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Abstract. Rational secret sharing is a fundamental primitive at the intersection

of cryptography and game theory. In essence, a dealer wishes to engineer a com-

munication game that, when rationally played, guarantees that each of the players

learns the dealer’s secret. Yet, all solutions so far were quite inefficient and relied

on the players’ beliefs and not just on their rationality.

After providing a more complete definition of this problem, we exhibit a very

efficient and purely rational solution to it with a verifiable trusted channel.

1 Introduction

In [LMPS04], Lepinski, Micali, Peikert and shelat put forward the notion and the first

implementation of Fair Secure Function Evaluation . This is a communication protocol

extending the traditional notion of secure function evaluation [GMW87]. In essence, a

Fair SFE is an SFE in which either (1) all players learn the result of evaluating a given

function on their secret inputs (but no other information about their inputs) or (2) none

of them learns anything. The first outcome is reached when all players want it, and the

second one when at least one of the players wants it. The difficulty lies in the fact that

such objectives must be reached no matter what the function may be and no matter how

many the player are, provided that at least one of the players is honest, that is sticking

to his communication instructions in all cases.

In [HT04], Halpern and Teague put forward the notion of rational secret sharing,

aiming at distilling separately, and in purely game theoretic terms, the last stage of

a Fair SFE (where the players attempt to reconstruct the specified output from their

shares of it). We believe this to be a very valuable contribution, but we also believe that

the meaningfulness of a rational secret would benefit from a more stringent definition.

In this extended abstract we shall solely deal with the two-player version of the

notion, arguably the best way to highlight the novel and most poignant aspects of the

problem.3

3 Our approach easily extends to n players, where the dealer wishes that n out of n of them

learn the secret. The k-out-of-n definition of traditional secret sharing is very relevant for

robustness, and protects against the potential loss of shares, but is quite orthogonal to the

rationality problem at hand, and is quite a distraction. Indeed, in a “k-out-of-n” rational secret

sharing, any k players could prevent the others from learning their secret so as to maximize

their utility (assuming that the fewer the players knowing the secret, the more value to them).

Is this the natural wish of the dealer? Moreover, when k players try to reconstruct the secret

among themselves they will face the real setting of a k-out-ofk rational secret sharing.



1.1 Rational Secret Sharing as a Special Form of Mechanism Design

The Intuitive Notion. At the verge of dyeing, a dealer possessing a secret string S
wishes to ensure that two players will later on be able, together, to learn S. To this

end, he provides each player i with his share of the secret, a string Si. Each share is

individually meaningless (i.e., its distribution is independent of S), while collectively

the two shares reveal S. If the players were both honest, the dealer’s goal could be

trivially achieved. Unfortunately, honesty is not an available commodity: each player

is assumed to be rational (i.e., always trying to maximize his own utility), and the

utilities that the players attach to the possible ways of learning S are quite problematic.

In particular, each player prefers best to be the only one to learn S, less to learn S along

with some other players, and even less not to learn S at all. Accordingly, the dealer

wishes to chose the shares such that,

for a suitable communication channel, there exists a communication game that,

when rationally played, yields the secret to both players.

It is thus worth quickly recall the traditional notions of solving a game.

Game Solution Concepts. Given a game G, a solution concept essentially is a way

of predicting how G will be played. From the cryptographic perspective of the authors,

traditional “solution concepts” are only partially meaningful, as they are stated from the

perspective of individual players, disregarding collusion altogether. Nonetheless their

meaningfulness is intact for the problem at hand, if restricted to just two players. (Which

is indeed a main reasons to focus on this restriction.)

The strongest, traditional solution concept is that of solvability in dominant strate-

gies. Here, each player has a strategy σi that is best of him, no matter what strategies

the other players may use. In such a case predicting that each player i will play σi is

indeed the strongest form of prediction. Note that in choosing such a σi, each player i
does not need to rely on the rationality on the other players, but just be rational himself!

Unfortunately, not all games admit dominant-strategy solutions.

The next best solution concept is dominant solvability. Let us explain (again in the

two-player setting). In a game G, a strategy a for player A is said to weakly dominate

another strategy a′ for A if (1) for all possible strategies b of player B, A’s utility

under a is greater than or equal to his utility under a′; and (2) for at least one strategy

b′ of B, A’s utility under a is strictly greater than his utility under a′. This being the

case, a rational A should remove strategy a′ and all of his weakly dominated strategies

from consideration. And a rational B should do the same on his side. Trusting that B
has done so, A should then eliminate from his remaining strategies all those that now

become weakly dominated (relative to the strategies left over to B). And so on, until

neither player can eliminate any more strategies. If at that point player A is left with

a single strategy a and player B with a single strategy b, then G is called dominant

solvable, and (a, b) is a very strong prediction for the way in which G will be rationally

played. Notice, however, that this second solution concept is weaker than the first one,

since each player must rely non only on his rationality, but also on that of his opponent.

Again, not all games admit such a strong solution concept.

The next solution concept in line is a Nash equilibrium. This is a pair of strategies

(a, b), a for A and b for B, such that a is the best strategy for A if he believes that



B will play b (and symmetrically for B). The good news is that each game admits

such equilibria, but the bad news is this is a very distant third among these solution

concepts. The meaningfulness of a Nash equilibrium in fact depends not only on the

rationality of both players, but also on their beliefs. Typically a game has a plurality of

equilibria, often having symmetric payoffs, making it very uncertain to predict which of

them will be played. Furthermore, the game may easily not end up in equilibrium at all.

If A believes that equilibrium (a, b) will be played, while B believes (a′, b′), then the

strategy profile ultimately played may be (a, b′) which needs not to be an equilibrium

at all!

