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Abstract. We show how to transform any semantically secure encryptionscheme
into a non-malleable one, with a black-box construction that achieves a quasi-
linear blow-up in the size of the ciphertext. This improves upon the previous
non-black-box construction of Pass, Shelat and Vaikuntanathan (Crypto ’06). Our
construction also extends readily to guarantee non-malleability under a bounded-
CCA2 attack, thereby simultaneously improving on both results in the work of
Cramer et al. (Asiacrypt ’07).

Our construction departs from the oft-used paradigm of re-encrypting the same
message with different keys and then proving consistency ofencryptions; instead,
we encrypt an encoding of the message with certain locally testable and self-
correcting properties. We exploit the fact that low-degreepolynomials are
simultaneously good error-correcting codes and a secret-sharing scheme.

Key words: Public-key encryption, semantic security, non-malleability, black-
box constructions.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that
of semantic security [GM84]: it is infeasible to learn anything about the plaintext from
the ciphertext. In many cryptographic applications such asauctions, we would like an
encryption scheme that satisfies the stronger guarantee of non-malleability [DDN00],
namely that given some ciphertextc, it is also infeasible to generate ciphertexts of some
message that is related to the decryption ofc. Motivated by the importance of non-
malleability, Pass, Shelat and Vaikuntanathan raised the following question [PSV06]:

It is possible toimmunizeany semantically secure encryption scheme against
malleability attacks?

Pass et al. gave a beautiful construction of a non-malleableencryption scheme from
any semantically secure one (building on [DDN00]), thereby addressing the question
in the affirmative. However, thePSV construction – as with previous constructions
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achieving non-malleability from general assumptions [DDN00,S99,L06] – suffers from
the curse of inefficiency arising from the use of generalNP-reductions. In this work, we
show that we can in fact immunize any semantically secure encryption schemes against
malleability attacks without paying the price of generalNP-reductions:

Main theorem (informal) There exists a (fully) black-box construction of a
non-malleable encryption scheme from any semantically secure one.

That is, we provide a wrapper program (from programming language lingo) that given
any subroutines for computing a semantically secure encryption scheme, computes a
non-malleable encryption scheme, with a multiplicative overhead in the running time
that is quasi-linear in the security parameter. Before providing further details, let us first
provide some background and context for our result.

1.1 Relationships amongst Cryptographic Primitives

Much of the modern work in foundations of cryptography restson general crypto-
graphic assumptions like the existence of one-way functions and trapdoor permutations.
General assumptions provide an abstraction of the functionalities and hardness we
exploit in specific assumptions such as hardness of factoring and discrete log without
referring to any specific underlying algebraic structure. Constructions based on general
assumptions may use the primitive guaranteed by the assumption in one of two ways:

Black-box usage: A construction is black-box if it refers only to the input/output
behavior of the underlying primitive; we would typically also require that in the
proof of security, we can use an adversary breaking the security of the construction
as an oracle to break the underlying primitive. (See [RTV04] and references within
for more details.). As emphasized earlier, our construction is black-box, using only
oracle access to the key generation, encryption and decryption functionality of the
underlying encryption scheme.

Non-black-box usage:A construction is non-black-box if it uses the code computing
the functionality of the primitive. ThePSV construction along with the work it
builds on fall into this category: they use anNP reduction applied to the circuit
computing the encryption functionality of the underlying encryption scheme in
order to provide a non-interactive zero-knowledge proof ofconsistency.

Motivated by the fact that the vast majority of constructions in cryptography are black-
box, a rich and fruitful body of work initiated in [IR89] seeks to understand the
power and limitations of black-box constructions in cryptography, resulting in a fairly
complete picture of the relations amongst most cryptographic primitives with respect
to black-box constructions (we summarize several of the known relations pertaining
to encryption in Figure 1). More recent work has turned to tasks for which the only
constructions we have are non-black-box, yet the existenceof a black-box construction
is not ruled out. Two notable examples are general secure multi-party computation



against a dishonest majority and encryption schemes secureagainst adaptive chosen-
ciphertext (CCA2) attacks1 (c.f. [GMW87,DDN00]).

The general question of whether we can securely realize these tasks via black-box
access to a general primitive is not merely of theoretical interest. A practical reason
is related to efficiency, as non-black-box constructions tend to be less efficient due
to the use of generalNP reductions to order to prove statements in zero knowledge;
this impacts both computational complexity as well as communication complexity
(which we interpret broadly to mean message lengths for protocols and key size and
ciphertext size for encryption schemes). Moreover, if resolved in the affirmative, we
expect the solution to provide new insights and techniques for circumventing the use of
NP reductions and zero knowledge in the known constructions. Finally, given that there
has been no formal model that captures non-black-box constructions in a satisfactory
manner, the pursuit of a positive result becomes all the moreinteresting.

