
Fast Private Norm Estimation and Heavy

Hitters

Joe Kilian∗, André Madeira†, Martin J. Strauss‡, and Xuan Zheng§

Abstract. We consider the problems of computing the Euclidean norm
of the difference of two vectors and, as an application, computing the
large components (Heavy Hitters) in the difference. We provide protocols
that are approximate but private in the semi-honest model and efficient
in terms of time and communication in the vector length N . We provide
the following, which can serve as building blocks to other protocols:
– Euclidean norm problem: we give a protocol with quasi-linear local

computation and polylogarithmic communication in N leaking only
the true value of the norm. For processing massive datasets, the
intended application, where N is typically huge, our improvement
over a recent result with quadratic runtime is significant.

– Heavy Hitters problem: suppose, for a prescribed B, we want the
B largest components in the difference vector. We give a protocol
with quasi-linear local computation and polylogarithmic communi-
cation leaking only the set of true B largest components and the
Euclidean norm of the difference vector. We justify the leakage as
(1) desirable, since it gives a measure of goodness of approximation;
or (2) inevitable, since we show that there are contexts where linear
communication is required for approximating the Heavy Hitters.

1 Introduction

Secure Multiparty Computation (SMC) has been studied for decades since [6,
22]. Any protocol for computing a function can be converted, gate-by-gate, to a
private protocol, in which no party learns anything from the protocol messages
other than what can be inferred from the function’s input/output relation. The
computational overhead is at most polynomial in the size of the inputs.

In recent years, however, input sizes in many problems have grown to the
point where “polynomial computational overhead” is too coarse a measure; both
computation and communication should be minimized. For example, absent pri-
vacy concerns, applications may require that a protocol use at most polylog-
arithmic communication—this occurs in processing distributed internet traffic

∗ Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA,
jkilian@cs.rutgers.edu. Supported in part by NSF grant CCF-0728937

† Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA,
amadeira@cs.rutgers.edu.

‡ Departments of Math and EECS, University of Michigan, Ann Arbor, MI 48109
USA, martinjs@umich.edu. Supported in part by NSF grant DMS-0354600.

§ Department of EECS, University of Michigan, Ann Arbor, MI 48109 USA,
xuanzh@eecs.umich.edu. Supported in part by NSF grant DMS-0354600.

at line speeds or in performing data mining algorithms in very large datasets.
General-purpose SMC may blow up communication exponentially, so additional
techniques are needed. In one theoretical approach, individual protocols are de-
signed for functions of interest such as database lookup [9, 18, 7] and building
decision trees [19]. Another important approach [21], converts any protocol into
a private one with little communication blowup, but imposes a computational
blowup that may be exponential in the communication complexity.

The approach we follow, which was introduced in [11], is to substitute an
approximate function for the desired exact function. Many functions of interest
have good approximations that can be computed efficiently both in terms of
computation and communication. A caveat is that the traditional definition of
privacy is no longer appropriate. Instead, a protocol π computing an approxi-
mation g to a function f is a private approximation protocol [11] for f if

– π is a private protocol for g in the traditional sense that the messages of π
leak nothing beyond what is implied by inputs and g; and,

– the output g leaks nothing beyond what is implied by the inputs and f .

Several examples were given in [11]. Another important example was given
in [15], where the authors provided an estimate ‖a − b‖∼ (for integer-valued vec-
tors a and b held by Alice and Bob respectively) as the first non-trivial example
of polylogarithmic communication and polynomial computation. We will analyze
and make use of this protocol for our results.

1.1 Our Results

Consider the general problem where Alice and Bob hold vectors, a and b, of
dimension N , and they want an efficient summary for the vector sum c = a + b.
We analyze two problems in this setting.

First, we consider the Euclidean norm estimation problem, in which we wish

to output a tight approximation to ‖c‖2 =
(∑

i c2
i

)1/2
, the l2 norm of vector c.