Mechanism Design. Very roughly said the goal of mechanism design is to engineer a

game so that, “at equilibrium”, a given property P is guaranteed to hold. The quality

of such design therefore crucial depends on the solution concept adopted: it is very

meaningful when the game has dominant strategy solution, it is very meaningful when

the game is “dominant solvable”, and has only very limited meaningfulness when the

game is “Nash solvable.” The latter is indeed the case even if P is guaranteed to hold

at each of possible Nash equilibria of the game. In a sense, if the game has k Nash

equilibria, then —due mismatched beliefs— it roughly has k2 (kn if there are n players)

possible ways not to end in any equilibrium.

Another measure of quality in mechanism design is the amount of knowledge about

the players (e.g., knowledge about their utilities) required to engineer the game. Indeed,

since precise knowledge about the players may not be available or too expensive to

gather, the lesser the knowledge required from the designer the better.

Rational Secret Sharing and Mechanism Design. We propose to view rational se-

cret sharing as a special mechanism-design problem. The property to guarantee in an

rational play is “all players learn the secret”. And the engineered game should be a

purely communicational one. Namely, (1) the only actions the players can take consist

of exchanging messages over a special channel, (2) no trusted party can be involved in

the game, and (3) no exogenous punishments, fines, etc. can be triggered by the final

outcome: the players’ utilities must solely depend on who has or has not learned the

secret.

This point of view enables us to extend to rational secret sharing the same quality

analysis applicable to mechanism design, thus enabling a more meaningful comparison

among various RSS protocols primarily focusing on their game theoretic properties.

1.2 Prior Solutions

In their quoted paper, Halpern and Teague present a protocol for the 3-out-of-3 case (and

then show how to modify it for the m-out-of-n case, where 3 ≤ m < n). Their proto-

col guarantees that all players learn the secret at a Nash equilibrium whose strategies

survive the iterated elimination of weakly dominated strategies (IEOWDS for short).

Rather than the swap channel of Lepinski, Micali, Peikert, and shelat, they rely on

simultaneous-broadcast channels, and prove that no rational secret sharing protocol

can be fixed-round with such channels. A main limitation of their protocol is that the

trusted dealer continues to be an active participant. (In most settings, such a dealer could

directly inform the players of what the secret is.)



Gordon and Katz [GK06] present a protocol for just two players that dismisses the

need for the periodic involvement of the dealer. Their protocol too relies on simultaneous-

broadcast channels, and guarantees that all players learn the secret at a Nash equilibrium

whose strategies survive IEOWDS. Abraham, Dolev, Gonen, and Halpern [ADGH06]

present a similar protocol, but focus on defining (and protecting against) coalitions of

rational players.

Lysyanskaya and Triandopoulos [LT06], with the same channels and implementa-

tion type, consider a model with a mix of rational and malicious players.

Kol and Naor [KN08b] present a quite different protocol with simultaneous-broadcast

channels, which guarantees that all players learn the secret at a “strict Nash equilib-

rium”, a locally stronger version of a Nash equilibrium. (In essence, any player deviat-

ing from his own equilibrium strategy expects to receive a strictly smaller utility.)

A Separate Protocol. We wish to mention an interesting and recent protocol of Ong,

Parkes, Rosen, and Vadhan [OPRV08]. Their protocol however works in a quite differ-

ent model. On one side, it does not require any special channels (that is, it relies on

ordinary broadcast channels rather then simultaneous-broadcast ones). On the other, it

relies on the honesty of a few players. (As we focus solely on rational players, we shall

not include this protocol in any future discussion or comparison.)

1.3 Weaknesses of Prior Solutions

Protocol Inefficiency and Excessive Designer Knowledge. The prior protocols share

the following logical structure. The players interact in several rounds, using some spe-

cial channels. The protocol has a special round R, unknown to the players because it is

secretly selected by the dealer according to a given distribution. If no player “cheats”

then all players learn the secret. A player can successfully cheat only if he correctly

guesses R. If a player i erroneously guesses R, then no one learns the secret (which

gives i utility ui). But if i guesses R correctly (and acts appropriately), then he is the

only one to learn the secret (which gives him utility Ui).
In essence, therefore, to hope that it is rational to stick to the protocol’s prescribed

strategies without cheating, letting p be the probability of successfully guessing R, p
needs to be so small that p·ui ≤ (1−p)Ui. This shows two separate weaknesses of these

protocols. First, because properly engineering the game implies properly selecting p, the

designer needs to know the ui’s and the Ui’s quite accurately. (Thus, from a mechanism

design perspective, this diminishes the quality of these approaches. In particular because

they cannot be used when a good knowledge of the players’ utilities is not available.)

Second, this implies that all prior protocols run in exponential time. In fact, independent

of the distribution according to which R is selected, the expected number of rounds of

the prior protocols must be exponential in k, assuming as it is natural that all players

utilities are presented in binary, and that their length is k.

This inefficiency alone would be sufficient reason to seek new protocols. But an-

other problem lurks in the background.

Limitation of Prior Designs. Prior solutions ensure that the property “all players learn

the secret” holds at a given Nash equilibriumNE of the engineered game. As discussed



for general mechanism design, however, this assurance is far from guaranteeing our

property for two separate reasons: equilibrium selection and equilibrium absence. Let

us discuss the first reason first. Even if one were certain that the engineered game will

end up in an equilibrium, he could not be certain of which equilibrium would be actually

selected. And since, in the engineered games of the previous works, our property was

guaranteed only at one of the possible Nash equilibria, there is a real possibility that the

equilibrium ultimately selected is not one in which all players learn the dealer’s secret.

Let us now discuss the second reason. The meaningfulness of any Nash equilibrium is

inextricably to a given set of beliefs of the players. Thus, even if all players learned the

secret at each Nash equilibrium of the engineered games, there is no guarantee at all

that the engineered game ends up in equilibrium. Because the players’s beliefs may not

properly match, the first player may believe that Nash equilibrium (a, b) will be played

out, and thus rationally (based on this belief!) plays strategy a. The second player may

believe that equilibrium (a′, b′) will be played out, and thus chooses to play strategy

b′. And the final outcome (a, b′) may not be an equilibrium, let alone guarantee that all

players learn the secret.

