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Abstract. Gordon et al. recently showed that certain (non-trivial) func-
tions can be computed with complete fairness in the two-party setting.
Motivated by their results, we initiate a study of complete fairness in
the multi-party case and demonstrate the first completely-fair protocols
for non-trivial functions in this setting. We also provide evidence that
achieving fairness is “harder” in the multi-party setting, at least with
regard to round complexity.

1 Introduction

In the setting of secure computation, a group of parties wish to run a protocol for
computing some function of their inputs while preserving, to the extent possible,
security properties such as privacy, correctness, input independence and others.
These requirements are formalized by comparing a real-world execution of the
protocol to an ideal world where there is a trusted entity who performs the
computation on behalf of the parties. Informally, a protocol is “secure” if for
any real-world adversary A there exists a corresponding ideal-world adversary S
(corrupting the same parties as A) such that the result of executing the protocol
in the real world with A is computationally indistinguishable from the result of
computing the function in the ideal world with S.

One desirable property is fairness which, intuitively, means that either every-
one receives the output, or else no one does. Unfortunately, it has been shown
by Cleve [1] that complete fairness is impossible in general without a majority
of honest parties. Until recently, Cleve’s result was interpreted to mean that no
non-trivial functions could be computed with complete fairness without an hon-
est majority. A recent result of Gordon et al. [2], however, shows that this folklore
is wrong; there exist non-trivial functions than can be computed with complete
fairness in the two-party setting. Their work demands that we re-evaluate our
current understanding of fairness.

Gordon et al. [2] deal exclusively with the case of two-party computation,
and leave open the question of fairness in the multi-party setting. Their work
does not immediately extend to the case of more than two parties. (See also the
discussion in the section that follows.) An additional difficulty that arises in the

? This work was supported by NSF CNS-0447075, NSF CCF-0830464, and US-Israel
Binational Science Foundation grant #2004240.



multi-party setting is the need to ensure consistency between the outputs of the
honest parties, even after a malicious abort. In more detail: in the two-party
setting, it suffices for an honest party’s output (following an abort by the other
party) to be consistent only with its own local input. But in the multi-party
setting, the honest parties’ outputs must each be consistent with all of their
inputs. This issue is compounded by the adversary’s ability to adaptively abort
the t malicious players in any order and at any time, making fairness in the
multi-party setting even harder to achieve.

We initiate a study of complete fairness in the multi-party setting. We fo-
cus on the case when a private1 broadcast channel (or, equivalently, a PKI)
is available to the parties; note that Cleve’s impossibility result applies in this
case as well. Although one can meaningfully study fairness in the absence of
broadcast, we have chosen to assume broadcast so as to separate the question
of fairness from the question of agreement (which has already been well studied
in the distributed systems literature). Also, although the question of fairness
becomes interesting as soon as an honest majority is not assumed, here we only
consider the case of completely-fair protocols tolerating an arbitrary number of
corrupted parties. We emphasize that, as in [2], we are interested in obtaining
complete fairness rather than some notion of partial fairness.

1.1 Our Results

A natural first question is whether two-party feasibility results [2] can be ex-
tended “easily” to the multi-party setting. More formally, say we have a function
f : {0, 1}×· · ·×{0, 1} → {0, 1} taking n boolean inputs. (We restrict to boolean
inputs/outputs for simplicity only.) For any non-trivial subset I ⊂ [n], define the
partition fI of f as the two-input function fI : {0, 1}|I| × {0, 1}n−|I| → {0, 1}
given by

fI(y, z) = f(x),

where x ∈ {0, 1}n is such that xI = y and xĪ = z. It is not hard to see that
if there exists an I for which fI cannot be computed with complete fairness
in the two-party setting, then f cannot be computed with complete fairness in
the multi-party setting. Similarly, the round complexity for computing f with
complete fairness in the multi-party case must be at least the round complexity
of fairly computing each fI . What about the converse? We show the following
negative result regarding such a “partition-based” approach to the problem:

Theorem 1 (Under suitable cryptographic assumptions) there exists a 3-party
function f all of whose partitions can be computed with complete fairness in
O(1) rounds, but for which any multi-party protocol computing f with complete
fairness requires ω(log k) rounds, where k is the security parameter.

1 We assume private broadcast so as to ensure security against passive eavesdroppers
(who do not corrupt any parties).



This indicates that fairness in the multi-party setting is qualitatively harder than
fairness in the two-party setting. (A somewhat analogous result in a different
context was shown by Chor et al. [3].)

The function f for which we prove the above theorem is interesting in its own
right: it is the 3-party majority function (i.e., voting). Although the ω(log k)-
round lower bound may seem discouraging, we are able to show a positive result
for this function; to the best of our knowledge, this represents the first non-trivial
feasibility result for complete fairness in the multi-party setting.

Theorem 2 (Under suitable cryptographic assumptions) there exists an ω(log k)-
round protocol for securely computing 3-party majority with complete fairness.

Our efforts to extend the above result to n-party majority have been unsuccess-
ful. One may therefore wonder whether there exists any (non-trivial) function
that can be computed with complete fairness for general n. Indeed, there is:

Theorem 3 (Under suitable cryptographic assumptions) for any number of par-
ties n, there exists an Θ(n)-round protocol for securely computing boolean OR
with complete fairness.

