
Security Amplification for Interactive
Cryptographic Primitives

Yevgeniy Dodis1, Russell Impagliazzo2, Ragesh Jaiswal3, and Valentine Kabanets4

1 dodis@cs.nyu.edu. New York University.
2 russell@cs.ucsd.edu. University of California at San Diego and IAS.

3 rjaiswal@cs.columbia.edu. Columbia University.
4 kabanets@cs.sfu.ca. Simon Fraser University.

Abstract. Security amplification is an important problem in Cryptography: start-
ing with a “weakly secure” variant of some cryptographic primitive, the goal
is to build a “strongly secure” variant of the same primitive. This question has
been successfully studied for a variety of important cryptographic primitives,
such as one-way functions, collision-resistant hash functions, encryption schemes
and weakly verifiable puzzles. However, all these tasks were non-interactive.
In this work we study security amplification of interactive cryptographic prim-
itives, such as message authentication codes (MACs), digital signatures (SIGs)
and pseudorandom functions (PRFs). In particular, we prove direct product the-
orems for MACs/SIGs and an XOR lemma for PRFs, therefore obtaining nearly
optimal security amplification for these primitives.

Our main technical result is a new Chernoff-type theorem for what we call
Dynamic Weakly Verifiable Puzzles, which is a generalization of ordinary Weakly
Verifiable Puzzles which we introduce in this paper.

1 Introduction
Security amplification is a fundamental cryptographic problem: given a construction C
of some primitive P which is only “weakly secure”, can one build a “strongly secure”
construction C ′ from C? The first result in this domain is a classical conversion from
weak one-way functions to strong one-way function by Yao [Yao82] (see also [Gol01]):
if a function f is only mildly hard to invert on a random input x, then, for appropriately
chosen n, the function F (x1, . . . , xn) = (f(x1), . . . , f(xn)) is very hard to invert.
The above result is an example of what is called the direct product theorem, which,
when true, roughly asserts that simultaneously solving many independent repetitions
of a mildly hard task is a much harder “combined task”. Since the result of Yao, such
direct product theorems have have been successfully used to argue security amplifi-
cation of several other important cryptographic primitives, such as collision-resistant
hash functions [CRS+07], encryption schemes [DNR04] and weakly verifiable puz-
zles [CHS05,IJK08].

However, all the examples above are non-interactive: namely, after receiving its
challenge, the attacker needs to break the corresponding primitives without any further
help or interaction. This restriction turns out to be important, as security amplifica-
tion, and, in particular, direct product theorems become much more subtle for inter-
active primitives. For example, Bellare, Impagliazzo and Naor [BIN97] demonstrated
that that parallel repetition does not, in general, reduce the soundness error of multi-
round (computationally sound) protocols, and this result was further strengthened by

2

Pietrzak and Wikstrom [PW07]. On the positive side, parallel repetition is known to
work for the special case of three-round protocols [BIN97] and constant-round public-
coin protocols [PV07]. However, considerably less work has been done in the security
amplification of more “basic” cryptographic primitives requiring interaction, such as
block ciphers, message authentications codes (MACs), digital signatures (SIGs) and
pseudorandom functions (PRFs). For example, Luby and Rackoff [LR86] (see also
[NR99,Mye99]) showed how to improve the security of a constant number of pseu-
dorandom permutation generators by composition, while Myers [Mye03] showed that
a (non-standard) variant of the XOR lemma [Yao82,Lev87,Imp95,GNW95] holds for
PRFs. In particular, the known results for the interactive case are either weaker or more
specialized than those for the non-interactive case. The difficulty is that, for instance
in the case of MACs, the attacker has oracle access to the corresponding “signing” and
“verification” oracles, and the existing techniques do not appear to handle such cases.

In this work we study the question of security amplification of MACs, SIGs and
PRFs, showing how to convert a corresponding weak primitive into a strong primi-
tive. In brief, we prove a direct product theorem for MACs/SIGs (and even a Chernoff-
type theorem to handle MACs/SIGs with imperfect completeness), and a (regular) XOR
lemma for PRFs. Before describing these results in more details, however, it is useful
to introduce our main technical tool for all these cases — a Chernoff-type theorem for
what we call Dynamic Weakly Verifiable Puzzles (DWVPs) — which is of independent
interest.

Dynamic Weakly Verifiable Puzzles. Recall, (non-dynamic) weakly verifiable puzzles
(WVPs) were introduced by Canetti, Halevi and Steiner [CHS05] to capture the class
of puzzles whose solutions can only be verified efficiently by the party generating the
instance of the puzzle. This notion includes, as special cases, most previously men-
tioned non-interactive primitives, such as one-way functions, collision-resistant hash
functions, one-way encryption schemes, CAPTCHAs, etc. To handle also interactive
primitives, such as MACs and SIGs (and also be useful later for PRFs), in Section 3 we
generalize this notion to that of dynamic WVPs (DWVPs) as follows. Just like in WVPs,
one samples a pair (x, α) from some distribution D, where α is the secret advice used
to verify proposed solutions r to the puzzle x. Unlike WVPs, however, each x actually
defines a set of related puzzles, indexed by some value q ∈ Q, as opposed to a single
puzzle (which corresponds to |Q| = 1). An efficient verification algorithm R for the
DWVP uses α and the puzzle index q to test if a given solution r is correct. An attacker
B has oracle access to this verification procedure. Additionally, the attacker has ora-
cle access to the hint oracle: given an index q, the hint oracle returns some hint value
H(α, q), presumably “helping” the attacker to solve the puzzle q. The attacker wins
the DWVP game if it ever causes the verification oracle to succeed on a query q ∈ Q
not previously queried to the hint oracle. As we see, this abstraction clearly includes
MACs and SIGs as special cases. It also generalizes ordinary WVPs, corresponding to
|Q| = 1. We say that the DWVP is δ-hard, if no (appropriately bounded) attacker can
win the above game with probability more than (1− δ).

Our main technical result is the following (informally stated) Chernoff-type theorem
for DWVPs. Given n independently chosen δ-hard DWVPs on some index set Q, the
chance of solving more than (n− (1− γ)δn) DWVPs — on the same value q ∈ Q and

3

using less than h “hint” queries q′ 6= q — is proportional to h · e−Ω(γ2δn); the exact
statement is given in Theorem 3. Notice, the value 0 < γ ≤ 1 measures the “slackness
parameter”. In particular, γ = 1 corresponds to the direct product theorem where the
attacker must solve all n puzzles (on the same q). However, setting γ < 1 allows to
handle the setting where even the “legitimate” users, — who have an advantage over
the attacker, like knowing α or being humans, — can also fail to solve the puzzle with
some probability slightly less than (1− γ)δ.