Indeed, Ishai et al. [IKLP06] recently provided an affirmative answer for secure
multi-party computation by exhibiting black-box constructions from some low-level
primitive. Their techniques have since been used to yield secure multi-party compu-
tation via black-box access to an oblivious transfer protocol for semi-honest parties,
which is complete (and thus necessary) for secure multi-party computation [H08]. This
leaves the following open problem:

Is it possible to realize CCA2-secure encryption via black-box access to a
low-level primitive, e.g. enhanced trapdoor permutationsor homomorphic
encryption schemes?

Previous work pertaining to this problem is limited to non-black-box constructions
of CCA2-secure encryption from enhanced trapdoor permutations [DDN00,S99,L06];
nothing is known assuming homomorphic encryption schemes.In work concurrent
with ours, Peikert and Waters [PW07] made substantial progress towards the open
problem – they constructed CCA2-secure encryption schemesvia black-box access
to a new primitive they introduced called lossy trapdoor functions, and in addition,
gave constructions of this primitive from number-theoretic and worst-case lattice
assumptions. Unfortunately, they do not provide a black-box construction of CCA2-
secure encryption from enhanced trapdoor permutations.

Our work may also be viewed as a step towards closing this remaining gap (and a
small step in the more general research agenda of understanding the power of black-
box constructions). Specifically, the security guarantee provided by non-malleability
lies between semantic security and CCA2 security, and we show how to derive non-
malleability in a black-box manner from the minimal assumption possible, i.e., semantic
security. In the process, we show how to enforce consistencyof ciphertexts in a black-
box manner. This issue arises in black-box constructions ofboth CCA2-secure and
non-malleable encryptions. However, our consistency checks only satisfy a weaker

1 These are encryption schemes that remain semantically secure even under a CCA2 attack,
wherein the adversary is allowed to query the decryption oracle except on the given challenge.
A CCA1 attack is one wherein the adversary is allowed to querythe decryption oracle before
(but not after) seeing the challenge.
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Fig. 1. Known relations among generic encryption primitives, and our results.
Solid lines indicate black box constructions, and dotted lines indicate non-black-
box constructions (c.f. [BHSV98,DDN00,PSV06,CHH+07,PW07]). The separations
are with respect to black-box reductions, or black box shielding reductions (c.f.
[GMR01,GMM07]). Our contributions are indicated with the thick arrows.

notion of non-adaptive soundness, which is sufficient for non-malleability but not for
CCA2-security (c.f. [PSV06]). As a special case of our result, we obtain a black-box
construction of non-malleable encryptions from any (poly-to-1) trapdoor function. Our
results are incomparable with those of Peikert and Waters since we start from weaker
assumptions but derive a weaker security guarantee.

Related positive results. A different line of work focuses on (very) efficient con-
structions of CCA2-secure encryptions under specific number-theoretic assumptions
[CS98,CS04,CHK04]. Apart from those based on identity-based encryption, these
constructions together with previous ones based on generalassumptions can be
described under the following framework (c.f. [BFM88,NY90,RS91,ES02]). Start with
some cryptographic hardness assumption that allows us to build a semantically secure
encryption scheme, and then prove/verify that several ciphertexts satisfy certain
relations in one of two ways:

– exploiting algebraic relations from the underlying assumption to deduce additional
structure in the encryption scheme (e.g. homomorphic, reusing randomness)
[CS98,CS04];

– apply a general NP reduction to prove in non-interactive zero knowledge (NIZK)
statements that relate to the primitive [DDN00,S99,L06].

None of the previous approaches seems to yield black-box constructions under general
assumptions. Indeed, our work (also [PW07]) does not use the above framework.



1.2 Our Results

As mentioned earlier, we exhibit a black-box construction of a non-malleable en-
cryption scheme from any semantically secure one, the main novelty being that our
construction is black-box. While this is interesting in andof itself, our construction also
compares favorably with previous work in several regards:

– Improved parameters.We improve on the computational complexity of previous
constructions based on general assumptions. In particular, we do not have to do an
NP-reduction in either encryption or decryption, although wedo have to pay the
price of the running time of Berlekamp-Welch for decryption. The running time
incurs a multiplicative overhead that is quasi-linear in the security parameter, over
the running time of the underlying CPA secure scheme. Moreover, the sizes of
public keys and ciphertext are independent of the computational complexity of the
underlying scheme.

– Conceptual simplicity/clarity.Our scheme (and the analysis) is arguably much
simpler than many of the previous constructions, and like [PSV06], entirely
self-contained (apart from the Berlekamp-Welch algorithm). We do not need to
appeal to notions of zero-knowledge, nor do we touch upon subtle technicalities
like adaptive vs non-adaptive NIZK. Our construction may becovered in an
introductory graduate course on cryptography without requiring zero knowledge
as a pre-requisite.

– Ease of implementation.Our scheme is easy to describe and can be easily
implemented in a modular fashion.

We may also derive from our construction additional positive and negative results.