OR is non-trivial in our context: OR is complete for multi-party computation
(without fairness) [4], and cannot be computed with information-theoretic pri-
vacy even in the two-party setting [5].

Relation to prior work. At a superficial level, the proof of the ω(log k)-round
lower bound of Theorem 1 uses an approach similar to that used to prove an
analogous lower bound in [2]. We stress, however, that our theorem does not
follow as a corollary of that work (indeed, it cannot since each of the partitions
of f can be computed with complete fairness in O(1) rounds). We introduce new
ideas to prove the result in our setting; in particular, we rely in an essential way
on the fact that the output of any two honest parties must agree (whereas this
issue does not arise in the two-party setting considered in [2]).

Ishai et al. [6] propose a protocol that is resilient to a dishonest majority in a
weaker sense than that considered here. Specifically, their protocol achieves the
following guarantee (informally): when t < n parties are corrupted then a real
execution of the protocol is as secure as an execution in the ideal world with
complete fairness where the adversary can query the ideal functionality O(t)
times (using different inputs each time). While this definition may guarantee
privacy for certain functions (e.g., for the sum function), it does not prevent the
malicious parties from biasing the output of the honest parties. We refer the
reader to their work for further discussion.

1.2 Outline of the Paper

We include the standard definitions of secure multi-party computation in the full
version of this paper [7]. We stress that although the definitions are standard,



what is not standard is that we are interested in attaining complete fairness even
though we do not have an honest majority.

We begin with our negative result, showing that any completely-fair pro-
tocol for 3-party majority requires ω(log k) rounds. Recall that what is espe-
cially interesting about this result is that it demonstrates a gap between the
round complexities required for completely-fair computation of a function and
its (two-party) partitions. In Section 3, we show an ω(log k)-round protocol for
completely-fair computation of 3-party majority. In Section 4 we describe our
feasibility result for the case of boolean OR.

2 A Lower Bound on the Round Complexity of Majority

2.1 Proof Overview

In this section, we prove Theorem 1 taking as our function f the three-party
majority function maj. That is, maj(x1, x2, x3) = 0 if at least two of the three
values {x1, x2, x3} are 0, and is 1 otherwise. Note that any partition of maj is just
(isomorphic to) the greater-than-or-equal-to function, where the domain of one
input can be viewed as {0, 1, 2} and the domain of the other input can be viewed
as {0, 1} (in each case, representing the number of ‘1’ inputs held). Gordon et
al. [2] show that, under suitable cryptographic assumptions, the greater-than-
or-equal-to function on constant-size domains can be securely computed with
complete fairness in O(1) rounds.

We prove Theorem 1 by showing that any completely-fair 3-party protocol
for maj requires ω(log k) rounds. The basic approach is to argue that if Π is
any protocol for securely computing maj, then eliminating the last round of Π
results in a protocol Π ′ that still computes maj correctly “with high probability”.
Specifically, if the error probability in Π is at most µ (that we will eventually
set to some negligible function of k), then the error probability in Π ′ is at most
c · µ for some constant c. If the original protocol Π has r = O(log k) rounds,
then applying this argument inductively r times gives a protocol that computes
maj correctly on all inputs with probability significantly better than guessing
without any interaction at all. This gives the desired contradiction.

To prove that eliminating the last round of Π cannot affect correctness “too
much”, we consider a constraint that holds for the ideal-world evaluation of maj.
(Recall, we are working in the ideal world where complete fairness holds.) Con-
sider an adversary who corrupts two parties, and let the input of the honest
party P be chosen uniformly at random. The adversary can learn P ’s input by
submitting (0, 1) or (1, 0) to the trusted party. The adversary can also try to
bias the output of maj to be the opposite of P ’s choice by submitting (0, 0) or
(1, 1); this will succeed in biasing the result half the time. But the adversary
cannot both learn P ’s input and simultaneously bias the result. (If the adver-
sary submits (0, 1) or (1, 0), the output of maj is always equal to P ’s input; if the
adversary submits (0, 0) or (1, 1) the the output of maj reveals nothing about
P ’s input.) Concretely, for any ideal-world adversary the sum of the probability



that the adversary guesses P ’s input and the probability that the output of maj
is not equal to P ’s input is at most 1. In our proof, we show that if correctness
holds with significantly lower probability when the last round of Π is eliminated,
then there exists a real-world adversary violating this constraint.

2.2 Proof Details

We number the parties P1, P2, P3, and work modulo 3 in the subscript. The input
of Pj is denoted by xj . The following claim formalizes the ideal-world constraint
described informally above.

Claim 4 For all j ∈ {1, 2, 3} and any adversary A corrupting Pj−1 and Pj+1

in an ideal-world computation of maj, we have

Pr [A correctly guesses xj ] + Pr [outputj 6= xj ] ≤ 1,

where the probabilities are taken over the random coins of A and random choice
of xj ∈ {0, 1}.

Proof. Consider an execution in the ideal world, where Pj ’s input xj is chosen
uniformly at random. Let equal be the event that A submits two equal inputs
(i.e., xj−1 = xj+1) to the trusted party. In this case, A learns nothing about
Pj ’s input and so can guess xj with probability at most 1/2. It follows that:

Pr [A correctly guesses xj ] ≤
1
2

Pr [equal] + Pr [equal] .