This result generalizes the corresponding Chernoff-type theorem of Impagliazzo,
Jaiswal and Kabanets [IJK08] for standard, non-dynamic, WVPs. However, the new
theorem involves a considerably more complicated proof. The extra difficulties are ex-
plained in Section 3.1. In essence, in order to amplify security, the attacker B for the
single DWVP must typically execute the assumed attacker A for the “threshold” vari-
ant several times, before obtaining sufficient “confidence” in the quality of the solutions
output by A. In each of these “auxiliary” runs, however, there is a chance that A will
ask a hint query for the index q which is equal to the one that A is going to solve in
the “actual” run leading to the forgery, making B’s forgery value q “old”. Thus, a new
delicate argument has to be made to argue security in this scenario. At a high level, the
argument is somewhat similar to Coron’s improved analysis [Cor00] of the full domain
hash signature scheme, although the details differ. See Theorem 3 for the details.

Applications to MACs, SIGs and PRFs. Our main technical result above almost imme-
diately implies security amplification for MACs and SIGs, even with imperfect com-
pleteness. For completeness, we briefly state the (asymptotic) result for the MAC case.
(The case of SIGs and the exact security version for both cases are immediate.) We
assume that the reader is familiar with the basic syntax and the standard Chosen Mes-
sage Attack (CMA) scenario for a MAC, which is given by a tagging algorithm Tag
and the verification algorithm Ver. We denote the secret key by s, and allow the tagging
algorithm to be probabilistic (but not stateful). Given the security parameter k, we say
that the MAC has completeness error β = β(k) and unforgeability δ = δ(k), where
β < δ, if for any message m, Pr(Ver(s,m,Tag(s,m)) = 1) ≥ 1 − β, and that no
probabilistic polynomial-time attacker B can forge a valid tag for a “fresh” message m
with probability greater than (1− δ) during the CMA attack.

The MAC Π is said to be weak if δ(k)− β(k) ≥ 1/poly(k), for some polynomial
poly, and is said to be strong if, for sufficiently large k, β(k) ≤ negl(k) and δ(k) ≥
1 − negl(k), where negl(k) is some negligible function of k. Given an integer n and
a number γ > 0, we can define the “threshold direct product” MAC Πn in the natural
way: the key of Πn consists of n independent keys for the basic MAC, the tag of m
contains the concatenation of all n individual tags of m, and the verification accepts an
n-tuples of individual tags if at least (n− (1− γ)δn) individual tags are correct. Then,
a straightforward application of Theorem 3 gives:

Theorem 1. Assume Π is a weak MAC. Then one can choose n = poly(k) and γ > 0
so that Πn has completeness error 2−Ω(k) and unforgeability (1− 2−Ω(k)). In partic-
ular, Πn is a strong MAC.

We then use our direct product result for MACs to argue the XOR lemma for the se-
curity amplification of PRFs. Namely, in Section 4.2 we show that the XOR of several

4

independent weak PRFs results in a strong PRF (see Section 4.2 for definitions). It is in-
teresting to compare this result with a related XOR lemma for PRFs by Myers [Mye03].
Meyers observed that the natural XOR lemma above cannot hold for δ-pseudorandom
PRFs, where δ ≥ 1

2 . In particular, a PRF one of whose output bits is a constant for
some input can potentially reach security (almost) 1/2, but can never be amplified by a
simple XOR. Because of this counter-example, Meyers had a more complicated XOR
lemma for PRFs, where a separate pad was selected for each δ-pseudorandom PRF, and
showed that this variant worked for any δ < 1. In this work, we show that Meyers’
counter-example is the worst: the simple XOR lemma holds for δ-pseudorandom PRFs,
for any δ < 1

2 .
The PRF result generally follows the usual connection between the direct product

theorems and the XOR lemmas first observed by [GNW95], but with a subtlety. First,
it is easy to see that it suffices to consider Boolean PRFs. For those, we notice that a δ-
pseudorandom PRF is also a (1−2δ)-unforgeable (Boolean) MAC (this is where δ < 1

2
comes in). Then, we apply the direct product theorem to obtain a strong (non-Boolean)
MAC. At this stage, one typically applies the Goldreich-Levin [GL89] theorem to argue
that the XOR of a random subset of (strong) MACs is a PRF. Unfortunately, as observed
by Naor and Reingold [NR98], the standard GL theorem does not work in general for
converting unpredictability into pseudorandomness, at least when the subset is public
(which will ultimately happen in our case). However, [NR98] showed that the conver-
sion does work when r is kept secret. Luckily, by symmetry, it is easy to argue that for
“direct product MACs”, keeping r secret or public does not make much difference. In-
deed, by slightly adjusting the analysis of [NR98] to our setting, we will directly obtain
the desired XOR lemma for PRFs.

Finally, in Section 4.1 we observe a simple result regarding the security amplifica-
tion of pseudorandom generators (PRGs). This result does not use any new techniques
(such as our Chernoff-type theorem). However, we state it for completeness, since it
naturally leads to the (more complicated) case of PRFs in Section 4.2 and, as far as we
know, it has never explicitly appeared in the literature before.

2 Preliminaries
For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma 1 (Hoeffding bound). Let X1, . . . , Xt be independent identically distributed
random variables taking values in the interval [0, 1], with expectation µ. Let χ =
(1/t)

∑t
i=1Xi. For any 0 < ν ≤ 1, we have Pr[χ < (1− ν)µ] < e−ν

2µt/2.

Theorem 2 ([GL89]). There is a probabilistic algorithm Dec with the following prop-
erty. Let a ∈ {0, 1}k be any string, and let O : {0, 1}k → {0, 1} be any predicate such
that |Prz∈{0,1}k [O(z) = 〈a, z〉]− 1/2| ≥ ν for some ν > 0. Then, given ν and oracle
access to the predicate O, the algorithm Dec runs in time poly(k, 1/ν), and outputs a
list of size O(1/ν2) such that, with probability at least 3/4, the string a is on the list.

2.1 Samplers

We will consider bipartite graphs G = G(L ∪ R,E) defined on a bipartition L ∪ R of
vertices; we think of L as left vertices, and R as right vertices of the graph G. We allow

5

graphs with multiple edges. For a vertex v of G, we denote by NG(v) the multiset of its
neighbors in G; if the graph G is clear from the context, we will drop the subscript and
simply write N(v). Also, for a vertex x of G, we denote by Ex the set of all edges in G
that are incident to x. We say that G is bi-regular if the degrees of vertices in L are the
same, and the degrees of vertices in R are the same.

Let G = G(L ∪ R,E) be any bi-regular bipartite graph. For a function λ : [0, 1]×
[0, 1] → [0, 1], we say that G is a λ-sampler if, for every function F : L → [0, 1]
with the average value Expx∈L[F (x)] ≥ µ and any 0 < ν < 1, there are at most
λ(µ, ν) · |R| vertices r ∈ R where Expy∈N(r)[F (y)] ≤ (1− ν)µ.