The problem is a well-known building block for other protocols in the non-private
setting, since it is used to estimate the skew of the data. A private protocol
approximating ‖c‖2 using polylogarithmic communication in the vector length
first appeared in [15]. Our results are based on their protocol; we strengthen its
privacy guarantees and decrease its local computational costs. Specifically, we
obtain a O(N log N) local computational cost versus the implied Ω(N2), while
keeping equivalent communication and round complexity costs.

Second, we consider the Euclidean approximate Heavy Hitters problem, in
which there is a parameter, B, and the players ideally want copt, the B largest
terms in c; i.e., the B biggest values together with the corresponding indices. Un-
fortunately, finding copt exactly requires linear communication. Instead, the play-
ers use polylogarithmic communication (and polynomial work and O(1) rounds)
to output a vector c̃ with ‖c̃ − c‖2 ≤ (1 + ε)‖copt − c‖2. In our protocol, the
players learn nothing more than what can be deduced from copt and ‖c‖2. (We
discuss below the significance of leaking ‖c‖2.) We can immediately use this re-
sult as a black box for taxicab approximate heavy hitters, i.e., finding c̃ with

‖c̃ − c‖1 ≤ (1 + ε)‖copt − c‖1, leaking copt and ‖c‖2. We omit the development
of this extension in the interest of space.

In the basic result, we give an at-most-B-term representation that is nearly
as good (in the Euclidean sense) as the best B-term representation and leaks
no more than the best B-term representation and the exact Euclidean norm.
Although leaking the Euclidean norm represents a weaker result than not leak-
ing it, actually (i) leaking ‖c‖2 is necessary and (ii) computing or approximat-
ing ‖c‖2 is desirable in some circumstances. First, we sketch a straightforward
lower bound showing that, for some (reasonable) values of parameters M, N, . . .,
computing c̃ leaking only copt requires Ω(N) communication. In fact, for some
(artificial) classes of inputs, Ω(N) communication is needed unless ‖c‖2 itself is
not only potentially leaked, but also actually computed exactly. On the other
hand, one can regard the Euclidean norm as semantically interesting, so that we
can regard the top B terms together with the Euclidean norm as a compound,
extended summary. In particular, since c̃ is computed, leaking ‖c‖2 is equivalent

to leaking ‖c‖2
2−‖c̃‖2

2 = ‖c̃ − c‖2
2, i.e., the error in our representation, which is a

useful and common desired result. Our protocol indeed can be modified to out-
put an approximation ‖c̃ − c‖∼ with ‖c̃ − c‖2 ≤ ‖c̃ − c‖∼ ≤ (1 + ε)‖c̃ − c‖2, so
we can regard the protocol as solving two cascaded approximation problems: find
a near-best representation c̃, then find an approximation ‖c̃ − c‖∼ to ‖c̃ − c‖2.
It is natural to expect a protocol for c̃ to leak copt and a protocol for ‖c̃ − c‖∼ to
leak ‖c̃ − c‖2; while lower bounds prevent that, we can compute c̃ and ‖c̃ − c‖∼
simultaneously and guarantee that, overall, we leak only copt and ‖c̃ − c‖2.

1.2 Related Work

Other works in private communication-efficient protocols include the Private
Information Retrieval problem [9, 18, 7], building decision trees [19], the set in-
tersection and matching problem [12], and computing the kth-ranked element [2].
The breakthrough work of [21] gives a general technique for converting any pro-
tocol into a private protocol with little communication overhead. However, this
comes at the expense of local computational costs, which may increase exponen-
tially. Thus, other general or application-specific techniques are needed.

The seminal work of [11] introduced the notion of private approximations and
gave several protocols. Some negative results followed in [14] for approximations
to NP-hard functions and more on NP-hard search problems appears in [5].
Recently, [15] gave a private approximation to the Euclidean norm that is central
to our paper. Statistical work such as [8] also addresses approximate summaries
over large databases, but differs from our work in many parameters, such as the
number of players and the allowable communication.

Several papers address the Heavy Hitters problem, in a variety of contexts.
Many of the needed ideas can be seen in [16] as well as in [3, 4, 10, 13]. However,
none are directly suitable when privacy is a concern.