Moreover, Pr [outputj 6= xj ] = 1
2 Pr [equal] since outputj 6= xj occurs only

if A submits xj−1 = xj+1 = x̄j to the trusted party. Therefore:

Pr [A correctly guesses xj ] + Pr [outputj 6= xj ]

≤ 1
2

Pr [equal] + Pr [equal] +
1
2

Pr [equal]

= Pr [equal] + Pr [equal] = 1,

proving the claim.

Let Π be a protocol that securely computes maj using r = r(k) rounds.
Consider an execution of Π in which all parties run the protocol honestly except
for possibly aborting in some round. We denote by b

(i)
j the value that Pj−1 and

Pj+1 both2 output if Pj aborts the protocol after sending its round-i message
(and then Pj−1 and Pj+1 honestly run the protocol to completion). Similarly, we
denote by b

(i)
j−1 (resp., b

(i)
j+1) the value output by Pj and Pj+1 (resp., Pj and Pj−1)

when Pj−1 (resp., Pj+1) aborts after sending its round-i message. Note that an

2 Security of Π implies that the outputs of Pj−1 and Pj+1 in this case must be equal
with all but negligible probability. For simplicity we assume this to hold with prob-
ability 1 but our proof can be modified easily to remove this assumption.



adversary who corrupts, e.g., both Pj−1 and Pj+1 can compute b
(i)
j immediately

after receiving the round-i message of Pj .
Since Π securely computes maj with complete fairness, the ideal-world con-

straint from the previous claim implies that for all j ∈ {1, 2, 3}, any inverse
polynomial µ(k), and any poly-time adversary A controlling players Pj−1 and
Pj+1, we have:

Pr
xj←{0,1}

[A correctly guesses xj ] + Pr
xj←{0,1}

[outputj 6= xj ] ≤ 1 + µ(k) (1)

for k sufficiently large. Security of Π also guarantees that if the inputs of the
honest parties agree, then with all but negligible probability their output must
be their common input regardless of when a malicious Pj aborts. That is, for k
large enough we have

xj+1 = xj−1 ⇒ Pr
[
b
(i)
j = xj+1 = xj−1

]
≥ 1− µ(k) (2)

for all j ∈ {1, 2, 3} and all i ∈ {0, . . . , r(k)}.
The following claim represents the key step in our lower bound.

Claim 5 Fix a protocol Π, a function µ, and a value k such that Equations (1)
and (2) hold, and let µ = µ(k). Say there exists an i, with 1 ≤ i ≤ r(k), such
that for all j ∈ {1, 2, 3} and all c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[
b
(i)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]
≥ 1− µ. (3)

Then for all j ∈ {1, 2, 3} and all c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[
b
(i−1)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]
≥ 1− 5µ. (4)

Proof. When j = 1 and c2 = c3, the desired result follows from Equation (2);
this is similarly true for j = 2, c1 = c3 as well as j = 3, c1 = c2.

Consider the real-world adversary A that corrupts P1 and P3 and sets x1 = 0
and x3 = 1. Then:

– A runs the protocol honestly until it receives the round-i message from P2.
– A then locally computes the value of b

(i)
2 .

• If b
(i)
2 = 0, then A aborts P1 without sending its round-i message and

runs the protocol (honestly) on behalf of P3 until the end. By definition,
the output of P2 will be b

(i−1)
1 .

• If b
(i)
2 = 1, then A aborts P3 without sending its round-i message and

runs the protocol (honestly) on behalf of P1 until the end. By definition,
the output of P2 will be b

(i−1)
3 .

– After completion of the protocol, A outputs b
(i)
2 as its guess for the input

of P2.



Consider an experiment in which the input x2 of P2 is chosen uniformly at
random, and then A runs protocol Π with P2. Using Equation (3), we have:

Pr [A correctly guesses x2] = Pr
[
b
(i)
2 = x2

]
= Pr

[
b
(i)
2 = f(0, x2, 1)

]
≥ 1− µ . (5)

We also have:

Pr [output2 6= x2] =
1
2
· Pr [output2 = 1 | (x1, x2, x3) = (0, 0, 1)] (6)

+
1
2
· Pr [output2 = 0 | (x1, x2, x3) = (0, 1, 1)]

=
1
2

(
Pr

[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
+ Pr

[
b
(i−1)
3 = 1 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
+ Pr

[
b
(i−1)
3 = 0 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 1, 1)

]
+ Pr

[
b
(i−1)
1 = 0 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 1, 1)

])
.

From Equation (1), we know that the sum of Equations (5) and (6) is upper-
bounded by 1 + µ. Looking at the first summand in Equation (6), this implies
that

Pr
[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
≤ 4µ. (7)

Probabilistic manipulation gives

Pr
[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
= 1− Pr

[
b
(i−1)
1 = 0 ∨ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− Pr

[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
− Pr

[
b
(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− Pr

[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
− µ ,

where the last inequality is due to the assumption of the claim. Combined with
Equation (7), this implies:

Pr
[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− 5µ.

Applying an analogous argument starting with the third summand in Equa-
tion (6) gives

Pr
[
b
(i−1)
3 = 1 | (x1, x2, x3) = (0, 1, 1)

]
≥ 1− 5µ.

Repeating the entire argument, but modifying the adversary to consider all pos-
sible pairs of corrupted parties and all possible settings of their inputs, completes
the proof of the claim.