Bounded CCA2 non-malleability. Cramer et al. [CHH+07] introduced the bounded
CCA2 attack, a relaxation of the CCA2 attack wherein the adversary is only allowed
make an a-priori bounded number of queriesq to the decryption oracle, whereq is fixed
prior to choosing the parameters of the encryption scheme. In addition, starting from
any semantically secure encryption, they obtained2:

– an encryption scheme that is semantically secure under a bounded-CCA2 attack
via a black-box construction, wherein the size of the publickey and ciphertext are
quadratic inq; and

– an encryption scheme that is non-malleable under a bounded-CCA2 attack via a
non-black-box construction, wherein the size of the publickey and ciphertext are
linear inq.

Combining their approach for the latter construction with our main result, we obtain an
encryption scheme that is non-malleable under a bounded-CCA2 attack via a black-box
construction, wherein the size of the public key and ciphertext are linear inq.

2 While semantic security and non-malleability are equivalent under a CCA2 attack [DDN00],
they are not equivalent under a bounded-CCA2 attack, as shown in [CHH+07].



Separation between CCA2 security and non-malleability.Our main construction
has the additional property that the decryption algorithm does not query the encryption
functionality of the underlying scheme. Gertner, Malkin and Myers [GMM07] referred
to such constructions as shielding and they showed that there is no shielding black-box
construction of CCA1-secure encryption schemes from semantically secure encryption.
Combined with the fact that any shielding construction whencomposed with our
construction is again shielding, this immediately yields the following:

Corollary (informal) There exists no shielding black-box construction of
CCA1-secure encryption schemes from non-malleable encryption schemes.

Note that a CCA2-secure encryption scheme is trivially alsoCCA1-secure, so this also
implies a separation between non-malleability and CCA2-security for shielding black-
box constructions.

Our techniques. At a high level, we follow the cut-and-choose approach for con-
sistency checks from [PSV06], wherein the randomness used for cut-and-choose is
specified in the secret key. A crucial component of our construction is a message
encoding scheme with certain locally testable and self-correcting properties, based on
the fact that low-degree polynomials are simultaneously good error-correcting codes
and a secret-sharing scheme; this has been exploited in the early work on secure multi-
party computation with malicious adversaries [BGW88]. We think this technique may
be useful in eliminating generalNP-reductions in other constructions in cryptography
(outside of public-key encryption).

Towards CCA2 Security? The main obstacle towards achieving full CCA2 security
from either semantically secure encryptions or enhanced trapdoor permutations using
our approach (and also the [PSV06] approach) lies in guaranteeing soundness of the
consistency checks against an adversary that can adaptively determine its queries
depending on the outcome of previous consistency checks. Itseems conceivable that
using a non-shielding construction that uses re-encryption may help overcome this
obstacle.

1.3 Overview of our Construction

Recall the DDN [DDN00] and PSV [PSV06] constructions: to encrypt a message, one
(a) generatesk encryptions of the same message under independent keys, (b)gives a
non-interactive zero-knowledge proof that all resulting ciphertexts are encryptions of
the same message, and (c) signs the entire bundle with a one-time signature. It is in step
(b) that we use a generalNP-reduction, which in return makes the construction non-
black-box. In the proof of security, we exploit that fact that for a well-formed ciphertext,
we can recover the message if we know the secret key for any of thek encryptions.

How do we guarantee that a tuple ofk ciphertexts are encryptions of the same
plaintext without using a zero-knowledge proof and withoutrevealing any information



about the underlying plaintext? Naively, one would like to use a cut-and-choose
approach (as has been previously used in [LP07] to eliminate zero-knowledge proofs
in the context of secure two-party computation), namely decrypt and verify that some
constant fraction, sayk/2 of the ciphertexts are indeed consistent. There are two issues
with this approach:

– First, if only a constant number of ciphertexts are inconsistent, then we are unlikely
to detect the inconsistency. To circumvent this problem, wecould decrypt by
outputting the majority of the remainingk/2 ciphertexts.

– The second issue is more fundamental: decrypting any of the ciphertexts will
immediately reveal the underlying message, whereas it is crucial that we can
enforce consistency while learning nothing about the underlying message.

We circumvent both issues by using a more sophisticated encoding of the message
m based on low-degree polynomials instead of merely makingk copies of the message
as in the above schemes. Specifically, we pick a random degreek polynomialp such
that p(0) = m and we construct ak × 10k matrix such that thei’th column of the
matrix comprises entirely of the valuep(i). To verify consistency, we will decrypt a
random subset ofk columns, and check that all the entries in each of these columns are
the same.

– The issue that only a tiny number of ciphertexts are inconsistent is handled using
the error-correcting properties of low-degree polynomials; specifically, each row of
a valid encoding is a codeword for the Reed-Solomon code (andwe output⊥ if it’s
far from any codeword).

– Low-degree polynomials are also good secret-sharing schemes, and learning a
random subset ofk columns in a valid encoding reveals nothing about the
underlying messagem. Encodingm using a secret-sharing scheme appears in the
earlier work of Cramer et al. [CHH+07], but they do not consider redundancy or
error-correction.