Road map

This paper is organized as follows. In Section 2, we present some necessary
definitions used throughout the paper. We review private approximations in
Section 3. In Section 4 we present our results for the private Euclidean norm
estimation. Finally, in Section 5, we present our private approximate Euclidean
Heavy Hitters protocol and some suitable lower bounds that motivate our results.

2 Preliminaries

Fix parameters N, M, B, k, and a distortion parameter ε. In this paper, we con-
sider only two players, Alice and Bob, holding input vectors a and b respectively,
each of dimension N , and taking integer values in the range [−M, +M]. Let k
be a security and failure probability parameter and neg(k, N) be an arbitrary
negligible function of k and N , i.e. a function that shrinks faster than any in-
verse polynomial in k and N . We guarantee summaries whose error is at most
the factor (1 + ε) times the error of the best possible summary; and we will be
interested in protocols that use communication poly(B, log(N), k, log(M), 1/ε),
local computation poly(B, N, k, log(M), 1/ε), and O(1) of rounds.

The Euclidean norm of a vector c is ‖c‖2 =
(∑

i c2
i

)1/2
. For the Heavy Hitters

protocol, we are interested in summaries of size B for the combined vector c =
a + b. For example, we are interested ideally in the largest B terms of c. A
vector c is written c = (c0, c1, c2, . . . , cN−1) =

∑
j cjδj , where j is an index, cj

is a value, δj is the vector that is 1 at index j and 0 elsewhere, and cjδj , which
can be implemented compactly and equivalently written as the pair (j, cj), is a
term, in which cj is the coefficient. We compare terms by the magnitudes of their
coefficients, breaking ties by the indices. That is, we will say that (j, cj) < (k, ck)
if |cj | < |ck| or both |cj | = |ck| and j < k. Thus all terms are strictly comparable.
A heavy hitter summary is an expression of the form

∑
i∈Λ ηiδi. If |Λ| must be

at most B, then the best heavy hitter summary copt for a vector c occurs where
{(i, ηi) : i ∈ Λ} consists of the B largest terms.

2.1 Approximate Data Summaries

A function g is said to be an 〈ε, δ〉-approximation of f if, for all inputs x, Pr[(1−
ε)f(x) ≤ g(x) ≤ (1 + ε)f(x)] ≥ 1 − δ holds for an approximation error ε ∈ (0, 1)
and confidence parameter δ ∈ (0, 1). The probabilistic guarantee is over the
randomness of g.

In the exact Heavy Hitters problem, we are given parameters B and N and
the goal is to find the B largest terms in a vector of dimension N . In the ap-
proximate Heavy Hitters problem, however, we want a summary c̃ =

∑
i∈Λ ηiδi

such that ‖c̃ − c‖ ≤ (1 + ε)‖copt − c‖, where the norms are all Euclidean norms.
In order to describe previous relevant algorithms, we first need some def-

initions. Fix a vector c = (c0, c1, c2, . . . , cN−1) =
∑

0≤i<N ciδi, whose terms
are t0 = (0, c0), t1 = (1, c1), . . . , tN−1 = (N − 1, cN−1). Suppose the sequence
i′0, i

′
1, . . . is a decreasing rearrangement of c, i.e., ti′0 > ti′1 > · · · > ti′

N−1
.

Definition 1 (Significant index) Let I ⊆ [0, N) be a set of indices. Then i is
a (I, θ)-significant index for c if and only if c2

i ≥ θ
∑

j∈I |cj |2.

That is, an index is significant if the corresponding value is large compared with
all the other values. In some of the algorithms below, we will find the largest
term (if it is sufficiently large), subtract it off, then recurse on the residual signal.
This motivates the following definitions.

Definition 2 (Qualified index set) Fix parameters ` and θ. The set Q =
{i′0, i′1, . . . , i′m−1} is a (`, θ)-qualified index set for c if and only if (a) m ≤ `; (b)
∀j ∈ [0, m − 1], i′j is a ({i′j, i′j+1, . . . , i

′
N−1}, θ)-significant index; and (c) i′m is

NOT a ({i′m, i′m+1, . . . , i
′
N−1}, θ)-significant index.

