is the number of bits thatcan be transferred by an edge in a single stage, k is the security parameter),which will allow packets to have enough room to hold two signatures of size k.Since the number of packets per codeword is D := C
P−2k = 6(P−2k)n3

(P−2k)λ = 6n3

λ ,if R receives (1 − λ)D distinct packets corresponding to the same codeword, hewill be able to decode.Each internal node has the following bu�ers:1. Incoming and Outgoing Bu�ers. For each incoming/outgoing edge, a nodewill have a bu�er that has the capacity to hold 2n packets at any giventime. The receiver has one large storage bu�er, and the sender has a �Copyof Current Packets� bu�er to be used any time a transmission fails and needsto be repeated.2. Signature Bu�ers. Each node has a signature bu�er along each edge to keeptrack of incoming (resp. outgoing) information exchanged with its neighboralong that edge. The signature bu�ers will hold information correspondingto changes in: 1) The net number of packets passed across each adjacentedge; 2) The cumulative change in potential due to packet transfers acrosseach adjacent edge; and 3) For each packet p, the net number of times p haspassed across each adjacent edge. Each of the three items above, togetherwith the current round index and transmission index, will be signed by theadjacent node before they are stored.3. Broadcast Bu�er. This is where nodes will temporarily store their neigh-bor's (and their own) state information that the sender will need to identifymalicious activity. A node's broadcast bu�er can hold the start and end oftransmission parcels (see below), blacklist information, and up to n parcelsof status report information for each node in the network.4. Data Bu�er. This keeps track of eliminated and blacklisted nodes. Thesender's data bu�er will also be able to store information for up to n failedtransmissions, including why they failed, blacklisted nodes, and up to n sta-tus report parcels per node per failed transmission.Also as part of the Setup, all nodes learn the relevant parameters (P , n, λ, and
σ), each node receives a private key from a trusted third party for signing, andeach node receives public information that allows them to verify the signatureof every other node in the network.Routing Phase. This consists of two consecutive stages during which nodestransfer codeword packets and broadcast parcels that comprise status reportsand auxiliary information. The manner in which packets and parcels are trans-ferred across a directed edge10 E(A, B) is succinctly described in the �gure below.We state once and for all that if a node ever receives inaccurate or mis-signed10 For clarity, even though we are considering �directed edge� E(A,B), we indicatecommunication that travels from B to A. In reality, this communication will passacross E(B, A).



Authenticated Adversarial Routing 15information, it will act as if no information was received at all (e.g. as if the edgehad failed for that stage).At the end of every transmission, the receiver will broadcast a parcel indi-cating if it was able to decode the previous codeword, as well as containing thelabel of a codeword packet he received twice (if one exists). From this, the senderwill create the start of transmission (SOT) broadcast, which includes informa-tion concerning up to n failed transmissions, including why the transmissionfailed and which nodes are blacklisted (or eliminated) for those transmissions.We stress that no node is allowed to transfer any codeword packets until it hasreceived the complete SOT broadcast.Stage A B
HA := Height of bu�er along E(A,B)

1
Height of prev. p. sent (if still in A)Round prev. packet was sent −→Con�rmation of rec. of broadcast info.

←−

HB :=Ht. of bu�er along E(A,B)Round prev. packet was receivedSig's on values for edge E(A,B)Send p. and Sig's on values for E(A,B) if: Receive packet if:
• A has rec.'d SOT bdcst • B has rec.'d SOT bdcst

2 • B is not on A's blacklist/eliminated −→ • A is not on B's blacklist/elim.
− HA > HB OR
− B didn't rec. prev. packet sent