As before, we encrypt all the entries of the matrix using independent keys and then
sign the entire bundle with a one-time signature. It is important that the encoding also
provides a robustness guarantee similar to that of repeating the messagek times: we
are able to recover the message for a valid encryption if we can decryptanyrow in the
matrix. Indeed, this is essentially our entire scheme with two technical caveats:

– As with previous schemes, we will associate one pair of public/secret key pairs with
each entry of the matrix, and we will select the public key forencryption based on
the verification key of the one-time signature scheme.

– To enforce consistency, we will need a codeword check in addition to the column
check outlined above. The reason for this is fairly subtle and we will highlight the
issue in the formal exposition of our construction.

Decreasing ciphertext size.To encrypt ann-bit message with security parameterk, our
construction yieldsO(k2) encryptions ofn-bit messages in the underlying scheme. It is
easy to see that this may be reduced toO(k log2 k) encryptions by reducing the number
of columns toO(log2 k).



2 Preliminaries & Definitions

Notation. We adopt the notation used in [PSV06]. We use[n] to denote{1, 2, . . . , n}.
If A is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input
x, A(x) denotes the random variable according to the distribution of the output ofA
on inputx. We denote byA(x; r) the output ofA on inputx and random coinsr.
Computational indistinguishability between two distributionsA andB is denoted by

A
c
≈ B and statistical indistinguishability byA

s
≈ B.

2.1 Semantically Secure Encryption

Definition 1 (Encryption Scheme).A triple (Gen,Enc,Dec) is an encryption scheme,
if Gen andEnc are ppt algorithms andDec is a deterministic polynomial-time algorithm
which satisfies the following property:

Correctness.There exists a negligible functionµ(·) such that for all sufficiently
largek, we have that with probability1− µ(k) over(PK, SK)← Gen(1k): for
all m, Pr[DecSK(EncPK(m)) = m] = 1.

Definition 2 (Semantic Security).LetΠ = (Gen,Enc,Dec) be an encryption scheme
and let the random variableINDb(Π, A, k), whereb ∈ {0, 1}, A = (A1, A2) are ppt
algorithms andk ∈ N, denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(PK, SK)← Gen(1k)
(m0,m1, STATEA)← A1(PK) s.t.|m0| = |m1|
y ← EncPK(mb)
D ← A2(y, STATEA)
OutputD

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or seman-
tically secure, if for any ppt algorithmsA = (A1, A2) the following two ensembles are
computationally indistinguishable:

{

IND0(Π, A, k)
}

k∈N

c
≈

{

IND1(Π, A, k)
}

k∈N

It follows from a straight-forward hybrid argument that semantic security implies
indistinguishability of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme
and let the random variablemINDb(Π, A, k, `), whereb ∈ {0, 1}, A = (A1, A2) are
ppt algorithms andk ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π, A, k, `) :
For i = 1, . . . , `: (PKi, SKi)← Gen(1k)



(〈m1
0, . . . ,m

`
0〉, 〈m

1
1, . . . ,m

`
1〉, STATEA)← A1(〈PK1, . . . , PK`〉)

s.t. |m1
0| = |m

1
1| = · · · = |m

`
0| = |m

`
1|

For i = 1, . . . , `: yi ← EncPKi
(mi

b)
D ← A2(y1, . . . , y`, STATEA)
OutputD

then for any ppt algorithmsA = (A1, A2) and for any polynomialp(k) the following
two ensembles are computationally indistinguishable:

{

mIND0(Π, A, k, p(k))
}

k∈N

c
≈

{

mIND1(Π, A, k, p(k))
}

k∈N

2.2 Non-malleable Encryption

Definition 3 (Non-malleable Encryption [PSV06]). Let Π = (Gen,Enc,Dec) be an
encryption scheme and let the random variableNMEb(Π, A, k, `) whereb ∈ {0, 1},
A = (A1, A2) are ppt algorithms andk, ` ∈ N denote the result of the following
probabilistic experiment:

NMEb(Π, A, k, `) :
(PK, SK)← Gen(1k)
(m0,m1, STATEA)← A1(PK) s.t.|m0| = |m1|
y ← EncPK(mb)
(ψ1, . . . , ψ`)← A2(y, STATEA)

Output(d1, . . . , d`) wheredi =

{

⊥ if ψi = y

DecSK(ψi) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen plaintext (CPA) attackif for any ppt
algorithmsA = (A1, A2) and for any polynomialp(k), the following two ensembles
are computationally indistinguishable:

{

NME0(Π, A, k, p(k))
}

k∈N

c
≈

{

NME1(Π, A, k, p(k))
}

k∈N

It was shown in [PSV06] that an encryption that is non-malleable (under Defini-
tion 3) remains non-malleable even if the adversaryA2 receives several encryptions
under many different public keys (the formal experiment is the analogue ofmIND for
non-malleability).