Theorem 6 Any protocol Π that securely computes maj with complete fairness
(assuming one exists3 at all) requires ω(log k) rounds.

Proof. Assume there exists a protocol Π that securely computes maj with com-
plete fairness using r = O(log k) rounds. Let µ(k) = 1

4·5r(k) , and note that µ is
noticeable. By the assumed security of Π, the conditions of Claim 5 hold for k
large enough; Equation (3), in particular, holds for i = r(k). Fixing this k and
applying the claim iteratively r(k) times, we conclude that Pj−1 and Pj+1 can
correctly compute the value of the function, on all inputs, with probability at
least 3/4 without interacting with Pj at all. This is clearly impossible.

3 Fair Computation of Majority for Three Players

In this section we describe a completely-fair protocol for computing maj for the
case of n = 3 parties. The high-level structure of our protocol is as follows:
the protocol consists of two phases. In the first phase, the parties run a secure-
with-abort protocol to generate (authenticated) shares of certain values; in the
second phase some of these shares are exchanged, round-by-round, for a total of
m iterations. A more detailed description of the protocol follows.

In the first phase of the protocol the parties run a protocol π implementing
a functionality ShareGen that computes certain values and then distributes au-
thenticated 3-out-of-3 shares of these values to the parties. (See Fig. 1.) Three
sets of values {b(i)

1 }mi=0, {b
(i)
2 }mi=0, and {b(i)

3 }mi=0 are computed; looking ahead, b
(i)
j

denotes the value that parties Pj−1 and Pj+1 are supposed to output in case
party Pj aborts after iteration i of the second phase; see below. The values b

(i)
j

are computed probabilistically, in the same manner as in [2]. That is, a round i∗

is first chosen according to a geometric distribution with parameter α = 1/5.4

(We will set m so that i∗ ≤ m with all but negligible probability.) Then, for
i < i∗ the value of b

(i)
j is computed using the true inputs of Pj−1 and Pj+1 but

a random input for Pj ; for i ≥ i∗ the value b
(i)
j is set equal to the correct out-

put (i.e., it is computed using the true inputs of all parties). Note that even an
adversary who knows all the parties’ inputs and learns, sequentially, the values
(say) b

(1)
1 , b

(2)
1 , . . . cannot determine definitively when round i∗ occurs.

We choose the protocol π computing ShareGen to be secure-with-designated-
abort [8] for P1. Roughly speaking, this means privacy and correctness are en-
sured no matter what, and output delivery and (complete) fairness are guaran-
teed unless P1 is corrupted; a formal definition in given in the full version [7].

The second phase of the protocol proceeds in a sequence of m = ω(log n)
iterations. (See Fig. 2.) In each iteration i, each party Pj broadcasts its share of
b
(i)
j . (We stress that we allow rushing, and do not assume synchronous broad-

cast.) Observe that, after this is done, parties Pj−1 and Pj+1 jointly have enough

3 In the following section we show that such a protocol does, indeed, exist.
4 This is the distribution on N = {1, 2, . . .} given by flipping a biased coin (that is

heads with probability α) until the first head appears.



ShareGen

Inputs: Let the inputs to ShareGen be x1, x2, x3 ∈ {0, 1}. (If one of the received
inputs is not in the correct domain, then a default value of 1 is used for that
player.) The security parameter is k.

Computation:

1. Define values b
(1)
1 , . . . , b

(m)
1 , b

(1)
2 , . . . , b

(m)
2 and b

(1)
3 , . . . , b

(m)
3 in the following

way:
– Choose i∗ ≥ 1 according to a geometric distribution with parameter

α = 1/5 (see text).
– For i = 0 to i∗ − 1 and j ∈ {1, 2, 3} do:
• Choose x̂j ← {0, 1} at random.

• Set b
(i)
j = maj(xj−1, x̂j , xj+1).

– For i = i∗ to m and j ∈ {1, 2, 3}, set b
(i)
j = maj(x1, x2, x3).

2. For 0 ≤ i ≤ m and j ∈ {1, 2, 3}, choose b
(i)

j|1, b
(i)

j|2 and b
(i)

j|3 as random three-

way shares of b
(i)
j . (E.g., b

(i)

j|1 and b
(i)

j|2 are random and b
(i)

j|3 = b
(i)

j|1⊕b
(i)

j|2⊕b
(i)
j .)

3. Let (pk, sk) ← Gen(1k). For 0 ≤ i ≤ m, and j, j′ ∈ {1, 2, 3}, let σ
(i)

j|j′ =

Signsk(i‖j‖j′‖b(i)

j|j′).

Output:

1. Send to each Pj the public key pk and the valuesn
(b

(i)

1|j , σ
(i)

1|j), (b
(i)

2|j , σ
(i)

2|j), (b
(i)

3|j , σ
(i)

3|j)
om

i=0
. Additionally, for each j ∈ {1, 2, 3}

parties Pj−1 and Pj+1 receive the value b
(0)

j|j .

Fig. 1. Functionality ShareGen.

information to reconstruct b
(i)
j , but neither party has any information about b

(i)
j

on its own. If all parties behave honestly until the end of the protocol, then in
the final iteration all parties reconstruct b

(m)
1 and output this value.