To be sure the prior protocols ensured that all players learned the dealer’s secret

not just at a generic Nash equilibrium, but at one whose strategies survived IEOWDS.

But while of value, this additional quality of the Nash does not alleviate the above

concerns at all. As long as multiple Nash survive IEOWDS (which is the case in prior

protocols), then equilibrium selection and equilibrium absence will continue to poison

the landscape.

To be sure too, some of the prior RSS protocols guaranteed that all players learned

the secret at a an even stronger type of equilibrium, such as the strict Nash of [KN08b].

But these equilibria are in a sense only “locally stronger.” That is, if the players be-

lieve that a strict Nash equilibrium E will be played out, they would have “even less

incentives” —so to speak— of deviating, but this does not mean that the players have

“stronger beliefs” —so to speak again— that E will be played out. Accordinly, strict

Nash equilibria too offer little protection against the main problems of equilibrium se-

lection and equilibrium absence.

In sum, in all prior works, the property that all players learned the dealer’s secret

did not solely depend on the players’ rationality, but also on their beliefs. And thus all

prior protocols suffered from all the weakness entailed by the latter dependency.

1.4 Our Contributions

Our contributions can be summarized as follows.

• Modeling. We put forward a more complete modeling of the RSS problem.

In particular: we highlight the inputs available to the designer of protocol; pro-

vide a more comprehensive set of utilities —including the possibility of learning

the wrong secret—; highlight the necessity of modeling RSS as a potentially infi-

nite communication game; provide a very general definition of a communication

channel; highlight the necessity of worrying about other channels even in a com-

munication game designed for a specific channel; provide the first rationalization

of aborting in a communication game; and bring to the fore the necessity of in-

cluding bargaining into the definition of RSS.



• Purely Rational Implementation. Our RSS protocol is an implementation in sur-

viving strategies, as put forward by Chen and Micali [CM08]. In essence, such an

implementation is “equilibrium-less.” It guarantees that the desired property holds

for any combination of strategies surviving IEOWDS. Implementation in surviv-

ing strategies thus implies that the desired property is guaranteed based solely on

the rationality of the players, and not on their beliefs. In a sense, as long no player

chooses a dumb strategy the property holds.

Actually, our protocol satisfies a stronger notion of implementation: namely, the

surviving strategy of each player is essentially unique.4 That is, in our RSS proto-

col, after iteratively deleting all weakly dominated strategies, essentially a single

strategy survives for each player, and playing these two strategies guarantees that

both players learn the secret. That is, our RSS protocol essentially is a dominant

solvable game.

Note that IEOWDS often eliminates very few strategies (a fact that has been used

to argue that Nash equilibria that survive IEOWDS is a solution concept not really

better than an ordinary Nash). Thus it is even more remarkable that our protocol

is such that, for any player, all but one strategy is “rationally credible.”

Note too that, in general, which strategy survive IEOWDS depends on the order in

which the strategies are eliminated. In our case, however, the (essentially) unique

surviving strategy of a player is the same irrespective of any possible elimination

order.

In sum, our solution concept is indeed very strong.

• Communication Channel and Security. Our communication channel uses only or-

dinary envelopes (as a way of temporarily and perfectly hiding a secret value) and

the dealer’s public key.

The security depends on the ability of envelopes to perfectly hide their content

and unforgeable digital signatures.

• Operational Efficiency. Ours is the first polynomial-time RSS protocol, fully ac-

counting for all inputs. In fact, each surviving strategy requires a total of 10k
envelope operations, 4kL bit operations, plus the time of verifying two signatures

relative to k-bit public keys. Here L is an upperbound to the length of the binary

representation (of the absolute value) of any of the players’ utilities, and k is a

security parameter. The security parameter k controls the probability that some-

thing goes wrong. (The probability of something going wrong is guaranteed to be

exponentially small in k.)

The total number operations required by the dealer consist of 4kL bit operations,

the time necessary to generate matching public and secret keys of a digital signa-

4 The reason that we do not say unique is that, as we shall argue, a pure communication game

G should be modeled as a possibly infinite sequence of the same sub-game g. Thus, a strategy

of any player in G actually consists of a sequence of strategies, σ1, σ2, . . ., where σj is the

player’s intended strategy for jth copy of g, if reached. By saying that each player has an

essentially unique surviving strategy inG we mean that any of his surviving strategies is of the

form s, σ2, . . ., where s is fixed; that is first sub-strategy is the same for any surviving strategy

of the player. And when all players play their first such strategies, G terminates.



ture with security parameter k, and the time of producing two signatures relative

to k-bit public keys.

• Round Efficiency. A play of our surviving strategies involves only 6 rounds (1 for

the players, and 5 for the channel).

2 Selected Modeling Issues

Dealer Secret, Player Outputs, Player Utilities, and Designer Knowledge. For con-

creteness, we model the secret as a uniformly selected string of n bits. (Our protocol of

course works for all kinds of other distributions as well.)

We assume that, upon termination, each player outputs either an n-bit string (inter-

pretable as the player’s guess for the dealer’s secret) or the special symbol “?” (inter-

pretable as the player’s having no information about the secret). The protocol terminates

when a prespecified stage is publicly reached, or when either one of the players aborts,

that is stops communicating and for ever takes no further action —after setting his own

output.5

We define an outcome of an RSS protocol to consists of the outputs of both players,

distinguishing three types of outputs for each player: (1) the correct secret string of

the dealer, (2) the symbol “?”, and (3) an incorrect string. We assume that each player

prefers them in this order, and prefers the inverse order for the output of the other

player. That is, denoting by Ki (for “i knows the secret”) an output of the first type, and

by Wi (for “i wrongly learns the secret) an output of the third type, and by ui the utility

function of player i, we assume that the utilities of the first player over the possible 9

outcomes are as follows:

u1(K1,W2) ≥ u1(K1, ?) ≥ u1(K1,K2) ≥
u1(?,W2),≥ u1(?, ?) = 0 ≥ u1(?,K2) ≥
u1(W1,W2),≥ u1(W1, ?) ≥ u1(W1,K2).