That is, a qualified index set consists of the largest possible dimension m for a
prefix of i′0, i

′
1, . . . , i

′
m−1 such that, for each j < m, we have c2

i′
j
≥ θ(c2

i′
j
+ c2

i′
j+1

+

c2
i′
j+2

+ · · ·+c2
i′
N−1

). In particular, if the terms happen to be in decreasing order to

begin with, i.e., if |c0| > |c1| > · · · , then a qualified index set is {0, 1, 2, . . . , m−1}
for the largest m such that, for each j < m, we have c2

j ≥ θ(c2
j + c2

j+1 + c2
j+2 +

· · · c2
N−1). Note that for each `, θ, and vector c, there is only one (`, θ)-qualified

index set for c. We use Qc,`,θ to denote it and sometimes write Q`,θ when c is
understood. The following Proposition is then straightforward.

Proposition 3 For any θ1 < θ2, Q`,θ2 set is a subset of Q`,θ1 .

Proposition 4 Fix parameters N, M, B, k, ε and the vector c as above. If c̃ =∑
i∈Qc,B, ε

B(1+ε)

ciδi, then ‖c̃ − c‖2
2 ≤ (1 + ε)‖copt − c‖2

2.

Proof. Assume without loss of generality that |c0| > |c1| > · · · and let q =
|Qc,B, ε

B(1+ε)
|. If q = B, then c̃ = copt and we are done. Otherwise we have

‖c̃ − c‖2
2 =

∑
q≤i<B |ci|2 + ‖copt − c‖2

2 ≤ B|cq|2 + ‖copt − c‖2
2 ≤ ε

1+ε‖c̃ − c‖2
2 +

‖copt − c‖2
2, whence (1 − ε/(1 + ε)) ‖c̃ − c‖2

2 ≤ ‖copt − c‖2
2. The result follows.

ut

The algorithms below work from a linear sketch of a vector.

Definition 5 (Sketch of a vector) Given a vector c, a linear sketch of c is
Rc, where R is a random matrix, called the measurement matrix, generated
from a prescribed distribution

In our case, as is typical, the matrix R is a pseudorandom matrix that
can be generated from a short pseudorandom seed. We use sketching for the
norm estimation protocol (Protocol 1 in Section 4), in which the generator
needs to be secure against small space, and a different measurement matrix in
the non-private Euclidean Heavy Hitters protocol, where, e.g., pairwise indepen-
dence suffices for the pseudorandom number generator.

An algorithm in connection with the approximate Euclidean Heavy Hitters
problem satisfying the following is known [13]:

Theorem 6. Fix N, M, B, k, ε as above, and θ ≥ poly(log(N), log(M), B, k, 1/ε)−1.
There is a distribution on sketch matrices R and a corresponding algorithm
that, from R and sketch Rc of a vector c, outputs a superset of Qc,B,θ, in time
poly(log(N), log(M), B, k, 1/ε).

In particular, the number or rows in R and the size of the output is bounded by
the expression poly(log(N), log(M), B, k, 1/ε) in accordance with the time bound
on the algorithm. The algorithm admits efficient Secure Function Evaluation
protocols, and can be modified to run privately in poly(log(N), log(M), B, k, 1/ε)
time. Note that the algorithm returns a superset of Qc,B,θ but that even Qc,B,θ

itself suffices for a good approximation.

2.2 Private Two-Player Protocol

SMC allows two or more parties to evaluate a previously-agreed-upon function
of their inputs, while hiding their inputs from each other. Here, we assume that
all parties are computationally bounded and semi-honest, meaning they follow
the protocol but may keep message histories in an attempt to learn more than
is prescribed. The adversary is thus passive and can’t modify the behavior of
corrupted parties. In [21], the authors have shown how to transform a semi-
honest protocol into a protocol secure in the malicious model, where parties
deviate from the protocol arbitrarily using a different input or outputing the
wrong answer, or even exiting from the protocol prematurely. Therefore, we
assume parties are semi-honest for the remainder of the paper.