If a single party Pj aborts in some iteration i, then the remaining players
Pj−1 and Pj+1 jointly reconstruct the value b

(i−1)
j and output this value. (These

two parties jointly have enough information to do this.) If two parties abort in
some iteration i (whether at the same time, or one after the other) then the
remaining party simply outputs its own input.

We refer to Fig. 1 and Fig. 2 for the formal specification of the protocol. We
now prove that this protocol securely computes maj with complete fairness.

Theorem 7 Assume that (Gen,Sign,Vrfy) is a secure signature scheme, that π
securely computes ShareGen with designated abort, and that πOR securely com-
putes OR with complete fairness.5 Then the protocol in Figure 2 securely com-
putes maj with complete fairness.

Proof. Let Π denote the protocol of Figure 2. Observe that Π yields the cor-
rect output with all but negligible probability when all players are honest.
5 It is shown in [2] that such a protocol exists under standard assumptions.



Protocol 1

Inputs: Party Pi has input xi ∈ {0, 1}. The security parameter is k.

The protocol:

1. Preliminary phase:
(a) Parties P1, P2 and P3 run a protocol π for computing ShareGen. Each

player uses their respective inputs, x1, x2 and x3, and security param-
eter k.

(b) If P2 and P3 receive ⊥ from this execution, then P2 and P3 run a two-
party protocol πOR to compute the logical-or of their inputs.
Otherwise, continue to the next stage.

In what follows, parties always verify signatures; invalid signatures are
treated as an abort.

2. For i = 1, . . . , m − 1 do:
Broadcast shares:
(a) Each Pj broadcasts (b

(i)

j|j , σ
(i)

j|j).

(b) If (only) Pj aborts:

i. Pj−1 and Pj+1 broadcast (b
(i−1)

j|j−1, σ
(i−1)

j|j−1) and (b
(i−1)

j|j+1, σ
(i−1)

j|j+1), re-
spectively.

ii. If one of Pj−1, Pj+1 aborts in the previous step, the remaining
player outputs its own input value. Otherwise, Pj−1 and Pj+1 both

output b
(i−1)
j = b

(i−1)

j|1 ⊕ b
(i−1)

j|2 ⊕ b
(i−1)

j|3 . (Recall that if i = 1, parties

Pj−1 and Pj+1 received b
(0)

j|j as output from π.)

(c) If two parties abort, the remaining player outputs its own input value.

3. In round i = m do:
(a) Each Pj broadcasts b

(m)

1|j , σ
(m)

1|j .

(b) If no one aborts, then all players output b
(m)
1 = b

(m)

1|1 ⊕ b
(m)

1|2 ⊕ b
(m)

1|3 .

If (only) Pj aborts, then Pj−1 and Pj+1 proceed as in step 2b. If two
players abort, the remaining player outputs its own input as in step 2c.

Fig. 2. A protocol for computing majority.

This is because, with all but negligible probability, i∗ ≤ m, and then b
(m)
j =

maj(x1, x2, x3). We thus focus on security of Π.
When no parties are corrupt, security is straightforward since we assume

the existence of a private broadcast channel. We therefore consider separately
the cases when a single party is corrupted and when two parties are corrupted.
Since the entire protocol is symmetric except for the fact that P1 may choose to
abort π, without loss of generality we may analyze the case when the adversary
corrupts P1 and the case when the adversary corrupts {P1, P2}. In each case,
we prove security of Π in a hybrid world where there is an ideal functionality
computing ShareGen (with abort) as well as an ideal functionality computing OR
(with complete fairness). Applying the composition theorem of [9] then gives the
desired result. A proof for the case where only P1 is corrupted turns out to be
fairly straightforward, and is given in Appendix A.1.



Claim 8 For every non-uniform, poly-time adversary A corrupting P1 and P2

and running Π in a hybrid model with access to ideal functionalities comput-
ing ShareGen (with abort) and OR (with completes fairness), there exists a non-
uniform, poly-time adversary S corrupting P1 and P2 and running in the ideal
world with access to an ideal functionality computing maj (with complete fair-
ness), such that{

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N
s≡

{
hybridShareGen,OR

Π,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N
.

Proof. This case is significantly more complex than the case when only a sin-
gle party is corrupted, since here A learns b

(i)
3 in each iteration i of the second

phase. As in [2], we must deal with the fact that A might abort exactly in itera-
tion i∗, after learning the correct output but before P3 has enough information
to compute the correct output.

We describe a simulator S who corrupts P1 and P2 and runs A as a black-
box. For ease of exposition in what follows, we refer to the actions of P1 and P2

when more formally we mean the action of A on behalf of those parties.

1. S invokes A on the inputs x1 and x2, the auxiliary input z, and the security
parameter k.

2. S receives x′1 and x′2 from P1 and P2, respectively, as input to ShareGen. If
x′1 /∈ {0, 1} (resp., x′2 /∈ {0, 1}), then S sets x′1 = 1 (resp., x′2 = 1).

3. S computes (sk, pk)← Gen(1k), and then generates shares as follows:
(a) Choose

{
b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0
uniformly at random.

(b) Choose x̂3 ← {0, 1} and set b
(0)
3 = maj(x′1, x

′
2, x̂3). Set b

(0)
3|3 = b

(0)
3 ⊕ b

(0)
3|1⊕

b
(0)
3|2.