2.3 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme(GenSig, Sign,VerSig) is an existen-
tially unforgeable signature scheme, with the restrictionthat the signer signs at most one
message with any key. This means that an efficient adversary,upon seeing a signature
on a messagem of his choice, cannot generate a valid signature on a different message,
or a different valid signature on the same messagem. Such schemes can be constructed
in a black-box way from one-way functions [R90,L79], and thus from any semantically
secure encryption scheme(Gen,Enc,Dec) using black-box access only toGen.



3 Construction

Given an encryption schemeE = (Gen,Enc,Dec), we construct a new encryption
schemeΠ = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec), summarized in Figure 2,
and described as follows.

Polynomial encoding.We identify{0, 1}n with the fieldGF(2n). To encode a message
m ∈ {0, 1}n, we pick a random degreek polynomialp overGF(2n) such thatp(0) =
m and construct ak × 10k matrix such that thei’th column of the matrix comprise
entirely of the valuesi = p(i) (where0, 1, . . . , 10k are the lexicographically first10k+
1 elements inGF(2n) according to some canonical encoding). Note that(s1, . . . , s10k)
is both a(k + 1)-out-of-10k secret-sharing ofm using Shamir’s secret-sharing scheme
and a codeword of the Reed-Solomon codeW , where

W = { (p(1), . . . , p(10k) | p is a degreek polynomial}.

Note thatW is a code over the alphabet{0, 1}n with minimum relative distance0.9,
which means we may efficiently correct up to0.45 fraction errors using the Berlekamp-
Welch algorithm. [tm: add reference]

Encryption. The public key forΠ comprises20k2 public keysE indexed by a triplet
(i, j, b) ∈ [k] × [10k] × {0, 1}; there are two keys corresponding to each entry of a
k×10kmatrix. To encrypt a messagem, we (a) compute(s1, . . . , s10k

) as in the above-
mentioned polynomial encoding, (b) generate(SKSIG, VKSIG) for a one-time signature,
(c) compute ak × 10k matrixc = (ci,j) of ciphertexts whereci,j = EncPK

vi
i,j

(sj), and
(d) signc usingSKSIG.
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Consistency Checks.A valid ciphertext inΠ satisfies two properties: (1) the first row
is an encryption of a codeword inW and (2) every column comprisesk encryptions
of the same plaintext. We want to design consistency checks that reject ciphertexts
that are “far” from being valid ciphertexts underΠ. For simplicity, we will describe the
consistency checks as applied to the underlying matrix of plaintexts. The checks depend
on a random subsetS of k columns chosen during key generation.

COLUMN CHECK (column-check): We check that each of thek columns in
S comprises entirely of the same value.



CODEWORD CHECK (codeword-check): We find a codewordw that agrees
with the first row of the matrix in at least9k positions; the check fails if no
suchw exists. Then we check that the first row of the matrix agrees with
w at thek positions indexed byS.

The codeword check ensures that with high probability, the first row of the matrix agrees
with w in at least10k − o(k) positions. We explain its significance after describing the
alternative decryption algorithm in the analysis.

Decryption. To decrypt, we (a) verify the signature and run both consistency checks,
and (b) if all three checks accept, decode the codewordw and output the result, other-
wise output⊥. Note that to decrypt we only need the20k secret keys corresponding to
the first row of the matrix and2k secret keys corresponding to each of thek columns in
S.

Note that the decryption algorithm may be stream-lined, forinstance, by running the
codeword check only if the column check succeeds. We choose to present the algorithm
as is in order to keep the analysis simple; in particular, we will run both consistency
checks independent of the outcome of the other.

4 Analysis

Having presented our construction, we now formally state and prove our main result:

Theorem 1. (Main Theorem, restated).
Assume there exists an encryption schemeE = (Gen,Enc,Dec) that is seman-
tically secure under a CPA attack. Then there exists an encryption schemeΠ =
(NMGenGen,NMEncGen,Enc,NMDecGen,Dec) that is non-malleable under a CPA attack.

We establish the theorem (as in [DDN00,PSV06], etc) via a series of hybrid
arguments and deduce indistinguishability of the intermediate hybrid experiments
from the semantic security of the underlying schemeE under some set of public
keys Γ . To do so, we will need to implement an alternative decryption algorithm
NMDec∗ that is used in the intermediate experiments to simulate theactual decryption
algorithmNMDec in the non-malleability experiment. We needNMDec∗ to achieve
two conflicting requirements:

– NMDec∗ and NMDec must agree on essentially all inputs, including possibly
malformed ciphertexts;

– We can implementNMDec∗ without having to know the secret keys corresponding
to the public keys inΓ .

Of course, designingNMDec∗ is difficult precisely becauseNMDec uses the secret keys
corresponding to the public keys inΓ .

Here is a high-level (but extremely inaccurate) description of howNMDec∗ works:
Γ is the set of public keys corresponding to the first row of thek × 10k matrix. To



NMGen(1k):

1. For i ∈ [k], j ∈ [10k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs
(PKb

i,j , SKb
i,j).