We will use the following properties of samplers (proved in [IJKW08,IJK08]). The
first property says that for any two large vertex subsets W and F of a sampler, the
fraction of edges between W and F is close to the product of the densities of W and F .

Lemma 2 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler. Let W ⊆ R be
any set of measure at least τ , and let V ⊆ L be any set of measure at least β. Then,
for all 0 < ν < 1 and λ0 = λ(β, ν), we have Prx∈L,y∈N(x)[x ∈ V & y ∈ W] ≥
β(1 − ν)(τ − λ0), where the probability is for the random experiment of first picking
a random node x ∈ L uniformly at random, and then picking a uniformly random
neighbor y of x in the graph G.

The second property deals with edge-colored samplers. It basically says that re-
moving some subset of right vertices of a sampler yields a graph which (although not
necessarily bi-regular) still has the following property: Picking a random left node and
then picking its random neighbor induces roughly the same distribution on the edges as
picking a random right node and then its random neighbor.

Lemma 3 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler, with the right
degree D. Let W ⊆ R be any subset of density at least τ , and let G′ = G(L ∪W,E′)
be the induced subgraph of G (obtained after removing all vertices in R \W), with the
edge set E′. Let Col : E′ → {red, green} be any coloring of the edges of G′ such that
at most ηD|W | edges are colored red, for some 0 ≤ η ≤ 1. Then, for all 0 < ν, β < 1
and λ0 = λ(β, ν), we have

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] ≤ max{η/((1− ν)(1− λ0/τ)), β},

where the probability is for the random experiment of first picking a uniformly random
node x ∈ L, and then picking a uniformly random neighbor y of x in the graph G′.

3 Dynamic Weakly Verifiable Puzzles

We consider the following generalization of weakly verifiable puzzles (WVP) [CHS05],
which we call dynamic weakly verifiable puzzles (DWVP).

Definition 1 (Dynamic Weakly Verifiable Puzzle). A DWVP Π is defined by a dis-
tribution D on pairs of strings (x, α); here α is the advice used to generate and eval-
uate responses to the puzzle x. Unlike the case of WVP, here the string x defines a
set of puzzles, (x, q) for q ∈ Q (for some set Q of indices). There is a probabilistic

6

polynomial-time computable relation R that specifies which answers are solutions for
which of these puzzles: R(α, q, r) is true iff response r is correct answer to puzzle q
in the collection determined by α. Finally, there is also a probabilistic polynomial-time
computable hint function H(α, q).

A solver can make a number of queries: query hint(q) asks for H(α, q), the hint
for puzzle number q; a verification query V (q, r) asks whether R(α, q, r). The solver
succeeds if it makes an accepting verification query for a q where it has not previously
made a hint query on q.

Clearly, WVP is a special case of DWVP when |Q| = 1. A MAC is also a special
case of DWVP where α is a secret key, x is the empty string, queries q are messages,
a hint is to give the MAC of a message, and correctness is for a (valid message, MAC)
pair. Signatures are also a special case with α being a secret key, x a public key, and the
rest similar to the case of MACs.

We give hardness amplification for such weakly verifiable puzzle collections, using
direct products. First, let us define an n-wise direct product for DWVPs.

Definition 2 (n-wise direct-product of DWVPs). Given a DWVP Π with D, R, Q,
and H , its n-wise direct product is a DWVP Πn with the product distribution Dn pro-
ducing n-tuples (α1, x1), . . . , (αn, xn). For a given n-tuple ᾱ = (α1, . . . , αn) and a
query q ∈ Q, the new hint function is Hn(ᾱ, q) = (H(α1, q), . . . ,H(αn, q)). For pa-
rameters 0 ≤ γ, δ ≤ 1, we say that the new relation Rk((α1, . . . , αn), q, (r1, . . . , rn))
evaluates to true if there is a subset S ⊆ [n] of size at least n − (1 − γ)δn such that
∧i∈SR(αi, q, ri).

A solver of the n-wise DWVP Πn may ask hint queries hintn(q), getting Hn(ᾱ, q)
as the answer. A verification query V n(q, r̄) asks if Rn(ᾱ, q, r̄), for an n-tuple r̄ =
(r1, . . . , rn). We say that the solver succeeds if it makes an accepting verification query
for a q where it has not previously made a hint query on q.1

Theorem 3 (Security amplification for DWVP (uniform version)). Suppose a prob-
abilistic t-time algorithm A succeeds in solving the n-wise direct-product of some
DWVP Πn with probability at least ε, where ε ≥ (800/γδ) · (h + v) · e−γ2δn/40,
and h is the number of hint queries 2, and v the number of verification queries made by
A. Then there is a uniform probabilistic algorithm B that succeeds in solving the origi-
nal DWVPΠ with probability at least 1−δ, while makingO((h(h+v)/ε) · log(1/γδ))
hint queries, only one verification query, and having a running time

O
(
((h+ v)4/ε4) · t+ (t+ ωh) · (h+ v)/ε · log (1/γδ)

)
.

Here ω denotes the maximum time to generate a hint for a given query. The success
probability of B is over the random input puzzle of Π and internal randomness of B.

1 We don’t allow the solver to make hint queries (q1, . . . , qn), with different qi’s, as this would
make the new k-wise DWVP completely insecure. Indeed, the solver could ask cyclic shifts of
the query (q1, . . . , qn), and thus learn the answers for q1 in all n positions, without actually
making the hint query (q1, . . . , q1).

2 Note that when h = 0, we’re in the case of WVPs.

7

Note that B in the above theorem is a uniform algorithm. We get a reduction in
running time of an algorithm for attacking Π if we allow it to be non-uniform. The
algorithm B above (as we will see later in the proof) samples a suitable hash function
from a family of pairwise independent hash functions and then uses the selected func-
tion in the remaining construction. In the non-uniform version of the above theorem,
we can skip this step and assume that the suitable hash function is given to it as advice.
Following is the non-uniform version of the above theorem.

Theorem 4 (Security amplification for DWVP (non uniform version)). Suppose a
probabilistic t-time algorithm A succeeds in solving the n-wise direct-product of some
DWVPΠn with probability at least ε, where ε ≥ (800/γδ) ·(h+v) ·e−γ2δn/40, h is the
number of hint queries, and v the number of verification queries made by A. Then there
is a probabilistic algorithmB that succeeds in solving the original DWVPΠ with prob-
ability at least 1−δ, while makingO((h ·(h+v)/ε)) · log(1/γδ)) hint queries, only one
verification query, and having the running timeO ((t+ ωh) · ((h+ v)/ε) · log (1/γδ)),
where ω denotes the maximum time to generate a hint for a given query. The success
probability of B is over the random input puzzle of Π and internal randomness of B.