Player 2’s utilities are symmetrically defined. (Setting the players’ utilities to 0 when

both of them have no information about the secret is somewhat arbitrary, but concretely

useful to fix our thoughts.) All of the above inequalities can be strict. But for our anal-

ysis it suffices that u1(K1, ?) > u1(K1,K2) > u1(?, ?) > u1(W1,W2), and symmet-

rically for player 2. That is, each player prefers learning the secret alone to learning

together with the other player, prefers the latter to not learning the secret, and prefers

the latter to learning the wrong secret.6 It is also useful to assume that a player’s ex-

pected utility when randomly guessing the secret is negative. (Alternatively, we must

5 That is, we explicitly assume that one players’ aborting is detectable by the other player. (After

all, stopping all communications should be “eventually detectable” in practical settings, and

immediately detectable in synchronous ones.) Alternatively, each player may keep track of

his current output at all times (rather than producing his output at termination). This way if a

player aborts without the “courtesy” of informing the other player, the latter’ output is properly

set.
6 Indeed, if the secret were the combination of a safe with money and a bomb inside, and the

safe exploded when the wrong combination were entered, learning the wrong secret could have

truly negative utility for a player!



ensure that the utility of random guessing is less than that of learning the secret together

with the other player. Else, a player would not have any incentive to participate in an

RSS protocol.)

This structure of the utility is assumed to be known to the dealer/designer. And so

is an upperbound to the number of bits necessary to write down the largest of the 16

possibilities of the players. (In other words, it suffices for the designer to know the

players’ utilities within an exponential accuracy, rather than the linear accuracy of the

prior works.)

Ensuring the Rationality of Abort. Rational secret sharing is a purely informational

game, over a proper communication channel, where the dealer provides the players

with their shares of a secret S. Our protocol, if a special point in which a player i has

not yet learned the secret is reached, calls for him to abort. By so doing, of course,

the player looses any hope of learning the secret. Thus, in order to guarantee that the

suggested strategy survives IEOWDS, we need to ensure that, at that point, the player

no longer has any rational hope of learning the secret (whether alone or together with

the other player). What should this mean? In particular, of course, it should mean that i’s
expected utility when continuing the current execution of the protocol is worse than that

of aborting outputting “?”. But it should not mean just that. The dealer who has provided

the players with their shares is now dead, and can no longer control what the players do

from his grave. Thus, not only have the players all the information they need to continue

any given execution of our protocol (if they so want), but they also have the ability of

starting another execution from scratch. (For instance, they may use their same shares,

but different coin tosses for their strategies, if probabilistic. Alternatively, if reusing

the old shares is not “rationally advisable,” they may first resort to a secure function

evaluation to “compute new, equivalent and, independently selected shares from their

old ones, and then execute our protocol again. The possible alternatives abound.) Better

yet, perhaps, they also have the ability to start a totally different RSS protocol using the

same communication channel. More generally yet (unless one were ready to make the

outlandish assumption that no other channel exists), they have the ability to execute a

totally different RSS protocol with a totally different channel! In sum,

To rationalize player i’s aborting in an RSS protocol, we should prove that any

chance for i to learn the secret, by any envisaged or un-envisaged means, is gone

for ever.

Realizing, formalizing, and indeed delivering this property is a main contribution of our

work.

Modeling Special Channels. As discussed already, all RSS protocols with rational

players have been designed for some special communication channel, such as a swap

channel, or a simultaneous-broadcast channel. Since we have just argued that a proper

analysis of RSS should include the possibility of running a different protocol over a dif-

ferent channel, it becomes imperative to model any possible special channel of commu-

nication. We do so by letting special channels consist of “mildly trusted parties in abun-

dant supply.” Let us explain. If some party T could be totally and universally trusted,

then many problems (including rational secret sharing) would be trivialized. For in-

stance, the dealer might as well confide his secret to T and ask him to reveal it when all



the designated players show up together. Thus “mild trust” became imperative. As for

abundant supply we mean that there is not a unique mildly trusted party in the world. (If

this were the case, one might ask T to interact only once with a given group of players

for a given task, and simplify a lot of things too.) By contrast, to model the fact that a

special communication channel (if it exists at all) is indeed a commodity purchasable

at any store, we envisage that there is a plurality of mildly trusted parties, not aware of

—or not in contact with— each other.

Accordingly, following [ILM08], we model a mildly trusted party in abundant sup-

ply as a verifiable trusted party (VTP for short) with no memory. By verifiable we mean

that every one can see the actions a VTP takes and verify that they are the prescribed

ones. That is, a VTP is not trusted to keep, nor to correctly make any secret actions. A

VTP knows nothing and acts publicly, so that he is trusted only to the extent that he will

indeed publicly perform his prescribed public actions.

For example, a VTP can trivially implement a swap channel between two parties as

follows. First each of A and B seals his message for the other into an opaque envelope

and publicly gives it to the VTP. Then the VTP publicly hands A’s envelope to B and

B’s envelope to A.

As for another example, a VTP can implement a simultaneous-broadcast channel

as follows. First, A and B seal their respective messages for the other in two envelopes

and publicly hand them to T , then T publicly opens both of them.