2. Pick a random subsetS ⊂ [10k] of sizek.

SetPK =
{

(PK0
i,j , PK1

i,j) | i ∈ [k], j ∈ [10k]
}

andSK =
{

S, (SK0
i,j , SK1

i,j) | i ∈

[k], j ∈ [10k]
}

.

NMEncPK(m):
1. Pick randomα1, . . . , αk ∈ GF(2n) and setsj = p(j), j ∈ [10k] where
p(x) = m0 + α1x+ . . .+ αkx

k.
2. RunGenSig(1k) to generate(SKSIG, VKSIG). Let (v1, . . . , vk) be the binary

representation ofVKSIG.
3. Compute the ciphertextci,j ← EncPK

vi
i,j

(sj), for i ∈ [k], j ∈ [10k].

4. Compute the signatureσ ← SignSKSIG(c) wherec = (ci,j).
Output the tuple[c, VKSIG, σ].

NMDecSK([c, VKSIG, σ]):
1. (sig-check) Verify the signature withVerSigVKSIG [c, σ].
2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Computesj = DecSK

v1

1,j
(c1,j),

j = 1, . . . , 10k and the codewordw = (w1, . . . , w10k) ∈ W that agrees with
(s1, . . . , s10k) in at least9k positions. If no such codeword exists, output⊥.

3. (column-check) For all j ∈ S, check that DecSK
v1

1,j
(c1,j) =

DecSK
v2

2,j
(c2,j) = · · · = DecSK

vk
k,j

(ck,j).

4. (codeword-check) For all j ∈ S, check thatsj = wj .
If all three checks accept, output the messagem corresponding to the codeword
w; else, output⊥.

Fig. 2. THE NON-MALLEABLE ENCRYPTION SCHEME Π

implementNMDec∗, we will decrypt thei’th row of the matrix of ciphertexts, for some
i > 1, which the column check (if successful) guarantees to agreewith the first row in
most positions; error correction takes care of the tiny fraction of disagreements.

4.1 Alternative Decryption Algorithm NMDec
∗

Let VKSIG∗ = (v∗1 , . . . , v
∗

k) denote the verification key in the challenge ciphertext given
to the adversary in the non-malleability experiment, and let VKSIG = (v1, . . . , vk)
denote the verification key in (one of) the ciphertext(s) generated by the adversary.
First, we modify the signature check to also output⊥ if there is a forgery, namely
VKSIG = VKSIG∗. Next, we modify the consistency checks (again, as applied to the
underlying matrix of plaintexts) as follows:



COLUMN CHECK (column-check∗): This is exactly as before, we check that
the each of thek columns inS comprises entirely of the same value.

CODEWORD CHECK (codeword-check∗): Let i be the smallest value such
thatvi 6= v∗i (which exists becauseVKSIG 6= VKSIG∗). We find a codeword
w that agrees with thei’th row of the matrix in at least8k positions (note
agreement threshold is smaller than before); the check fails if so suchw
exists. Then we check that the first row of the matrix agrees with w at the
k positions indexed byS.

To decrypt, run the modified signature and consistency checks, and if all three checks
accept, decode the codewordw and output the result, otherwise output⊥. To implement
the modified consistency checks and decryption algorithm, we only need the10k secret
keys indexed byVKSIG∗ for each row of the matrix, and as before, the2k secret keys
corresponding to each of thek columns inS.

Remark on the Codeword Check.At first, the codeword check may seem superfluous.
Suppose we omit the codeword check, and as before, definew to be a codeword that
agrees with the first row in9k positions and with thei’th row in 8k positions in the re-
spective decryption algorithms; the gap is necessary to take into account inconsistencies
not detected by the column check. Now, consider a malformed ciphertextψ for Π where
in the underlying matrix of plaintexts, each row is the same corrupted codeword that
agrees with a valid codeword in exactly8.5k positions. Without the codeword checks,
ψ will be an invalid ciphertext according toNMDec and a valid ciphertext according
to NMDec∗ and can be used to distinguish the intermediate hybrid distributions in the
analysis; with the codeword checks,ψ is an invalid ciphertext according to both. It
is also easy to construct a problematic malformed ciphertext for the case where both
agreement thresholds are set to the same value (say9k).

4.2 A Promise Problem

Recall the guarantees we would like fromNMDec andNMDec∗:

– On input a ciphertext that is an encryption of a messagem underΠ, bothNMDec

andNMDec∗ will outputm with probability1.
– On input a ciphertext that is “close” to an encryption of a messagem underΠ,

both NMDec and NMDec∗ will output m with the same probability (the exact
probability is immaterial) and⊥ otherwise.

– On input a ciphertext that is “far” from any encryption, thenboth NMDec and
NMDec∗ output⊥ with high probability.

To quantify and establish these guarantees, we consider thefollowing promise problem
(ΠY ,ΠN ) that again refers to the underlying matrix of plaintexts. Aninstance is a
matrix ofk by 10k values in{0, 1}n∪ ⊥.