3.1 Intuition

We want to solve a single instance of DWVP Π , using an algorithm A for the n-wise
direct-product Πn, and having access to the hint-oracle and the verification-oracle for
Π . The idea is to “embed” our unknown puzzle into an n-tuple of puzzles, by generating
the n − 1 puzzles at random by ourselves. Then we simulate algorithm A on this n-
tuple of puzzles. During this simulation, we can answer the hint queries made by A
by computing the hint function on our own puzzles and by making the appropriate
hint query to the hint-oracle for Π . We will answer all verification queries of A by
0 (meaning “failure”). At the end, we see if A made a verification query which was
“sufficiently” correct in the positions corresponding to our own puzzles; if so, we make
a probabilistic decision to output this query (for the position of our unknown input
puzzle).

To decide whether to believe or not to believe the verification query made by A, we
count the number of correct answers it gave for the puzzles we ourselves generated (and
hence can verify), and then believe with probability inverse-exponentially related to the
number of incorrect answers we see (i.e., the more incorrect answers we see, the less
likely we are to believe that A’s verification query is correct for the unknown puzzle);
since we allow up to (1−γ)δn incorrect answers, we will discount these many incorrect
answers, when making our probabilistic decision.

Such a “soft” decision algorithm for testing if an n-tuple is good has been proposed
in [IW97], and later used in [BIN97,IJK08]. Using the machinery of [IJK08], we may
assume, for the sake of intuition, that we can decide if a given verification query (q, r̄)
made by A is correct (i.e., is correct for at least n− (1− γ)δn of ri’s in the n-tuple r̄).

Since A is assumed to succeed on at least ε fraction of n-tuples of puzzles, we get
from A a correct verification query with probability at least ε (for a random unknown
puzzle, and random n − 1 self-generated puzzles). Hence, we will produce a correct
solution to the input puzzle of Π with probability at least ε.

8

To improve this probability, we would like to repeatedly sample n − 1 random
puzzles, simulate A on the obtained n-tuple of puzzles (including the input puzzle in a
random position), and check if A produces a correct verification query. If we repeat for
O(log 1/δ)/ε) iterations, we should increase our success probability for solving Π to
1− δ.

However, there is a problem with such repeated simulations of A on different n-
tuples of puzzles: in some of its later runs, A may make a successful verification query
for the same q for which it made a hint query in an earlier run. Thus, we need to make
sure that a successful verification query should not be one of the hint queries asked by
A in one of its previous runs. We achieve this by randomly partitioning the query space
Q into the “attack” queries P , and “hint” queries. Here P is a random variable such
that any query has probability 1

2(h+v) of falling inside P . We will define the set P by
picking a random hash function hash from Q to {0, 1, . . . , 2(h + v) − 1}, and setting
P = Phash to be the preimages of 0 of hash.

We say that the first success query for A is the first query where a successful verifi-
cation query without a previous hint query is made. A canonical success for attacker A
with respect to P is an attack so that the first successful verification query is in P and
all earlier queries (hint or verification) are not in P .

We will show that the expected fraction of canonical successes for Phash is at least
ε

4(h+v) . We will also give an efficient algorithm (the Pick-hash procedure below) that
finds a hash function hash so that the fraction of canonical successes for Phash is close
to the expected fraction. Then we test random candidates for being canonical successes
with respect to Phash.

Due to this extra complication (having to separate hint and verification queries),
we lose on our success probability by a factor of 8(h + v) compared to the case of
WVPs analyzed in [IJK08]. The formal proof of the theorem is given in the following
subsection.

3.2 Proof of Theorems 3 and 4

Proof (proof of Theorem 3). For any mapping hash : Q → {0, ..., 2(h + v) − 1}, let
Phash denote the preimages of 0. Also, as defined in the previous section, a canonical
success for an attacker A with respect to P ⊆ Q is an attack so that the first successful
verification query is in P and all earlier queries (hint or verification) queries are not in
P . The proof of the main theorem follows from the following two lemmas.

Lemma 4. Let A be an algorithm which succeeds in solving the n-wise direct-product
of some DWVPΠn with probability at least εwhile making h hint queries, v verification
queries and have a running time t. Then there is a probabilistic algorithm which runs
in time O(((h+ v)4/ε4) · t) and with high probability outputs a function hash : Q→
{0, ..., 2(h + v) − 1} such that the canonical success probability of A with respect to
the set Phash is at least ε

8(h+v) .

Lemma 5. Let hash : Q→ {0, ..., 2(h+ v)− 1} be a function. Let A be an algorithm
such that the canonical success probability ofA over an n-wise DWVPΠn with respect
to Phash is at least ε′ = (100/γδ) ·e−γ2δn/40. Furthermore, let A makes h hint queries

9

and v verification queries and have a running time t. Then there is a probabilistic
algorithm B that succeeds in solving the original DWVP Π with probability at least
1 − δ, while making O((h(h + v)/ε) · log(1/γδ)) hint queries, only one verification
query, and having the running time O ((t+ ωh) · (h/ε) · log (1/γδ)), where ω denotes
the maximum time to generate a hint for a given query.

Proof (proof of Theorem 4). The proof follows from Lemmas 4 and 5.

In the remaining subsection, we give the proof of Lemmas 4 and 5. The proof of
Lemma 5 is very similar to the analysis of WVPs in [IJK08].

Proof (proof of Lemma 4). Let H be a pairwise independent family of hash functions
mapping Q into {0, ..., (2(h+ v)− 1)}. First note that for a randomly chosen function

hash
$← H, Phash is a random variable denoting the partition ofQ into two parts which

satisfies the following properties:

∀q1, q2 ∈ Q, Pr[q1 ∈ Phash | q2 ∈ Phash] = Pr[q1 ∈ Phash] =
1

2(h+ v)
(1)

For any fixed choice of ᾱ = (α1, ..., αn), let qᾱ1 , ..., q
ᾱ
h denote the hint queries

of A and (qᾱh+1, r̄
ᾱ
h+1), ..., (qᾱh+v, r̄

ᾱ
h+v). Also, let (qᾱj , r̄

ᾱ
j) denote the first successful

verification query, in case A succeeds, and let it denote any arbitrary verification query
in the caseA fails. Furthermore, letEᾱ denote the event that qᾱ1 , ..., q

ᾱ
h , q

ᾱ
h+1, ..., q

ᾱ
j−1 /∈

Phash and qᾱj ∈ Phash. We bound the probability of the event Eᾱ as follows.

Claim. For each fixed ᾱ, we have PrPhash
[Eᾱ] ≥ 1

4(h+v) .