←− Broadcast InformationFig. 2. Description of Communication Exchange Along Directed Edge E(A,B) Duringthe Routing Phase of Some Round.Re-Shu�e Rules. At the end of each round, nodes will shu�e the packets theyare holding to balance the distribution of packets in their incoming and outgoingbu�ers. After re-shu�ing, all bu�ers will have the same number of packets, wherepreference will be given to outgoing bu�ers if perfect balancing is not possible.During the Re-Shu�e Phase, the sender will �ll each of his outgoing bu�ers(in an arbitrary order) with packets corresponding to the current codeword.Meanwhile, the receiver will empty all of its incoming bu�ers into its storagebu�er. If at any time R has received enough packets to decode a codeword bi,then R outputs message mi and empties his storage bu�er.3.3 Analysis of Our Node-Controlling + Edge-Scheduling ProtocolWe state our results concerning the correctness, throughput, and memory ofour adversarial routing protocol.Theorem 32. The memory required of each node is at most O(n4(k + log n)).Proof. (Sketch) Looking at the information each node is required to store in theirbu�ers (see Setup of Section 3.2), the dominant expense comes from maintainingthe signature bu�ers. The theorem follows as there are O(n) such bu�ers, andeach has the capacity to hold D=O(n3) packets of P=O(k + log n) bits.



16 Yair Amir, Paul Bunn, and Rafail OstrovskyTheorem 33. Except for the at most n2 transmissions that may fail due to ma-licious activity, our Routing Protocol enjoys linear throughput. More precisely,after x transmissions, the receiver has correctly outputted at least x − n2 mes-sages. If the number of transmissions x is quadratic in n or greater, than thefailed transmissions due to adversarial behavior become asymptotically negligi-ble. Since a transmission lasts O(n3) rounds and messages contain O(n3) bits,information is transferred through the network at a linear rate.We begin with a sequence of lemmas:Lemma 1. Every failed transmission falls under Case F2, F3, or F4; the sender(with the aide of the end of transmission parcel) can determine at the end of eachtransmission which case occurred.Proof. That Cases F2-F4 cover all possibilities is clear. The sender will knowCase F2 has occurred since the sender keeps track of how many packets he hasinserted in each transmission. The sender will know Case F4 has occurred if thereceiver returns the label of a packet received twice (in the end of transmissionparcel). Otherwise, a failed transmission is Case F3.Lemma 2. If a transmission fails and Case F4 occurred, then if the sender hascollected the complete status report from every participating node, then thesender can identify a corrupt node.Proof. (Sketch) Case F4 roughly corresponds to a mixed adversarial strategy ofpacket deletion and packet duplication: a corrupt node has been replacing cur-rent codeword packets with duplicated packets. When a transmission T fails dueto Case F4, the sender has the label of a packet p that has been received at leasttwice by the receiver, and a node's status report contains its signed communica-tion with neighbors regarding the number of times p transferred between them.The idea is to use the status reports to �nd a node who output p more timesthan it input p. In the full version, we argue that if the sender has the completestatus reports from all nodes who participated in this transmission, then he willbe able to �nd such a node N ∈ G, and this node is necessarily corrupt.Lemma 3. If a transmission fails and Case F3 occurred, then if the sender hascollected the complete status report from every participating node, then thesender can identify a corrupt node.Proof. (Sketch) Case F3 roughly corresponds to an adversarial strategy of packetdeletion. When a transmission fails due to Case F3, a node's status report con-tains its signed communication with neighbors regarding the net number of pack-ets transferred between them. The idea is to use the status reports to �nd a nodewho input more packets than it output. In the full version, we argue that if thesender has the complete status reports from all nodes who participated in thistransmission, then he will be able to �nd such a node N ∈ G, and this node isnecessarily corrupt.Lemma 4. If a transmission fails and Case F2 occurred, then if the sender hascollected the complete status report from every participating node, then thesender can identify a corrupt node.