In sum, VTPs can be viewed as a formalization of a legal system. One may not

want to trust his secrets to —say— a judge, but should at least trust a judge to carry

out under public scrutiny a specified sequence of totally public actions. Since typically

there are multiple judges to choose from, the analogy with the legal system makes it

clear that the players can always walk to an new judge to execute their protocol one

more time. The analogy also makes it clear that if one type of channel is available, then

indeed other types are likely to be available too. Whether or not, as functions, the “swap

channel” is reducible to the “simultaneous-broadcast-channel” (or viceversa), from the

VTP perspective, both exist. (Indeed any judge can, with envelopes, implement both

channels and a host of similar ones.) This highlights the point that when a player is

asked to abort, then it really must be the case that no hope to resurrect the secret exists

for him, no matter what other protocol and channel might be considered.

Adding Costs to the Model. Consider a cryptographic rational secret sharing protocol

in which the dealer also announces an encryption E of the secret S. Then, a player, in

addition to any other strategy, also has available a computational-attack one: namely,

abort and try to decrypt E. A computational-attack strategy is also possible in our pro-

tocol, but in a more complex way. Indeed, successfully forging a given value enables a

player to learn the secret alone, and force the other to learn a false secret. Thus we too

need to argue that computational-attack strategies are not rational. One way to do so

is to define a computationally bounded version of rational secret sharing. A preferable

way is to attach cost to computation so as make it preferable for a player to play hon-

estly our protocol rather than try to attack the signature scheme and then, if the attack

is successful, getting an advantage in the protocol. Details will be provided in the final

version. (In any case, as argued by Halpern and Pass [HP08] considering computational



costs may be meaningful even for more traditional —i.e., non-cryptographic— game

theoretic settings.)

We also associate a small additive cost of γ to each use of the channel. (E.g., every

one has the right to access the legal system, but incurs a fixed cost in doing so.

We note that additive (or multiplicative) discounts of the players final utilities are

quite standard in game theoretical models in which the players could go on interacting

(possible even for ever), typically by executing a given sub-game.7

The Issue of Bargaining. Finally, let us bring to the reader attention a point totally

neglected so far. Traditionally, to guarantee the dealer’s wish that all players learn the

secret (at least when everyone behaves rationally), the only restrictions envisaged for the

utilities are local to each player (e.g., each player must prefer reconstructing the secret

alone to reconstructing it together with the other player, etc.). That is, the utilities of

an individual player must be “compatible with each other,” but not with those of other

players. We wish to point out, however, that it is necessary to consider inter-player

restrictions on the players’ utilities, or be ready live with the consequences relative to

the dealer’s wishes. Let us explain.

A dealer providing players with shares of his secret S automatically enables them to

bargain. In a bargaining situation, one player may get a better deal than others without

any failure of rationality. For instance, in an RSS context, Player 1 may simply insist

that unless everyone plays a protocol in which he learns the secret alone 99 times out

of 100, he is not going to cooperate. (In a sense, if to Bill Gates learning the secret

together with you and me is worth $1K, but learning it alone is worth $1B, then he

would be wasting time and opportunity costs in participating with you and me in a

“fair” reconstruction of the secret. Therefore, he may successfully bargain for a higher

probability of learning the secret.) Now, if the dealer indeed has come up with shares

and channels enabling the players to rationally reconstruct the secret together using a

given special communication channel, then we should also expect that —whether with

the same or with a different channel— the players can use their same shares to skew

the payoffs so as to suit their bargaining needs. Truly unbelievable assumptions must

be made to prevent the shares to be used in this alternative manner (especially in light

of the result of [ILM08], that essentially enables the players to do rationally almost

anything, although not too conveniently). Thus, either one must make the additional

assumption that the players utilities are such that their bargaining game has a unique

solution (e.g., some form of symmetry), or the dealer must be ready to die in peace with

the comfort that either all players (if rational) will learn the secret, or that he has put all

of them on a technically equal bargaining position.

The reader is free to pick the assumption he prefers. But always guaranteeing that

all players together learn the secret may not be possible. For the rest of this extended

abstract let us assume that the utilities are such that there is a unique bargaining solution.

7 For instance, if a given contract is executed after i days of negotiation it is worth less to the

players than executing the same contract as i− 1 days of negotiation.



3 Our Enriched Solution

It is actually simpler to explain first our protocol assuming that a VTP can operate not

just on ordinary envelopes and digital signature schemes, but also on a special, dealer-

sealed, envelopes, and then to show how these special envelopes can be replaced by

ordinary ones and digital signatures. A dealer-sealed envelop is such that anyone can

verify that it has been sealed by the dealer, and thus that its content is what the dealer

wanted it to be. Any attempt to break the dealer’s seal is guaranteed to be detectable by

anyone.

Notice that, if such special envelopes were available, then a trivial solution to the

RSS problem exists. In essence, the Dealer creates two random shares of the secret s,
that is two random strings sA, sB such that s = sA ⊕ sB , and then provides player A
(respectively B) with infinitely many pink (respectively, blue) dealer-sealed envelopes,

each containing sA (respectively sB).

Players A and B interact with a VTP as follows. First, each player, simultaneously

with the other, gives the VTP one of his dealer-sealed envelopes. Then, if the VTP re-

ceives both a pink and a blue dealer-sealed envelope, he publicly opens both of them.

Else (e.g., one of the envelopes is ordinary, or has a broken seal), he destroys all en-

velopes received. In either case, the players incurr a positive cost for this interaction.

It is not hard to prove that the above indeed is a RSS protocol, and that it actually

is game solvable in dominant-strategies. The problem, however, is that we see no way

of replacing dealer-sealed envelopes with ordinary ones and digital signatures in the

simple protocol above. We thus now describe a more complex protocol for which we

can “simulate” dealer-sealed envelops.

In order to guarantee implementation in surviving strategies, our protocol critically

introduces an asymmetry in the way the players are treated.