Proof. We have

PrPhash
[Eᾱ] = Pr[qᾱj ∈ Phash & ∀i < j, qᾱi /∈ Phash]

= Pr[qᾱj ∈ Phash] ·Pr[∀i < j, qᾱi /∈ Phash | qᾱj ∈ Phash].

By (1), we get that the latter expression is equal to 1
2(h+v) · (1 − Pr[∃i < j, qᾱi ∈

Phash | qᾱj ∈ Phash]), which, by the union bound, is at least

1
2(h+ v)

·

1−
∑
i<j

Pr[qᾱi ∈ Phash | qᾱj ∈ Phash]

 .

Finally, using the pairwise independence property (1), we conclude that

Pr[Eᾱ] ≥ 1
2(h+ v)

·

1−
∑
i<j

Pr[qᾱi ∈ Phash]

 ≥ 1
4(h+ v)

,

as required.

10

Let T denote the “good” set corresponding to A’s attack, that is,
T = {ᾱ : A′s attack succeeds}. We have Pr[ᾱ ∈ T] ≥ ε. Consider the following
random variable: GPhash

= {ᾱ | ᾱ ∈ T and Eᾱ}. So, GPhash
contains those ᾱ’s for

which A has canonical success.
Since ∀ᾱ ∈ G,PrPhash

[Eᾱ] ≥ 1
4(h+v) , using linearity of expectation we get

ExpPhash
[Prᾱ[ᾱ ∈ GPhash

]] ≥ ε
4(h+v) . Hence, by averaging, we get that with prob-

ability at least ε
8(h+v) over the randomness of Phash, there is at least ε

8(h+v) chance
that a randomly chosen ᾱ ∈ GPhash

. Let us call such Phash’s “good”. The subroutine
Pick-hash (see figure 2) uses sampling and runs in time O(((h+ v)4/ε4) · t) to return
a mapping hash such that Phash is good.

Pick-hash
00. LetH be a pairwise independent family of hash functions

which maps Q into {0, 1, ..., (2h− 1)}.
01. Repeat lines (2− 15) for at most 64(h+ v)2/ε2 times:

02. hash
$← H

03. Let Phash denote the subset of all queries q such that hash(q) = 0
04. count← 0
05. Repeat for at most 64(h+ v)2/ε2 times:
06. Pick ᾱ = (α1, ..., αn) randomly
07. Execute A
08. When A asks a hint query q
09. If (q ∈ Phash), then abort A and continue with step 5
10. Let (r1, ..., rn) be hints to query q for puzzle sets x1, ..., xn
11. return (r1, ..., rn) to A
12. When A asks a verification query (q, r̄)
13. If (Rn(ᾱ, q, r̄) = 1) and q ∈ Phash then
14. increase count by 1 and continue at step 5
15. If (count ≥ 4(h+ v)/ε) then return hash

Figure 1: Algorithm for picking a good hash function

Proof (Proof of Lemma 5).
Due to space restriction, we only give an intuitive sketch of the proof in this paper.

The detailed proof of this lemma can be found in the full version of the paper. Figure
(2) gives the formal description of the algorithm B which uses the algorithm A.

For any fixed ᾱ, let qᾱ1 , ..., q
ᾱ
h denote the hint queries made byA and (qᾱh+1, r

ᾱ
h+1), ...,

(qᾱh+v, r
ᾱ
h+v) denote the verification queries. Let j ∈ [h+ v] be the first query such that

qᾱv ∈ Phash. For all simulations of A, B correctly answers every hint query of A by
itself making a hint query with respect to the DWVP Π which it is trying to solve (lines
10–13). Note that for a single simulation of A (lines 6–25), the simulation is aborted if
j ≤ h (line 9). Otherwise, B makes a “soft” decision using (qᾱj , r̄

ᾱ
j) to produce its veri-

fication query (lines 19–24). Lemma 4 tells that there are at least ε′ fraction of ᾱ’s such
that (qᾱj , r̄

ᾱ
j) is a correct verification query for A(these are ᾱ’s on which A has canoni-

11

B(x)
00. Let ρ = (1− γ/10) and Θ = (1− γ)δn
01. Let hash denote the function as in Lemma 4. For Theorem 3, hash is chosen using

the subroutine Pick-hash. For Theorem 4, we can assume that hash is given as advice.
02. Let Phash denote the subset of all queries q such that hash(q) = 0
03. Repeat lines (4− 23) for at most timeout = O(((h+ v)/ε) · log (1/γδ)) steps:

04. Pick i $← [1..n]
05. Pick (n− 1) α’s randomly. Let (α1, ..., αi−1, αi+1, ..., αn) denote

these α’s and let (x1, ..., xi−1, xi+1, ..., xn) denote the puzzle sets
corresponding to these α’s.

06. Sv ← ∅
07. Execute A(x1, ..., xi−1, x, xi+1, ..., xn)
08. When A asks its hint query q
09. If q ∈ Phash then return ⊥ to A and halt the current simulation of A
10. B makes a hint query q to get the answer r
11. Let (r1, ..., ri−1, ri+1, ..., rn−1) be the hints for query q for

puzzle sets (x1, ..., xi−1, xi+1, ..., xn)
12. r̄ ← (r1, .., ri−1, r, ri+1.., rn)
13. return r̄ to A
14. When A asks a verification query (q, r̄)
15. If q /∈ Phash then return 0 to A
16. else
17. Parse r̄ as (r1, . . . , rn)
18. m← |{j : R(αj , q, rj) = 1, j 6= i}|
19. If (m ≥ n−Θ) then
20. with probability 1, B makes a verification query (q, ri) and halts
21. else
22. with probability ρm−Θ , B makes a verification query (q, ri) and halts
23. Halt the current simulation of A and continue at line (03)
25. return (⊥,⊥)

Figure 2: Algorithm for solving Π

12

cal success). So, intuitively there is a fair chance that B produces a correct verification
query.

Let Good denote the set of ᾱ’s on which A succeed canonically. From the assump-
tion of the Lemma we know thatGood contains at least ε′ fraction of ᾱ’s. The remaining
task is to argue that this is sufficient to show that B succeeds with high probability. The
rest of the analysis, apart from minor details, is similar to the proof of the Direct Prod-
uct theorem for WVPs from [IJK08], essentially arguing that the lines 17–22 of the
algorithm B act as a decision procedure for the set Good. Next we give some details of
these arguments.