Authenticated Adversarial Routing 17Proof. (Sketch) Case F2 roughly corresponds to an adversarial strategy of packetduplication. When a transmission fails due to F2, a node's status report containsits signed communication with neighbors regarding the net change in potentialdue to the packet transfers between them.Notice that a single packet in some internal bu�er at height H should (ifall nodes are honest) contribute this amount H to the bu�er's potential. Sincepackets in the sender's bu�ers do not count towards potential, when a packetis inserted by the sender, the total potential in the network will increase bythe height the packet assumes in the incoming bu�er that receives this packet(which is at most 2n). Since the sender inserted less than D packets in Case F2,(in the absence of malicious activity) the total potential in the network can haveincreased by at most 2nD. Meanwhile, we argue in the full version [5] that in eachof the 4D − D rounds in which the sender could not insert a packet, the packetmovement along the active honest path for the round will necessarily cause adecrease of at least n in the total potential in the network. Since the maximumamount of potential added to the network (due to insertions by the sender andin the absence of malicious activity) is 2nD, while the minimum decrease inpotential is 3nD, there would be a negative amount of potential in the network.By de�nition of potential, this is impossible, and thus there must be a corruptnode who is contributing to illegal increases in potential (e.g. by duplicatingpackets). We show in the full version [5] how the status reports (which containinformation on potential changes across each edge) can be used by the sender toidentify and eliminate a corrupt node.Lemma 5. There can be at most n failed transmissions before the sender nec-essarily has the complete status report from every node that participated in oneof those n transmissions.Proof. (Sketch) A node will only be allowed to participate in a transmission if itis in �good standing� with the sender; i.e. the sender is not missing any statusreport parcel from the node. Therefore, for every failed transmission for whichthe sender does not have the complete status report from all participating nodes,there will be a distinct node N ∈ G whose status report the sender does nothave. Since there are n nodes, there are at most n such transmissions.Proof of Theorem 33 (Sketch) We provide here only a very brief sketch of theproof, leaving the details to the full version [5]. We proceed by making a sequenceof Lemmas. Theorem 33 now follows from Lemmas 1-5 as follows. There are atmost n2 failed transmissions (Cases F2-F4) since Lemma F5 states that after
n failed transmissions, the sender will have the complete status report fromevery participating node for one of these transmissions, and then Lemmas 1-4state that the sender can identify (and eliminate) a corrupt node. After a nodehas been eliminated, the network is reduced to n − 1 nodes, and the argumentcan be repeated recursively. Since there are at most n corruptible nodes, thereare at most n2 failed transmissions. Meanwhile, all successful transmissions enjoylinear throughput, as each transmission lasts 4D=O(n3) rounds and successfullydecoded codewords contain M=O(n3) bits.



18 Yair Amir, Paul Bunn, and Rafail Ostrovsky4 Conclusion and Open ProblemsIn this paper, we have described a protocol that is secure simultaneouslyagainst conforming node-controlling and edge-scheduling adversaries. Our resultsare of a theoretical nature, with rigorous proofs of correctness and guaranteesof performance. Surprisingly, our protocol shows that the additional protectionagainst the node-controlling adversary, on top of protection against the edge-scheduling adversary, can be achieved without any additional asymptotic cost interms of throughput.While our results do provide a signi�cant step in the search for protocolsthat work in a dynamic setting (edge-failures controlled by the edge-schedulingadversary) where some of the nodes are susceptible to corruption (by a node-controlling adversary), there remain important open questions. The original Slideprotocol11 requires each internal node to have bu�ers of size O(n2 log n), whileours requires O(n4 log n), though this can be slightly improved with additionalassumptions.12 In practice, the extra factor of n2 may make our protocol infeasi-ble for implementation, even for overlay networks. While the need for signaturesinherently force an increase in memory per node in our protocol verses the origi-nal Slide protocol, this is not what contributes to the extra O(n2) factor. Rather,the only reason we need the extra memory is to handle the third kind of ma-licious behavior, which roughly corresponds to the mixed adversarial strategyof a corrupt node replacing a valid packet with an old packet that the nodehas duplicated. Recall that in order to detect this, for every packet a node seesand for every neighbor, a node must keep a (signed) record of how many timesthis packet has traversed the adjacent edge (the O(n3) packets per codewordand O(n) neighbors per node yield the O(n4) bound on memory). Therefore,one open problem is �nding a less memory-intensive way to handle this type ofadversarial behavior.Our model also makes additional assumptions that would be interesting torelax. In particular, it remains an open problem to �nd a protocol that providese�cient routing against a node-controlling and edge-scheduling adversary in anetwork that is fully asynchronous (without the use of timing assumptions, whichcan be used to replace full synchrony in our solution) and/or does not restrict theadversaries to be conforming. As mentioned in the Introduction, if the adversaryis not conforming, then he can simply permanently disconnect the sender andreceiver, disallowing any possible progress. Therefore, results in this directionwould have to �rst de�ne some notion of connectedness between sender andreceiver, and then state throughput e�ciency results in terms of this de�nition.11 In [13], it was shown how to modify the Slide protocol so that it only requires
O(n log n) memory per internal node. We did not explore in this paper if and/orhow their techniques could be applied to our protocol to similarly reduce it by afactor of n.12 If we are given an a-priori bound that a path-length of any conforming path is atmost L, the O(n4 log n) can be somewhat reduced to O(Ln3 log n).