3.1 Dealer’s Instructions:

On input an `-bit secret s and a security parameter k′, do:

1. Choose a random string σ ∈ {0, 1}` and compute s′ ← s⊕ σ.

2. Choose a value k such that for all i
(a) ui(both) >

(
2−k/2

)
ui(alone) +

(
1− 2−k/2

)
ui(empty)

3. For i = 1, 2, . . . , k, repeat the following

(a) Randomly select a four-tuple (a0, a1, b0, b1) such that a0, b0 are a random

⊕-sharing of the secret s′ and a1, b1 are random and independent values of

the same length as s.
(b) Pick two random bits e1, e2 ← {0, 1}.
(c) Player 1’s share is (ae1 , a1−e1) and Player 2’s share is (be2 , b1−e2).
(d) Player 1’s check value is C1,i = (e2, b1) and player 2’s check value is

C2,i = (e1, a1).
(e) Place value aj into envelope E1,i,j and place value bj into envelope E2,i,j

for j ∈ {0, 1}.
4. LetC be the k(`+1)-bit number corresponding to the check valuesC2,1, . . . , C2,k.

Choose random values α, β ∈ Zk and compute the message authentication

code γ = α · C + β.



5. Place into an envelope E1,0 the values (C1,1, . . . , C1,k, α, β) and into an enve-

lope E2,0 the values (C2,1, . . . , C2,k, γ). Seal the envelope E1,0.

6. Place into an envelope Ep,σ the value σ for p ∈ {0, 1}.
7. Send the player 1 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and j ∈
{0, 1}. Send to player 2 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and

j ∈ {0, 1}.

3.2 Reconstruction Instructions

Recall that a player’s strategy consists of a Turing machine that on input a history h
outputs either a special symbol ⊥ to indicate abort, an output string s, or a sequence of

2k+1 strings to place into envelopes that are submitted to the VTP. We use the symbol

ε to denote the initial history consisting of only the envelopes received from the dealer.

Player p instructions T (h) :

1. If h = ε, then submit envelopes Ep,0 and Ep,i,j for i ∈ [1, k] to the VTP. If the

VTP destroy the envelopes, output ⊥ and stop. Else, after the VTP completes

all of its steps, reconstruct n candidates of s by xor’ing the non-check values

that have been opened. Let s′ be the majority candidate. If no majority exists,

then output ⊥. Otherwise, privately open envelope Eσ and output s′ ⊕ σ.

2. For all other histories, output ⊥ (i.e. do not invoke the VTP).

VTP Instructions :

1. Publicly verify envelope E1,0. If the envelope’s seal does not verify, then de-

stroy all envelopes. Otherwise, publicly open the envelope to reveal the values

(C1,1, . . . , C1,k) and α, β.

2. Publicly open envelope E2,0 to reveal values C = (C2,1, . . . , C2,k) and γ. If

γ 6= α · C + β, then destroy all envelopes.

3. Open the check envelopes (left or right) of player two indicated byC1,i, . . . , C1,k.

If there exists an opened envelope E2,i,j that does not match its stated value in

C1,i, the check fails: destroy all envelopes.

4. Open the check envelopes (left or right) of player one indicated byC2,i, . . . , C2,k.

If there exists an opened envelope E1,i,j that does not match its stated value in

C2,i, the check fails: destroy all envelopes.

5. If all k checks succeed, open the remaining 2k envelopes (corresponding to

shares of the secret s′).

3.3 Analysis

Theorem 1. The strategy profile (T, T ) for players 1 and 2 constitute a profile that

uniquely survives the iterated deletion of weakly dominated strategies in the given VTP

model.



The main idea of the proof. Unless the first envelope submitted by the first player is

sealed correctly, the VTP destroys envelopes. Once the one-and-only sealed envelope

E1,0 is opened, the second player knows which of her share values are check values, and

which are values that are used in the sharing of s′. If the VTP succeeds in the same use

that E1,0 is opened, then both players learn the secret. If it does not, then some check

envelope has failed and therefore no share value has yet been opened. In subsequent

uses of the VTP, the second player can then modify all of her share values by XORing

a random string r to them. This action is undetectable by the first player. Moreover,

this action is the weakly dominant response for player 2 since player 2 prefers to learn

the secret alone. Therefore, the first player has no hope to recover the secret (since

any future opened share values will be independent of the real secret s′. Thus, the first

player will abort in every subsequent use of the VTP. As a result, it is best for the second

player to submit the envelopes received from the dealer on the first use (since either her

envelopes are never opened, or they are opened in the first and only rational opportunity

there will be to recover the secret). In this case, the first player should follow T since

each use of the VTP incurs a small cost. Then finally, the second player should also

play T .

Definition 1. A revealing history h is a history in which the envelope E1,0 has been

opened and verified in some use of the VTP, but in every use of the VTP, all envelopes

have been destroyed.

Let X1 be the set of all player-one strategies, and X2 be the set of all player-two

strategies. Notice that for all σ ∈ X1, u2(σ, T ) ≥ u2(nolearn) and for all τ ∈ X2,

u1(T, τ) ≥ u1(nolearn). Therefore in the first step of removal, all guessing strategies

that have expected utility less than up(nolearn) can be removed.

For any player-two strategy τ , define Γ (τ) as the following strategy:

1. For the first use of the VTP, follow τ(ε). If the first use of the VTP results in all

envelopes being opened, output the same as strategy τ .

2. If the first use of the VTP does not result in all envelopes being opened, for the

subsequent uses of the VTP, follow strategy τ with the following exception: for

any revealing history h, compute which of player 2’s envelopes are non-check en-

velopes, choose a random value r and XOR r to each of these non-check values.

Use these new non-check envelope values in place of the original non-check values

received from the dealer to compute τ(h) for all subsequent histories h. If in this

use or any subsequent use of the VTP, all envelopes are opened, compute the output

O as per τ using the original non-check envelope values.