Consider the following bipartite graph G = G(L ∪ R,E): the set of left vertices
L is the set of α’s; the right vertices R are all n-tuples ᾱ = (α1, ..., αn); for every
y = (u1, . . . , un) ∈ R, there are n edges (y, u1), . . . , (y, un) ∈ E. Using Lemma 1,
we see that this graph is a λ-sampler for λ(µ, ν) = e−ν

2µk/2.
For an unknown secret key α, let ᾱ = (α1, . . . , αi−1, α, αi, . . . , αn−1) be the n-

tuple of secret keys that corresponds to the n-tuple of puzzles (x1, . . . , xn) that B
will feed to A in line 7. Let qᾱ1 , ..., q

ᾱ
h be the A’s hint queries and (qᾱh+1, r̄

ᾱ
h+1),,

(qᾱh+v, r̄
ᾱ
h+v) be the verification queries. Let j ∈ [h + v] be the first index such that

qᾱj ∈ Phash. Let (qᾱ, r̄ᾱ) denote (qᾱj , r̄
ᾱ
j) in case j > h and (⊥,⊥) otherwise.

In the case (qᾱ, r̄ᾱ) 6= (⊥,⊥),B makes a probabilistic decision about using (qᾱ, r̄ᾱ)
to produce its verification queries. It does that by verifying the answers to the query at
all positions other than position i where the unknown α has been planted. Let (qᾱ, rᾱ)
denote the verification query made by the algorithmB in this simulation ofA. If no ver-
ification query is made or if (qᾱ, r̄ᾱ) = (⊥,⊥), then (qᾱ, rᾱ) = (⊥,⊥). Let (qB , rB)
denote the single verification query made by B.

First we bound the probability of timeout ofB or in other words the probability that
(qᾱ, rᾱ) = (⊥,⊥) in all iterations of B. If ᾱ ∈ Good, then lines 7–23 will return a
verification query with probability 1. Hence, the probability of timeout is at most the
probability that B never samples a neighbor ᾱ ∈ Good of α in the graph G.

Consider the set H of all those left vertices α of G such that α has less than ε′/4
fraction of its neighbors falling into the set Good. These are precisely those α’s for
which B is likely to time out. The next lemma shows that the set H is small.

Lemma 6. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H be any
subset of H of density exactly β. By our assumption, we have that Prα∈L,w∈N(α)[α ∈
H ′ & w ∈ Good] < βε′/4. On the other hand, by Lemma 2 we get that the same
probability is at least β(ε′ − λ0)/3 for λ0 = λ(β, 2/3). This is a contradiction if λ0 ≤
ε′/4.

Lemma 7. For every α 6∈ H , we have Pr[B timeouts] ≤ γδ/20, where the probability
is over the internal randomness of B.

Proof. By the definition of H , we get that the probability of timeout on any given
α 6∈ H is at most (1− ε′/4)4 ln(20/γδ)/ε′ ≤ γδ/20.

Next, we need to show that the probability of R(α, qB , rB) = 0 conditioned on the
event that (qB , rB) 6= (⊥,⊥), is small. Note that this conditional probability remains

13

the same across all the simulations of A in lines 4–23. Consider any fixed simulation of
A (lines 8–23) such that (qᾱ, r̄ᾱ) 6= (⊥,⊥). Let err be the number of incorrect answers
in r̄ᾱ for the query qᾱ. Then if err ≤ (1 − γ)δn, then lines 7 − 25 of B produces a
verification query with probability 1. Otherwise a verification query is produced with
probability that decreases exponentially (by a factor of ρ) as err increases.For this
intuitive sketch of the proof, let us make a simplifying assumption there is an oracle
O which tells whether ᾱ ∈ Good 3 (in some sense lines 17–22 is an approximation of
such an oracle). Given such an oracle, consider the the algorithm BO, which is same as
B except we replace lines 17–23 with the following line:

If O tells that the hidden ᾱ ∈ Good, then B makes verification query (q, ri)

Intuitively, lines 17–22 in B is an approximation of the line above and hence
Pr[R(α, qB , rB) = 0|(qB , rB) 6= (⊥,⊥)] should be close to Pr[R(α, qB

O
, rB

O
) =

0|(qBO , rBO) 6= (⊥,⊥)]. On the other hand, analyzing the conditional probability
Pr[R(α, qB

O
, rB

O
) = 0|(qBO , rBO) 6= (⊥,⊥)] is simple and is done by analyzing

the following graph: Let G′ be the induced subgraph of G obtained after removing all
vertices in R\Good. For each edge ((α1, . . . , αn), αl) of the graph G′, we color this
edge green if the lth answer in r̄ᾱ is correct for the query qᾱ, and we color it red other-
wise. Consider the following random experiment E defined on the graph G′:

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in G′, for ᾱ
containing α in position l ∈ [n]. If ᾱ ∈ Good, then output e with probability 1
else output ⊥.”

For each α, we have

Pr[R(α, qB
O
, rB

O
) = 0 | (qB

O
, rB

O
) 6= (⊥,⊥)] =

Pr[E outputs red edge incident to α | E outputs some edge incident to α], (2)

where the first probability is over internal randomness of BO, and the second probabil-
ity is over the random choices of E for the fixed α (i.e., over the random choice of an
edge e incident to α, and the random choice whether e is output).

From Lemma 3 we get that:

Pr[E outputs red edge incident to α | E outputs some edge incident to α] ≤

max
(

η

(1− ν)(1− λ0/τ)
, β

)
which is at most δ−γδ/2 for η = (1−γ)δ, β = δ/2, ν = γ/4, and λ0

τ = λ(δ/2,γ/4)
ε′ ≤

γ/4.

3 Note that B does not have access to α and hence does not know ᾱ

14

Summing up, from Lemma 6 we get that the fraction of α’s for which B might time
out is small. From Lemma 7 we get that for the remaining α’s, it does not time out with
high probability. Furthermore, from the above argument, the conditional probability of
failing to produce a correct verification query is small. Hence, the probability that B
fails is small.

4 XOR Lemmas for PRGs and PRFs
In this section, we show how to amplify security of pseudorandom (function) genera-
tors, using Direct Products (old and new) and the Goldreich-Levin decoding algorithm
from Theorem 2.

4.1 Amplifying PRGs

We start with PRGs. Let G : {0, 1}k → {0, 1}`(k) be a polynomial-time computable
generator, stretching n-bit seeds to `(k)-bit strings, for `(k) > k, such that G is δ(k)-
pseudorandom. That is, for any probabilistic polynomial-time algorithm A, and all suf-
ficiently large k, we have |Prs[A(G(s)) = 1] − Prx[A(x) = 1]| ≤ δ(k), where s is
chosen uniformly at random from {0, 1}k, and x from {0, 1}`(k).

We say that a PRG G is weak if it is δ-pseudorandom for a constant δ < 1/2. We
say that a PRGG is strong if it is δ(n)-pseudorandom for δ(n) < 1/kc for any constant
c > 0 (i.e., negligible).

For the rest of this subsection, let n > ω(log k) and let n′ = 2n. We show that
any weak PRG Gweak of stretch `(k) > kn can be transformed into a strong PRG
Gstrong as follows: The seed toGstrong is a n-tuple of seeds toGweak, and the output of
Gstrong(s1, . . . , sn) is the bit-wise XOR of the n strings Gweak(s1), . . . , Gweak(sn).