S then handsA the public key pk, the values
{

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0

(along with their appropriate signatures), and the value b
(0)
3|3 as the outputs

of P1 and P2 from ShareGen.
4. If P1 aborts execution of ShareGen, then S extracts x′′2 from P2 as its input

to OR. It then sends (1, x′′2) to the trusted party computing maj, outputs
whatever A outputs, and halts.

5. Otherwise, if P1 does not abort, then S picks a value i∗ according to a
geometric distribution with parameter α = 1

5 .
In what follows, for ease of description, we will use x1 and x2 in place of x′1
and x′2, keeping in mind that that A could of course have used substituted
inputs. We also ignore the presence of signatures from now on, and leave
the following implicit in what follows: (1) S always computes an appropriate
signature when sending any value to A; (2) S treats an incorrect signature as
an abort; and (3) if S ever receives a valid signature on a previously unsigned
message (i.e., a forgery), then S outputs fail and halts.
Also, from here on we will say that S sends b to A in round i if S sends a
value b

(i)
3|3 such that b

(i)
3|3 ⊕ b

(i)
3|1 ⊕ b

(i)
3|2 = b

(i)
3 = b.



6. For round i = 1, . . . , i∗− 1, the simulator S computes and then sends b
(i)
3 as

follows:
(a) Select x̂3 ← {0, 1} at random.
(b) b

(i)
3 = maj(x1, x2, x̂3).

7. If P1 aborts in round i < i∗, then S sets x̂2 = x2 and assigns a value to x̂1

according to the following rules that depend on the values of (x1, x2) and on
the value of b

(i)
3 :

(a) If x1 = x2, then S sets x̂1 = x1 with probability 3
8 (and sets x̂1 = x̄1

otherwise).
(b) If x1 6= x2 and b

(i)
3 = x1, then S sets x̂1 = x1 with probability 1

4 (and
sets x̂1 = x̄1 otherwise).

(c) If x1 6= x2 and b
(i)
3 = x2, then S sets x̂1 = x1 with probability 1

2 (and
sets x̂1 = x̄1 otherwise).

S then finishes the simulation as follows:
(a) If x̂1 6= x̂2, then S submits (x̂1, x̂2) to the trusted party computing maj.

Denote the output it receives from the trusted party by bout. Then S sets
b
(i−1)
1 = bout, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , sends b

(i−1)
1|3 to

P2 (on behalf of P3), outputs whatever A outputs, and halts.
(b) If x̂1 = x̂2, then S sets b

(i−1)
1 = x̂1 = x̂2, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕

b
(i−1)
1|1 ⊕ b

(i−1)
1|2 , and sends b

(i−1)
1|3 to P2 (on behalf of P3). (We stress that

this is done before sending anything to the trusted party computing
maj.) If P2 aborts, then S sends (0, 1) to the trusted party computing
maj. Otherwise, it sends (x̂1, x̂2) to the trusted party computing maj. In
both cases it outputs whatever A outputs, and then halts.

If P2 aborts in round i < i∗, then S acts analogously but swapping the roles
of P1 and P2 as well as x1 and x2.
If both parties abort in round i < i∗ (at the same time), then S sends (0, 1)
to the trusted party computing maj, outputs whatever A outputs, and halts.

8. In round i∗:
(a) If x1 6= x2, then S submits (x1, x2) to the trusted party. Let bout =

maj(x1, x2, x3) denote the output.
(b) If x1 = x2, then S simply sets bout = x1 = x2 without querying the trusted

party and continues. (Note that in this case, bout = maj(x1, x2, x3) even
though S did not query the trusted party.)

9. In rounds i∗, . . . ,m− 1, the simulator S sends bout to A.
If A aborts P1 and P2 simultaneously, then S submits (1, 0) to the trusted
party (if he hasn’t already done so in step 8a), outputs whatever A outputs,
and halts.
If A aborts P1 (only), then S sets b

(i−1)
1 = bout, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕

b
(i−1)
1|1 ⊕ b

(i−1)
1|2 , and sends b

(i−1)
1|3 to P2 (on behalf of P3). Then:

Case 1: x1 6= x2. Here S has already sent (x1, x2) to the trusted party. So
S simply outputs whatever A outputs and ends the simulation.

Case 2: x1 = x2. If P2 does not abort, then S sends (x1, x2) to the trusted
party. If P2 aborts, then S sends (0, 1) to the trusted party. In both cases
S then outputs whatever A outputs and halts.



If A aborts P2 (only), then S acts as above but swapping the roles of P1, P2

and x1, x2. If A does not abort anyone through round m, then S sends
(x1, x2) to the trusted party (if he hasn’t already done so), outputs what A
outputs, and halts.

The above constitutes the full description of S. Due to space limitations, the
analysis of S is given in the full version of this paper [7].

4 Completely-Fair Computation of Boolean OR

The protocol in the previous section enables completely-fair computation of 3-
party majority; unfortunately, we were not able to extend the approach to the
case of n > 3 parties. In this section, we demonstrate feasibility of completely-
fair computation of a non-trivial function for an arbitrary number of parties n,
any t < n of whom are corrupted. Specifically, we show how to compute boolean
OR with complete fairness.