Claim. For any player-two strategy τ ∈ X2 such that τ 6= Γ (τ), Γ (τ) weakly domi-

nates τ .

For any player-one strategy σ, the player-two strategies τ and Γ (τ) are the same for

the first use of the VTP, and thus result in similar utilities in any execution that succeeds.

For any revealing history, Γ (τ) never does worse than τ since Γ (τ) is both perfectly

indistinguishable from τ to player one, and the share values produced by Γ (τ) do not

have any information about the secret s′. Since Γ (τ) 6= τ , then there is some σ and

some execution for which Γ (τ) will be strictly better than τ .



Set X1
2 = {Γ (τ)}τ∈X2 . For any player-one strategy σ, let Π(σ) be the strategy that

does the following: If the input history h is not revealing, then follow σ(h). If input

history h is revealing, then (a) never use the VTP in any subsequent round and (b) if

σ(h) outputs a string s, then output s and otherwise output ⊥.

Claim. For any strategy σ for which (1) σ(ε) submits the sealed envelope E1,0, and

(2) there exists τ ′ ∈ X1
2 such that (σ, τ ′) produces a revealing history h with positive

probability and σ(h) 6= ⊥, the strategy Π(σ) weakly dominates σ.

Consider any profile (σ, τ) were τ ∈ X1
2 . The strategies σ and Π(σ) are equivalent

on the first use of the VTP and therefore result in the same history h. If h is successful,

then both σ andΠ(σ) result in reconstructing the secret. Similarly, if h is not successful

and also not revealing, then the two strategies are equivalent. If h is revealing, but σ(h)
produces an output, then both are equivalent. Finally, if h is a revealing history and

σ(h) uses the VTP again, then Π(σ) is strictly better. This follows because τ survives

the first step of removal, and therefore τ produces envelopes for the second (and future)

uses of the VTP that are independent of the secret s′. This upper-bounds player 1’s

utility u1(σ, τ) by −ε + u1(nolearn). However, u1(Π(σ), τ ′) = u1(nolearn) which

is strictly greater. (Similar analysis for the case when σ outputs s instead of ⊥.)

The second condition of the claim ensures this situation occurs for some τ , and

therefore therefore Π(σ) weakly dominates σ.

SetX1
1 to be the set of player-one stratgies in which after the sealed envelope is submit-

ted, the VTP is never used again. Let Θi(τ) be the player-two strategy that plays T (ε)
in the first i uses of the VTP, and follows τ for all subsequent uses.

Claim. If τ 6= Θ1(τ), then Θ1(τ) weakly dominates τ .

Consider any player-one strategy σ ∈ X1
1 .

For those executions of σ in which player 1 submits an unsealed envelope in the

first use of the VTP, all envelopes are immediately destroyed and therefore it holds

that u2(σ,Θ(τ)) = u2(σ, τ) since both strategies are equivalent for all second and

subsequent uses of the VTP.

We now consider those executions of σ in which the sealed E1,0 is submitted. (This

can only happen once.) Let pσ,τ be the probability that under profile (σ, τ), the first use

of the VTP results in destroyed envelopes. Observe that pσ,τ ≥ pσ,Θ(τ) for all σ. Since

σ ∈ X1
1 , the VTP is never used again by σ, and therefore u2(σ, τ) = pσ,τu2(learn)

which is less than or equal to pσ,Θ(τ)u2(learn) = u2(σ,Θ(τ)). The condition that

Θ(τ) 6= τ implies that the inequality is strict for some player one strategy σ which

establishes the claim. Induction can be used to show that the claim holds for all i.
Set X2

2 = {Θ(τ)}τ∈X1
1
.

Claim. The player-one strategy T weakly dominates every surviving strategy σ.

Observe that u1(T, τ) = u1(both) for any τ ∈ X2
2 . Any other player one strategy has a

positive probability of causing the VTP to destroy all envelopes, and therefore incurring

a cost of −ε.
A similar argument with Π can be used to show that every player-two strategy, in

any use of the VTP that reveals the dealer-received envelope E2, no longer uses the



VTP. This implies that the player-two strategy T weakly dominates every surviving

strategy.
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A The Ballot-Box Model

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with

Nature. Accordingly, to specify them we must specify who acts when, the actions and

the information available to the players, when the play terminates, and how the outcome

is determined upon termination.

A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a

quite natural physical interpretation. The physical setting is that of a group of players,

seated around a table, acting on a set of ballots. Within this physical setting, one has

considerable latitude in choosing reasonable actions available to the players. In this

paper, we make a specific choice, sufficient for our present goals.



A.1 Intuition

Ballots. Externally, all ballots of the same kind are identical. (Unlike [ILM08], we

do not need super-envelopes here.) An envelope may contain a symbol from a finite

alphabet. An envelope perfectly hides and guarantees the integrity of the symbol it

contains until it is opened. Initially, all ballots are empty and in sufficient supply.

Ballot-Box Operations. We only need 3 classes of ballot-box operations. Each opera-

tion except for the first type is referred to as a public action, because it is performed

in plain view, so that all players know exactly which action has been performed. These

classes are: (1) writing a symbol on a piece of paper and sealing it into a new, empty en-

velope; (2) publicly opening an envelope to reveal its content to all players; (3) publicly

destroying a ballot; and (4) do nothing.

Public Information. Conceptually, the players observe which actions have been per-

formed on which ballots. Formally, (1) we associate to each ballot a unique identifier, a

positive integer that is common information to all players (these identifiers correspond

to the order in which the ballots are placed on the table for the first time or returned to

the table —e.g., after being ballot-boxed); and (2) we have each action generate, when

executed, a public string of the form “A, j, k, l, ...”; where A is a string identifying the

action and j, k, l, ... are the identifiers of the ballots involved. The public record is the

concatenation of the public strings generated by all actions executed thus far.