Theorem 5 (Security amplification for PRGs). If Gweak is a weak PRG with stretch
`(k) > kn, then the generator Gstrong defined above is a strong PRG, mapping nk-bit
seeds into `(k)-bit strings.

Proof. Since the proof uses standard techniques, we will only sketch it here. LetGweak
be δ-pseudorandom for δ < 1/2. The proof is by a sequence of the following steps.

1. Use Yao’s “pseudorandom implies unpredictable” reduction to argue that, for a
random seed s, each output bit Gweak(s)i (for i ∈ [`(k)]) is computable from
the previous bits Gweak(s)1..i−1 with probability at most 1/2 + δ, which is some
constant α < 1 since δ < 1/2 (this is where we need that δ < 1/2).

2. Use a Direct-Product lemma (say the one from [GNW95], or the one from the
present paper, Theorem 3) to argue that, for each i ∈ [`(k)], computing the direct-
product (Gweak(s1)i, ..., Gweak(sn′)i) from (Gweak(s1)1..i−1, ..., Gweak(sn′)1..i−1)
for independent random seeds s1, . . . , sn′ can’t be done better than with probability
ε ≤ e−Ω(n), which is negligible.

3. Use the Goldreich-Levin decoding algorithm from Theorem 2 to argue that, for
each i ∈ [`(k)], computing the XOR Gweak(s1)i ⊕ · · · ⊕Gweak(sn)i
(i.e., Gstrong(s1, . . . , sn)i) from the given bit-wise XOR of Gweak(s1)1..i−1, ...,
Gweak(sn)1..i−1 (i.e., from Gstrong(s1, . . . , sn)1..i−1), for independent random
seeds s1, . . . , sn, can’t be done better than with probability 1/2 + poly(εn), which
is negligibly better that random guessing.

15

4. Finally, using Yao’s “unpredictable implies pseudorandom” reduction, conclude
thatGstrong is (`(k)·poly(εn))-pseudorandom, which means thatGstrong is δ′(k)-
pseudorandom for negligible δ′(k), as required.

4.2 Amplifying PRFs

Here we would like to show similar security amplification for pseudorandom function
generators (PRFs).

First we recall the definition of a PRF. Let {fs}s∈{0,1}∗ be a function family, where,
for each s ∈ {0, 1}∗, we have fs : {0, 1}d(|s|) → {0, 1}r(|s|). This function family is
called polynomial-time computable if there is polynomial-time algorithm that on inputs
s and x ∈ {0, 1}d(|s|) computes fs(x). It is called δ(k)-pseudorandom function family
if, for every probabilistic polynomial-time oracle machine M , and all sufficiently large
k, we have

|Prs[Mfs(1k) = 1]−Prhk
[Mhk(1k) = 1]| ≤ δ(k),

where s is chosen uniformly at random from {0, 1}k, and hk is a uniformly random
function from {0, 1}d(k) to {0, 1}r(k). Finally, we say that a PRF is weak if it is δ-
pseudorandom for some constant δ < 1/2, and we say a PRF is strong if it is δ(k)-
pseudorandom for some δ(k) < 1/kc for any constant c > 0.

Let {fs}s be a weak PRF. By analogy with the case of PRGs considered above, a
natural idea for defining a strong PRF from {fs}s is as follows: For some parameter n,
take n independent seeds s̄ = (s1, . . . , sn), and define gs̄(x) to be the bit-wise XOR of
the strings fs1(x), . . . , fsn(x).

We will argue that the defined function family {gs̄}s̄ is a strong PRF. Rather than
proving this directly, we find it more convenient to prove this first for the case of weak
PRF {fs}s of Boolean functions fs, and use a simple reduction to get the result for
general weak PRFs.

For the rest of this subsection, let n > ω(log k) and let n′ = 2n.

Theorem 6 (XOR Lemma for Boolean PRFs). Let {fs}s be a δ-pseudorandom Boolean
function family for some constant δ < 1/2. Let s̄ = (s1, . . . , sn) be a n-tuple of k-bit
strings. Then, for some constant c0 dependent on δ, the following function family {gs̄}s̄
is ε-pseudorandom for ε ≤ poly(k) · e−(δn)/c0 :

gs̄(x) = fs1(x)⊕ · · · ⊕ fsn
(x).

Proof. The idea is to view {fs} also as a MAC, which is a special case of a DWVP and
hence we have a direct-product result (our Theorem 3). We will argue that if gs̄ is not
a strong PRF, then one can break with non-negligible probability the direct product of
MACs (fs1 , . . . , fsn′) for independent random seeds s1, . . . , sn′ , and hence (by Theo-
rem 3), one can break a single MAC fs with probability close to 1. The latter algorithm
breaking fs as a MAC will also be useful for breaking fs as a PRF, with the distinguish-
ing probability δ′ > δ, which will contradict the assumed δ-pseudorandomness of the
PRF {fs}s.

In more detail, suppose that A is a polynomial-time adversary that distinguishes gs̄
from a random function, with a distinguishing probability ε > poly(k) ·e−Ω(δn). Using

16

a standard hybrid argument, we may assume that the first query m of A is decisive.
That is, answering this query with gs̄(m) and all subsequent queries mi with gs̄(mi)
makes A accept with higher probability than answering this query randomly and all
subsequent queries mi with gs̄(mi). Let δ1(k) ≥ ε/poly(k) be the difference between
the two probabilities.

Since gs̄ is a Boolean function, we can use Yao’s “distinguisher-to-predictor” re-
duction [Yao82] to predict gs̄(m) with probability 1/2 + δ1(n) over random n-tuples s̄,
and for the same fixed input m (since m is independent from the choice of s̄).

By a standard argument, we get an algorithm A′ for computing the following inner
product

〈fs1(m) . . . fsn′ (m), z〉, (3)

for random s1, . . . , sn′ and a random z ∈ {0, 1}n′ , whose success probability is at least
1/2 + δ2(k) ≥ 1/2 +Ω(δ1(k)/

√
n′); the idea is that a random n′ = 2n-bit string z is

balanced with probability Ω(1/
√
n′), in which case we run the predictor for n-XOR,

and otherwise (for non-balanced z) we flip a fair random coin. Next, by averaging, we
get that, for at least δ2(k)/2 fraction of n′-tuples s1, . . . , sn′ , our algorithmA′ correctly
computes the inner product in (3) for at least 1/2 + δ2(k)/2 fraction of random z’s.