The basic idea behind our protocol is to have the parties repeatedly try to
compute OR on committed inputs using a protocol that is secure-with-designated-
abort where only the lowest-indexed party can force an abort. (See the full ver-
sion [7] for further discussion.) The key observation is that in case of an abort,
the dishonest players only “learn something” about the inputs of the honest
players in case all the malicious parties use input 0. (If any of the malicious
players holds input 1, then the output is always 1 regardless of the inputs of the
honest parties.) So, if the lowest-indexed party is corrupt and aborts the compu-
tation of the committed OR, then the remaining parties simply recompute the
committed OR using ‘0’ as the effective input for any parties who have already
been eliminated. The parties repeatedly proceed in this fashion, eliminating dis-
honest parties at each iteration. Eventually, when the lowest-indexed player is
honest, the process terminates and all honest players receive (correct) output.

The actual protocol follows the above intuition, but is a bit more involved.
A formal description of the protocol is given in Fig. 3, and the “committed OR”
functionality is defined in Fig. 4.

Theorem 9 Assume Com is a computationally-hiding, statistically-binding com-
mitment scheme, and that πP securely computes CommittedORP (with abort).
Then the protocol of Fig. 3 computes OR with complete fairness.

Proof. Let Π denote the protocol of Fig. 3. For simplicity we assume Com is
perfectly binding, though statistical binding suffices. For any non-uniform, poly-
nomial time adversary A in the hybrid world, we demonstrate a non-uniform
polynomial-time adversary S corrupting the same parties as A and running in
the ideal world with access to an ideal functionality computing OR (with com-
plete fairness), such that{

idealOR,S(x1, . . . , xn, k)
}

xi∈{0,1},k∈N
c≡

{
hybridCommittedORP

Π,A (x1, . . . , xn, k)
}

xi∈{0,1},k∈N
.



Protocol 2

Inputs: Each party Pi holds input xi ∈ {0, 1}, and the security parameter is k.

Computation:

1. Let P = {P1, . . . , Pn} be the set of all players.
2. Each player Pi chooses random coins ri and broadcasts ci = Com(1k, xi, ri),

where Com denotes a computationally-hiding, statistically-binding commit-
ment scheme. If any party Pi does not broadcast anything (or otherwise
broadcasts an invalid value), then all honest players output 1. Otherwise,
let c = (c1, . . . , cn).

3. All players Pi ∈ P run a protocol πP for computing CommittedORP , with

party Pi using (xi, ri, cP) as its input where cP
def
= (ci)i:Pi∈P .

4. If players receive ⊥ from the execution of CommittedORP , they set P =
P \ {P ∗}, where P ∗ ∈ P is the lowest-indexed player in P, and return to
Step 3.

5. If players receive a set D ⊂ P from the execution of CommittedORP , they
set P = P \ D and return to Step 3.

6. If players receive a binary output from the execution of CommittedORP ,
they output this value and end the protocol.

Fig. 3. A protocol computing OR for n players.

Applying the composition theorem of [9] then proves the theorem.
When no players are corrupt, security is trivial due to the assumed existence

of a private broadcast channel. We now describe the execution of S assuming a
set C 6= ∅ of corrupted parties:

1. Let H = {P1, . . . Pn} \ C denote the honest players. Initialize I = C. Look-
ing ahead, I denotes the set of corrupted parties who have not yet been
eliminated from the protocol.

2. S invokes A on the inputs {xi}i:Pi∈C , the auxiliary input z, and the security
parameter k.

3. For Pi ∈ H, the simulator S gives to A a commitment ci = Com(1k, xi, ri)
to xi = 0 using randomness ri. S then records the commitment ci that is
broadcast by A on behalf of each party Pi ∈ C. If any corrupted player fails
to broadcast a value ci, then S submits 1’s to the trusted party on behalf of
all corrupted parties, outputs whatever A outputs, and halts.

4. If I = ∅, S submits (on behalf of all the corrupted parties) 0’s to the trusted
party computing OR (unless it has already done so). It then outputs whatever
A outputs, and halts. If I 6= ∅, continue to the next step.

5. S sets P = H∪I and obtains inputs {(ri, xi, c
i)}i:Pi∈I for the computation

of CommittedORP . For each Pi ∈ P, the simulator S computes the list of
players Di that disagree with Pi (as in Fig. 4), using as the inputs of the
honest parties the commitments defined in Step 3, and assuming that honest
parties provide correct decommitments. Observe that if Pi, Pj ∈ H then
Di = Dj ⊆ I. Let DH ⊆ I be the set of parties that disagree with the
honest parties.



CommittedORP

Inputs: The functionality is run by parties in P. Let the input of player Pi ∈ P
be (xi, ri, c

i) where ci = (ci
j)j:Pj∈P . The security parameter is k.

For each party Pi ∈ P, determine its output as follows:

1. Say Pj disagrees with Pi if either (1) cj 6= ci or (2) Com(1k, xj , rj) 6= ci
j .

(Note that disagreement is not a symmetric relation.)
2. Let Di be the set of parties who disagree with Pi.
3. If there exist any parties that disagree with each other, return Di as output

to Pi. Otherwise, return
W

j:Pj∈P xj to all parties.

Fig. 4. Functionality CommittedORP , parameterized by a set P

Let P ∗ be the lowest-indexed player in P. If no parties disagree with each
other, go to Step 6. Otherwise:
(a) If P ∗ ∈ I, then A is given {Di}i:Pi∈I . If P ∗ aborts, then S sets I =
I \{P ∗} and goes to Step 4. If P ∗ does not abort, then S sets I = I \DH
and goes to Step 4.