A.2 Formalization

Basic Notation. We denote by Σ the alphabet consisting of English letters, arabic nu-

merals, and punctuation marks; by Σ∗ the set of all finite strings over Σ; by Sk the

group of permutations of k elements; by x := y the operation that assigns value y
to variable x; by p := rand(Sk) the operation that assigns to variable p a randomly

selected permutation in Sk; and by ∅ the empty set.

If S is a set, by S0 we denote the empty set, and by Sk the Cartesian product of S
with itself k times. If x is a sequence, by either xi or xi we denote x’s ith element,8

and by {x} the set {z : xi = z for some i}. If x and y are sequences, respectively

of length j and k, by x ◦ y we denote their concatenation (i.e., the sequence of j + k
elements whose ith element is xi if i ≤ j, and yi−j otherwise). If x and y are strings

(i.e., sequences with elements in Σ), we denote their concatenation by xy.

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is

denoted by A(x). A probabilistic function f : X → Y is finite if X and Y are both

finite sets and, for every x ∈ X and y ∈ Y , the probability that f(x) = y has a finite

binary representation.

8 For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of

its elements.



Ballots and Actions. An envelope is a triple (j, c, 0), where j is a positive integer, and

c a symbol of Σ. A ballot is an envelope. If (j, c, L) is a ballot, we refer to j as its

identifier, to c as its content, and to L as its level.

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is

a well-defined set of ballots, then IB denotes the set of identifiers of B’s ballots. For

j ∈ IB , Bj (or the expression ballot j) denotes the unique ballot of B whose identifier

is j. For J ⊂ IB , BJ denotes the set of ballots of B whose identifiers belong to J .

Relative to a well-defined set of ballots B: if j is an envelope in B, then contB(j)
denotes the content of j; if x = j1, . . . , jk is a sequence of envelope identifiers in IB ,

then contB(x) denotes the concatenation of the contents of these envelopes, that is, the

string contB(j1) · · · contB(jk).
A global memory consists of a pair (B,R), where

• B is a well defined set of ballots; and

• R is a sequence of strings in Σ∗, R = R1, R2, . . ..

We refer to B as the ballot set; to R as the public record; and to each element of R as a

record. The empty global memory is the global memory for which the ballot set and the

public record are empty. We denote the set of all possible global memories by GM .

Ballot-box actions are functions fromGM toGM . The subset of ballot-box actions

available at a given global memory gm is denoted by Agm. The actions in Agm are

described below, grouped in 8 classes. For each a ∈ Agm we provide a formal identifier;

an informal reference (to facilitate the high-level description of our constructions); and

a functional specification. If gm = (B,R), we actually specify a(gm) as a program

acting on variables B and R. For convenience, we include in R the auxiliary variable

ub, the identifier upper-bound: a value equal to 0 for an empty global memory, and

always greater than or equal to any identifier in IB .

1. (NEWEN, c) —where c ∈ Σ.

“Make a new envelope with content c.”
ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NEWEN, c, ub).

2. (OPENEN, j) —where j is an envelope identifier in IB .

“Publicly open envelope j to reveal content contB(j).”
B := B \ {Bj} and R := R ◦ (OPENEN, j, contB(j), ub).

3. (DESTROY, j) —where j is a ballot identifier in IB .

“Destroy ballot j”
B := B \ {Bj} and R := R ◦ (DESTROY, j, ub).

4. (DONOTHING).
“Do nothing”

B := B and R := R ◦ (DONOTHING, ub).

Remarks.

• All ballot-box actions are deterministic functions.

• The variable ub never decreases and coincides with the maximum of all identi-

fiers “ever in existence.” Notice that we never re-use the identifier of a ballot that

has left, temporarily or for ever, the table. This ensures that different ballots get

different identifiers.



Definition 2. A global memory gm is feasible if there exists a sequence of global mem-

ories gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk = gm;

and, for all i ∈ [1, k], gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B,R) is a feasible memory, we refer to R as a feasible public record.

Notice that if gm = (B,R) is feasible, then Agm is easily computable from R
alone. Indeed, what ballots are in play, which ballots are envelopes and which are super-

envelopes, et cetera, are all deducible fromR. Therefore, different feasible global mem-

ories that have the same public record also have the same set of available actions. This

motivates the following definition.

Definition 3. If R is a feasible public record, by AR we denote the set of available

actions for any feasible global memory with public record R.

B The Notion of a Public Ballot-Box Mediator (VTP in our

language)

Definition 4. Let P be a sequence of K functions. We say that P is a public ballot-box

mediator (of length K) if, for all k ∈ [1,K] and public records R, P k(R) is a public

ballot-box action in AR.

An execution of P on an initial feasible global memory (B0, R0) is a sequence of

global memories

(B0, R0), . . . , (BK , RK) such that (Bk, Rk) = ak(Bk−1, Rk−1) for all k ∈ [1,K],
where ak = P k(Rk−1).9

If e is an execution of P , byBk(e) andRk(e) we denote, respectively, the ballot set,

the public record, and the private history profile of e at round k. By RkP(e) we denote

the last k records of Rk(e) (i.e., “the records appended to R0 by executing P”).

Remarks.

• Note that the above definition captures our intuitive desideratum that no special

trust is bestowed on a public mediator. Because he performs a sequence of public

ballot-box actions, any one can verify that

(i) he performs the right sequence of actions;

(ii) he does not choose these actions; and

(iii) he does not learn any information that is not publicly available.

• Note too that if P = P 1, . . . , PK and Q = Q1, . . . , QL are public mediators,

then their concatenation, that is, P 1, . . . , PK , Q1, . . . , QL is a public mediator

too.

9 Note that the executions of P are, in general, random since P k(R) may return an action of

Nature.