Formally, a two-party computation is specified by a (possibly randomized)
mapping g from a pair of inputs (a, b) ∈ {0, 1}∗ × {0, 1}∗ to a pair of outputs
(c, d) ∈ {0, 1}∗ × {0, 1}∗. Let π = (πA, πB) be a two-party protocol comput-
ing g. Consider the probability space induced by the execution of π on input
x = (a, b) (induced by the independent choices of random inputs rA, rB). Let
viewπ

A(x) (resp., viewπ
B(x)) denote the entire view of Alice (resp., Bob) in this

execution, including her input, random input, and all messages she has received.
Let outputπA(x) (resp., outputπB(x)) denote Alice’s (resp., Bob’s) output. Note
that the above four random variables are defined over the same probability
space. Two distributions (or ensembles) D1 and D2 are said to be computation-

ally indistinguishable with security parameter k, D1
c≡ D2, if, for any X1 ∼ D1

and X2 ∼ D2 and, for any family of polynomial-size circuits {Ck}, we have
|Pr(Ck(X1) = 1) − Pr(Ck(X2) = 1)| ≤ neg(k).

Definition 7 (Private two-party protocol) Let X be the set of all valid in-
puts x = (a, b). A protocol π is a private protocol computing g if the following
properties hold:

Correctness. The joint outputs are distributed according to g(a, b). Formally,

{(outputπA(x), outputπB(x))}x∈X ≡ {(gA(x), gB(x))}x∈X ,

where (gA(x), gB(x)) is the joint distribution of the outputs of g(x).

Privacy. There exist probabilistic polynomial-time algorithms SA,SB, also known
as simulators, such that:

{(SA(a, gA(x)), gB(x))}
x=(a,b)∈X

c≡ {(viewπ
A(x), outputπB(x))}x∈X

{(gA(x),SB(b, gB(x))}
x=(a,b)∈X

c≡ {(outputπA(x), viewπ
B(x))}x∈X

Yao, in its seminal work [22], provided a general technique:

Proposition 8 (General-Purpose SMC [22]) Two parties holding inputs x
and y can privately compute any circuit C with communication and computation
O(k(|C| + |x| + |y|)), where k is a security parameter, in O(1) rounds.

We also require the following notion of evaluating a circuit with ROM se-
curely. In this context, the ith party has a table Ri ∈ ({0, 1}r)s, a function of its
inputs. Then, the circuit has lookup gates, which on inputs (i, j) returns Ri[j].

Proposition 9 (Secure Circuit with ROM [21]) If C is a circuit with ROM,
then it can be securely evaluated with O(k|C|T (r, s)) communication in O(1)
rounds, where T (r, s) is the communication of 1-out-of-s Oblivious Transfer
(OT) protocol on words of size r.

We will need the following standard definitions for our results in Section 5.

Definition 10 (Additive Secret Sharing) An intermediate value x of a joint
computation is said to be secret shared between Alice and Bob if Alice holds r
and Bob holds x − r, modulo some large prime, where r is a random number
independent of all inputs and outputs.

Definition 11 (Private Sample Sum) At the start, Alice holds a vector a of
dimension N and Bob holds a vector b. Alice and Bob also hold a secret sharing
of an index i. At the end, Alice and Bob hold a secret sharing of ai + bi.

That is, neither the index i nor the value ai + bi becomes known to the par-
ties. Efficient protocols for this problem can be found (or can be constructed
immediately from related results) in [21, 11], under various assumptions about
the existence of Private Information Retrieval, such as in [7].

Proposition 12 There is a protocol private-sample-sum for the Private Sam-
ple Sum problem that requires poly(N, k) computation, poly(log(N), k) commu-
nication, and O(1) rounds.

3 Private Approximations

In this Section, we review the notion of private approximations introduced in [11].