(b) If P ∗ /∈ I, then A is given {Di}i:Pi∈I . Then S sets I = I \DH and goes
to Step 4.

6. S computes the value b =
∨

Pi∈I xi .
(a) If b = 0, and S has not yet queried the trusted party computing OR,

then S submits 0’s (on behalf of all the corrupted parties) to the trusted
party and stores the output of the trusted party as bout. S gives bout to A
(either as just received from the trusted party, or as stored in a previous
execution of this step).

(b) If b = 1, then S gives the value 1 to A without querying the trusted
party.

S now continues as follows:
(a) If P ∗ ∈ I and P ∗ aborts, then S sets I = I \ {P ∗} and goes to Step 4.
(b) If P ∗ /∈ I, or if P ∗ does not abort, then S submits 1’s to the trusted

party if it has not yet submitted 0’s. It outputs whatever A outputs, and
halts.

We refer the reader to the full version of this paper [7] for an analysis of the
above simulation.
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A Proofs

A.1 Proof of Security for Majority With a Single Corrupted Party

Claim 10 For every non-uniform, polynomial-time adversary A corrupting P1

and running Π in a hybrid model with access to ideal functionalities comput-
ing ShareGen (with abort) and OR (with complete fairness), there exists a non-
uniform, poly-time adversary S corrupting P1 and running in the ideal world
with access to an ideal functionality computing maj (with complete fairness),
such that {

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N
s≡

{
hybridShareGen,OR

Π,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N
.

Proof. Fix some polynomial-time adversary A corrupting P1. We now describe
a simulator S that also corrupts P1 and runs A as a black box.

1. S invokes A on the input x1, the auxiliary input z, and the security param-
eter k.

2. S receives input x′1 ∈ {0, 1} on behalf of P1 as input to ShareGen.
3. S computes (sk, pk)← Gen(1k), and gives to A the public key pk and values

b
(0)
2|2, b

(0)
3|3, and

{
b
(i)
1|1, b

(i)
2|1, b

(i)
3|1

}m

i=0
(along with their appropriate signatures)

chosen uniformly at random.
4. If A aborts execution of ShareGen, then S sends 1 to the trusted party

computing maj, outputs whatever A outputs, and halts. Otherwise, S picks
a value i∗ according to a geometric distribution with parameter α = 1

5 .
For simplicity in what follows, we ignore the presence of signatures and leave
the following implicit from now on: (1) S always computes an appropriate



signature when sending any value to A; (2) S treats an incorrect signature as
an abort; and (3) if S ever receives a valid signature on a previously unsigned
message, then S outputs fail and halts.

5. S now simulates the rounds of the protocol one-by-one: for i = 1 to m− 1,
the simulator chooses random b

(i)
2|2 and b

(i)
3|3 and sends these to A. During this

step, an abort by A (on behalf of P1) is treated as follows:
(a) If P1 aborts in round i ≤ i∗, then S chooses a random value x̂1 and sends

it to the trusted party computing maj.
(b) If P1 aborts in round i > i∗, then S submits x′1 to the trusted party

computing maj.
In either case, S then outputs whatever A outputs and halts.

6. If P1 has not yet aborted, S then simulates the final round of the protocol.
S sends x′1 to the trusted party, receives bout = maj(x′1, x2, x3), and chooses
b
(m)
1|2 and b

(m)
1|3 at random subject to b

(m)
1|2 ⊕ b

(m)
1|3 ⊕ b

(m)
1|1 = bout. S then gives

these values to A, outputs whatever A outputs, and halts.

Due to the security of the underlying signature scheme, the probability that
S outputs fail is negligible in k. Note that the view of P1 is otherwise statistically
close in both worlds. Indeed, until round m the view of P1 is independent of the
inputs of the other parties in both the real and ideal worlds. In round m itself,
P1 learns the (correct) output bout in the ideal world and learns this value with
all but negligible probability in the real world.

We therefore only have to argue that outputs of the two honest parties in
the real and ideal worlds are statistically close. Clearly this is true if P1 never
aborts. As for the case when P1 aborts at some point during the protocol, we
divide our analysis into the following cases:

– If P1 aborts the execution of ShareGen in step 4, then S submits ‘1’ on
behalf of P1 to the trusted party computing maj. Thus, in the ideal world,
the outputs of P2 and P3 will be maj(1, x2, x3). In the real world, if P1

aborts computation of ShareGen, the honest parties output OR(x2, x3). Since
maj(1, x2, x3) = OR(x2, x3), their outputs are the same.

– If P1 aborts in round i of the protocol (cf. step 5), then in both the real and
ideal worlds the following holds:
• If i ≤ i∗, then P2 and P3 output maj(x̂1, x2, x3) where x̂1 is chosen

uniformly at random.
• If i > i∗, then P2 and P3 output maj(x′1, x2, x3)

Since i∗ is identically distributed in both worlds, the outputs of P2 and P3

in this case are identically distributed as well.
– If P1 aborts in round m (cf. step 6), then in the ideal world the honest

parties will output maj(x′1, x2, x3). In the real world the honest parties output
maj(x′1, x2, x3) as long as i∗ ≤ m − 1, which occurs with all but negligible
probability.

This completes the proof.