ΠY (YES instances) — for somew ∈ W , every row equalsw.



ΠN (NO instances) — either there exist two rows that are0.1-far (i.e. disagree in at
leastk positions), or the first row is0.1-far from every codeword inW (i.e. disagree
with every codeword in at leastk positions).

Valid encryptions correspond to theYES instances, whileNO instances will correspond
to “far” ciphertexts. To analyze the success probability ofan adversary, we examine
each ciphertextψ it outputs with some underlying matrixM of plaintexts (which may
be aYES or a NO instance or neither) and show that bothNMDec andNMDec∗ agree
onψ with high probability. To facilitate the analysis, we consider two cases:

– If M ∈ ΠN , then it fails the column/codeword checks in both decryption
algorithms with high probability, in which case both decryption algorithms output
⊥. Specifically, if there are two rows that are0.1-far, then column check rejects
M with probability1 − 0.9k. On the other hand, if the first row is0.1-far from
every codeword, then the codeword check inNMDec rejectsM with probability
1 and that inNMDec∗ rejectsM with probability at least1 − 0.9k; that is, with
probability1− 0.9k, both codeword checks inNMDec andNMDec∗ rejectsM .

– If M /∈ ΠN , then both decryption algorithms always output the same answer for all
choices of the setS, provided there is no forgery. FixM /∈ ΠN and a setS. The first
row is0.9-close to codewordw ∈ W and we know in addition that every other row
is 0.9-close to the first row and thus0.8-close tow. Therefore, we will recover the
same codewordw and messagem whether we decode the first row within distance
0.1, or any other row within distance0.2. This means that the codeword checks in
both decryption algorithms compare the first row with the same codewordw. As
such, both decryption algorithms output⊥ with exactly the same probability, and
whenever they do not output⊥, they output the same messagem.

4.3 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied toΠ,
whereVKSIG∗ denotes the verification key in the ciphertexty = NMEncPK(mb):

Experiment NME
(1)
b

— NME
(1)
b proceeds exactly likeNMEb, except we replace

sig-check in NMDec with sig-check∗:

(sig-check∗) Verify the signature withVerSigVKSIG [c, σ]. Output⊥ if the
signature fails to verify or ifVKSIG = VKSIG∗.

Experiment NME
(2)
b

— NME
(2)
b proceeds exactly likeNMEb except we replace

NMDec with NMDec∗:

NMDec∗SK([c, VKSIG, σ]):



1. (sig-check∗) Verify the signature withVerSigVKSIG [c, σ]. Output⊥ if the
signature fails to verify or ifVKSIG = VKSIG∗.

2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Let i be the smallest value
such thatvi 6= v∗i . Computesj = DecSK

vi
i,j

(ci,j), j = 1, . . . , 10k and

w = (w1, . . . , w10k) ∈ W that agrees with(s1, . . . , s10k) in at least8k
positions. If no such codeword exists, output⊥.

3. (column-check∗) For allj ∈ S, check thatDecSK
v1

1,j
(c1,j) = DecSK

v2

2,j
(c2,j) =

· · · = DecSK
vk
k,j

(ck,j).

4. (codeword-check∗) For all j ∈ S, check thatDecSK
v1

1,j
(c1,j) = wj .

If all three checks accept, output the messagem corresponding to the codeword
w; else, output⊥.

Claim. For b ∈ {0, 1}, we have
{

NMEb(Π, A, k, p(k))
}

c
≈

{

NME
(1)
b (Π, A, k, p(k))

}

Proof. This follows readily from the security of the signature scheme. ut

Claim. Forb ∈ {0, 1}, we have
{

NME
(1)
b (Π, A, k, p(k))

}

s
≈

{

NME
(2)
b (Π, A, k, p(k))

}

Proof. We will show that both distributions are statistically close for all possible coin
tosses in both experiments (specifically, those ofNMGen, A andNMEnc) except for
the choice ofS in NMGen. Once we fix all the coin tosses apart from the choice of
S, the output(ψ1, . . . , ψp(k)) of A2 are completely determined and identical in both
experiments. We claim that with probability1 − 2p(k) · 0.9k = 1 − neg(k) over the
choice ofS, the decryptions of(ψ1, . . . , ψp(k)) agree in both experiments. This follows
from the analysis of the promise problem in Section 4.2. ut

Claim. For every ppt machineA, there exists a ppt machineB such that forb ∈ {0, 1},

{

NME
(2)
b (Π, A, k, p(k))

}

≡
{

mINDb(E,B, k, 9k
2)

}

Proof. The machineB is constructed as follows:B participates in the experiment
mINDb (the “outside”) while internally simulatingA = (A1, A2) in the experiment

NME
(2)
b .