Authenticated Adversarial Routing 195 AcknowledgmentsWe thank the anonymous reviewers for their suggestions. Part of the work of the authorswas done while visiting IPAM and supported in part by NSF grant 0430254. The thirdauthor was also supported in part by IBM Faculty Award, Xerox Innovation GroupAward, NSF grants 0430254, 0716835, 0716389, 0830803 and U.C. MICRO grant.References1. Y. Afek, E. Gafni �End-to-End Communication in Unreliable Networks.� PODC,pp. 1988.2. Y. Afek, B. Awebuch, E. Gafni, Y. Mansour, A. Rosen, N. Shavit. �Slide� The Keyto Poly. End-to-End Communication.� J. of Algorithms 22, pp. 158-186. 1997.3. Y. Afek, E. Gafni, and A. Rosén. �The Slide Mechanism With Applications InDynamic Networks.� Proc. of the 11th ACM Symp. on PoDC, pp. 35-46. 1992.4. W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Adaptive Packet RoutingFor Bursty Adversarial Tra�c.� J. Comput. Syst. Sci. 60(3): 482-509. 2000.5. Y. Amir, P. Bunn, and R. Ostrovsky. �Authenticated Adversarial Rout-ing, Full Version.� Cornell Univ. Library arXiv, Article No. 0808.0156,http://arxiv.org/abs/0808.0156 2008.6. B. Awerbuch, D. Holmer, C. Nina-Rotaru, and H. Rubens. �A Secure RoutingProtocol Resilient to Byzantine Failures.� WiSE, pp. 21-30. 2002. ACM, 2002.7. B. Awerbuch and T. Leighton. �Improved Approximation Algorithms for theMulti-Commodity Flow Problem and Local Competitive Routing in DynamicNetworks.� STOC. 1994.8. B. Awerbuch, Y Mansour, N Shavit �End-to-End Communication With Poly-nomial Overhead.� Proc. of the 30th IEEE Symp. on Foundations of ComputerScience, FOCS. 1989.9. B. Barak, S. Goldberg, and D. Xiao. �Protocols and Lower Bounds for FailureLocalization in the Internet.� 27th EUROCRYPT 2008, Springer LNCS 4965,pp. 341-360. 2008.10. S. Even, O. Goldreich, and S. Micali. �On-Line/O�-Line Digital Signatures.� J.Cryptology 9(1): pp. 35-67. 1996.11. O. Goldreich. �The Foundations of Cryptography, Basic Applications.� CambridgeUniversity Press. 2004.12. S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. �Path-Quality Moni-toring in the Presence of Adversaries.� ACM SIGMETRICS Vol. 36, pp. 193-204.June 2008.13. E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Log-Space Polynomial End-to-EndCommunication.� SIAM Journal of Computing 27(6): 1531-1549. 1998.14. S. Micali, C. Peikert, M. Sudan, and D. Wilson. �Optimal Error CorrectionAgainst Computationally Bounded Noise.� TCC LNCS 3378, pp. 1-16. 2005.15. S. Rajagopalan and L. Schulman �A Coding Theorem for Distributed Computa-tion.� Proc. 26th STOC, pp. 790-799. 1994.16. C. E. Shannon (Jan. 1949). �Communication in the presence of noise�. Proc. In-stitute of Radio Engineers vol. 37 (1): pp. 10-21.17. A. Shamir and Y. Tauman. �Improved Online/O�ine Signature Schemes.�CRYPTO 2001, pp. 355-367. 2001.18. L. Schulman. �Coding for interactive communication.� Special issue on Codes andComp. of IEEE Transactions on Info. Theory 42(6), Part I: pp.1745-1756. 1996.