Applying the Goldreich-Levin algorithm from Theorem 2 to our algorithm A′, we
get an algorithm A′′ that, for each of at least δ2(k)/2 fraction of n′-tuples s1, . . . , sn′ ,
computes (fs1(m), . . . , fsn′ (m)) with probability at least poly(δ2(k)). Hence, this al-
gorithm A′′ computes (fs1(m), . . . , fsn′ (m)) for a non-negligible fraction of n′-tuples
s1, . . . , sn′ .

Next, we view A′′ as an algorithm breaking the n′-wise direct-product of the MAC
fs, with non-negligible probability. Using Theorem 3, we get from A′′ an algorithm B
that breaks the single instance of the MAC fs with probability at least 1 − δ′ for δ′ ≤
O((log(poly(k)/δ2(k)))/n), which can be made less than 1/2 − δ for n > ω(log k)
and sufficiently large constant c0 in the bound on ε in the statement of the theorem (this
is where we need the assumption that δ < 1/2).

Note the algorithmB has 1−δ′ > 1/2+δ probability over a secret key s to compute
a correct message-tag pair (msg, tag) such that fs(msg) = tag. Also note that the
algorithm B makes some signing queries fs(qi) =? for qi 6= msg, but no verification
queries (other than its final output pair (msg, tag)). We can use this algorithm B to
distinguish {fs}s from random in the obvious way: simulateB to get (msg, tag) (using
the oracle function to answer the signing queries of B); query the oracle function on
msg; if the answer is equal to tag, then accept, else reject.

Clearly, the described algorithm accepts with probability 1/2 on a random oracle,
and with probability greater than 1/2 + δ on a pseudorandom function fs. This contra-
dicts the assumption that {fs}s is δ-pseudorandom.

As a corollary, we get the following.

Theorem 7 (Security amplification for PRFs). Let {fs}s be a weak PRF. For a pa-
rameter n > ω(log k), take n independent seeds s̄ = (s1, . . . , sn), and define gs̄(x)
to be the bit-wise XOR of the strings fs1(x), . . . , fsn(x). The obtained function family
{gs̄}s̄ is a strong PRF.

17

Proof. Note that given a non-Boolean weak PRF {fs}s, we can define a Boolean func-
tion family {f ′s}s where f ′s(x, i) = fs(x)i, i.e., f ′s treats its input as an input x to
fs and an index i ∈ [r(|s|)], and outputs the ith bit of fs(x). Clearly, if {fs}s is δ-
pseudorandom, then so is {f ′s}s.

Then we amplify the security of {f ′s}s, using our XOR Theorem for PRFs (The-
orem 6). We obtain a strong PRF {g′s̄}s̄, where s̄ = (s1, . . . , sn) and g′s̄(x, i) =
f ′s1(x, i)⊕ · · · ⊕ f ′sn

(x, i).
Finally, we observe that our function gs̄(x) is the concatenation of the values g′s̄(x, i)

for all 1 ≤ i ≤ r(|k|). This function family {gs̄}s̄ is still a strong PRF, since we can
simulate each oracle access to gs̄ with d(|s|) oracle calls to g′s̄.

5 Conclusions
We have established security amplification theorems for several interactive cryptographic
primitives, including message authentication codes, digital signature and pseudorandom
functions. The security amplifications for MACs and SIGs follow the direct product
approach and work even for the weak variants of these primitives with imperfect com-
pleteness. For δ-pseudorandom PRFs, we have shown that the standard XOR lemma
works for any δ < 1

2 , which is optimal, complementing the non-standard XOR lemma
of [Mye03], which works even for 1

2 ≤ δ < 1.
Of independent interest, we abstracted away the notion of dynamic weakly verifi-

able puzzles (DWVPs), which generalize a variety of known primitives, including ordi-
nary WVPs, MACs and SIGs. We have also shown a very strong Chernoff-type security
amplification theorem for DWVPs, and used it to establish our security amplification
results for MACs, SIGs and PRFs.
Acknowledgments: Yevgeniy Dodis was supported in part by NSF Grants 0831299,
0716690, 0515121, 0133806. Part of this work was done while the author was visiting
the Center for Research on Computation and Society at Harvard University. Russell
Impagliazzo was supported in part NSF Grants 0716790, 0835373, 0832797, and by the
Ellentuck Foundation. Ragesh Jaiswal was supported in part by NSF Grant 0716790,
and completed part of this work while being at the University of California at San
Diego.

References

[BIN97] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the error in
computationally sound protocols? In Proceedings of the Thirty-Eighth Annual IEEE
Symposium on Foundations of Computer Science, pages 374–383, 1997.

[CHS05] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, pages 17–33, 2005.

[Cor00] J.S. Coron. On the exact security of full domain hash. In Advances in Cryptology -
CRYPTO 2000, Twentieth Annual International Cryptology Conference, pages 229–
235, 2000.

[CRS+07] R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan, and H. Wee. Amplifying
collision resistance: A complexity-theoretic treatment. In Advances in Cryptology -
CRYPTO 2007, Twenty-Seventh Annual International Cryptology Conference, pages
264–283, 2007.

18

[DNR04] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from decryp-
tion errors. In Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, pages 342–360, 2004.

[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pages 25–32, 1989.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Electronic
Colloquium on Computational Complexity, TR95-050, 1995.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, 2001.

[IJK08] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theorems.
Journal of Cryptology, 2008. (published online September 2008); preliminary version
in CRYPTO’07.

[IJKW08] R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson. Uniform direct-product
theorems: Simplified, optimized, and derandomized. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, pages 579–588, 2008.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings
of the Thirty-Sixth Annual IEEE Symposium on Foundations of Computer Science,
pages 538–545, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: De-
randomizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 220–229, 1997.

[Lev87] L.A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[LR86] M. Luby and C. Rackoff. Pseudorandom permutation generators and cryptographic
composition. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pages 356–363, 1986.

[Mye03] S. Myers. Efficient Amplification of the Security of Weak Pseudo-Random Function
Generators. In J. Cryptology, 16(1):1–24, 2003.

[Mye99] S. Myers. On the development of block-ciphers and pseudorandom function genera-
tors using the composition and XOR operators. Master’s thesis, University of Toronto,
1999.

[NR98] M. Naor and O. Reingold. From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs. In Advances in Cryptology -
CRYPTO 1998, Eigtheenth Annual International Cryptology Conference, pages 267–
282, 1998.

[NR99] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology, pages 29–66, 1999.

[PV07] R. Pass and M. Venkitasubramaniam. An efficient parallel repetition theorem for
Arthur-Merlin games. In Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, pages 420–429, 2007.

[PW07] K. Pietrzak and D. Wikstrom. Parallel repetition of computationally sound protocols
revisited. In Theory of Cryptography, Fourth Theory of Cryptography Conference,
TCC 2007, pages 86–102, 2007.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Foundations of Computer Science, pages
80–91, 1982.