– (pre-processing) Pick a random subsetS = {u1, . . . , uj} of [10k] and run
GenSig(1k) to generate(SKSIG∗, VKSIG∗) and set(v∗1 , . . . , v

∗

k) = VKSIG∗. Let
φ be a bijection identifying{(i, j) | i ∈ [k], j ∈ [10k] \ S} with [9k2].

– (key generation)B receives〈PK1, . . . , PK9k2〉 from the outside and simulates
NMGen as follows: for alli ∈ [k], j ∈ [10k], β ∈ {0, 1},

(PK
β
i,j , SK

β
i,j) =

{

(PKφ(i,j),⊥) if β = v∗i andj /∈ S

Gen(1k) otherwise



– (message selection) Let(m0,m1) be the pair of messagesA1 returns.B then
choosesk random values(γu1

, . . . , γuk
) ∈ {0, 1}n and computes two degreek

polynomialsp0, p1 wherepβ interpolates thek+1 points(0,mβ), (u1, γu1
), . . . , (uk, γuk

)

for β ∈ {0, 1}. B setsmφ(i,j)
β = pβ(j), for i ∈ [k], j ∈ [10k] \ S and forwards

(〈m1
0, . . . ,m

9k2

0 〉, 〈m
1
1, . . . ,m

9k2

1 〉) to the outside.
– (ciphertext generation)B receives〈y1, . . . , y9k2〉 from the outside (according

to the distributionEncPK1
(m1

b), . . . ,EncPK
9k2

(m9k2

b )) and generates a ciphertext
[c, VKSIG∗, σ] as follows:

ci,j =







yφ(i,j) if j /∈ S

Enc
PK

v∗

i
i,j

(γj) otherwise

B then computes the signatureσ ← SignSKSIG∗(c) and forwards[c, VKSIG∗, σ] to
A2. It is straight-forward to verify that[c, VKSIG∗, σ] is indeed a random encryption
of mb underΠ.

– (decryption) Upon receiving a sequence of ciphertexts(ψ1, . . . , ψp(k)) from A2,

B decrypts these ciphertexts usingNMDec∗ as inNME
(2)
b . Note that to simulate

NMDec∗, it suffices forB to possess the secret keys{SK
β
i,j | β = 1−v∗i or j ∈ S},

whichB generated by itself. ut

Combining the three claims, we conclude that for every ppt adversaryA, there is a ppt
adversaryB such that forb ∈ {0, 1},

{

NMEb(Π, A, k, p(k))
}

c
≈

{

NME
(1)
b (Π, A, k, p(k))

}

s
≈

{

NME
(2)
b (Π, A, k, p(k))

}

≡
{

mINDb(E,B, k, 9k
2)

}

By Prop 1,mIND0(E,B, k, 9k
2)

c
≈ mIND1(E,B, k, 9k

2), which concludes the proof
of Theorem 1.

5 Achieving Bounded-CCA2 Non-Malleability

We sketch how our scheme may be modified to achieve non-malleability under a
bounded-CCA2 attack. Here, we allow the adversary to queryDec at mostq times
in the non-malleability experiment (but it must not queryDec on y). The modification
is the straight-forward analogue of the [CHH+07] modification of the [PSV06] scheme:
we increase the number of columns in the matrix from10k to 80(k+ q), and the degree
of the polynomialp and the size ofS from k to 8(k + q), and propagate the changes
accordingly. The analysis is basically as before, except for the following claim (where
NME-q-CCA

(1)
b ,NME-q-CCA

(2)
b are the respective analogues ofNME

(1)
b ,NME

(1)
b ):

Claim. For b ∈ {0, 1}, we have
{

NME-q-CCA
(1)
b (Π, A, k, p(k))

}

s
≈

{

NME-q-CCA
(2)
b (Π, A, k, p(k))

}



Proof (sketch).As before, we will show that both distributions are statistically close
for all possible coin tosses in both experiments (specifically, those ofNMGen, A and
NMEnc) except for the choice ofS in NMGen. However, we cannot immediately
deduce that the output ofA2 are completely determined and identical in both exper-
iments, since they depend on the adaptively chosen queries to NMDec, and the answers
depend onS. Instead, we will consider all2q possible computation paths ofA which
are determined based on theq query/answer pairs fromNMDec. For each query, we
consider the underlying matrix of plaintextsM :

– If M ∈ ΠN , then we assumeNMDec returns⊥.
– If M /∈ ΠN , then we consider two branches depending on the two possible

outcomes of the consistency checks.

We claim that with probability1−2q ·p(k) ·0.98(k+q) > 1−neg(k) over the choice of
S, the decryptions of(ψ1, . . . , ψp(k)) agree in both experiments in all2q computation
paths. ut

Remark on achieving (full) CCA2 security.It should be clear from the preceding
analysis that the barrier to obtaining full CCA2 security lies in handling queries outside
ΠN . Specifically, with even just a (full) CCA1 attack, an adversary could queryNMDec

on a series of adaptively chosen ciphertexts correspondingto matrices outsideΠN to
learn the setS upon which it could readily break the security of our construction.
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