Definition 13 (Private Approximation Protocol (strict sense) [11]) A two-
party private approximation protocol for a deterministic, common-output func-
tion g on inputs a and b is strict if it computes an approximation g̃ to g such
that: (a) g̃ is a good approximation to g (in the appropriate sense); (b) π is a
private protocol for g̃ in the traditional sense (Definition 7); and (c) (Functional
Privacy) there exists a probabilistic polynomial-time (PPT) simulator S s.t.:

{S(g(x))}
x=(a,b)∈X

c≡ g̃(x).

In the case the output to both parties is a deterministic function, a (weakly)
equivalent definition is as follows, known as the “liberal” definition in [11]:

Definition 14 (Private Approximation Protocol (liberal sense) [11]) A
two-party private approximation protocol for a deterministic, common-output
function g on inputs a and b is liberal if it computes an approximation ĝ to g
such that: (a) ĝ is a good approximation to g (in the appropriate sense); (b) π
is a private protocol for ĝ, with correctness as in Definition 7 and privacy as in
existing PPT simulators SA and SB such that:

{SA(a, g(x))}
x=(a,b)∈X

c≡ {viewπ
A(x)}x∈X

{SB(b, g(x))}
x=(a,b)∈X

c≡ {viewπ
B(x)}x∈X ;

and (c) (Functional Privacy) there exists a PPT simulator S such that:

{S(g(x))}
x=(a,b)∈X

c≡ ĝ(x).

We elaborate on a general technique, originally sketched in [11], to construct
a private protocol in the strict sense given a private protocol in the liberal sense.
We also show the intuitive fact that the converse always holds.

Proposition 15 (equivalency between liberal and strict definitions) Any
private approximation protocol in the liberal sense requiring only polylogarithmic
communication complexity can be transformed into a private approximation pro-
tocol in the strict sense with the same asymptotic communication complexity,
local computational costs, and rounds. The converse holds true as well.

Proof. Let ĝ and g̃ be 〈ε, δ〉-approximations of g; and π̂ and π̃ be private protocols
computing ĝ and g̃ in the liberal and strict sense respectively. Now, suppose there
are simulators in the strict sense. Then, putting ĝ = g̃, a simulator for the liberal
definition can be constructed by simulating ĝ(a, b) = g̃(a, b) from g(a, b) using
the hypothesized simulator for functional privacy, then simulating Alice’s (or
Bob’s) view from ĝ(a, b) and a (or b) using the hypothesized strict simulator.

In the other direction, suppose there is a simulator in the liberal definition.
Let τ be a transcript of Alice’s view except for input a. Define g̃ = ĝ.τ to be ĝ
with τ encoded into its low-order bits. We assume that this kind of encoding into
approximations can be accomplished without significantly affecting the goodness
of approximation; in fact, we will assume that the value represented does not

change at all, even if the “approximate” value is zero—that is, τ is auxiliary data
rather than an actual part of the value of g̃. Furthermore, since τ is polyloga-
rithmically bounded in the input size, the communication overhead of g̃ over ĝ
is at most the size of τ , since a protocol for ĝ also serves as a protocol for g̃. It
is trivial to simulate the protocol messages given a and g̃. Use the hypothesized
simulator in the liberal definition to show functional privacy of g̃. ut

In Section 4, we apply the technique above of encoding the transcript into the
low-order bits to the norm estimation protocol from [15], originally presented
in the liberal definition, to achieve a more secure version abiding by the strict
definition. Furthermore, our Heavy Hitters result in Section 5 is formally proven
in the strict sense using the same idea.

4 Private Euclidean Norm estimation

We consider the setting in which Alice and Bob hold integer-valued vectors a
and b respectively, each of dimension N . In [15], the authors provided a protocol
for privately approximating the Euclidean norm of the vector difference ‖c‖ =
‖a − b‖ as well as the similar vector sum. Before we present our enhancements,
it is instructive to review the inner workings of their protocol and its guarantees,
given in Protocol 1 and Proposition 16 respectively.

norm estimation

Inputs: N-dimensional vectors a and b with integer values in the range [−M, M].

Output: An 〈ε, δ〉-approximation of ‖c‖2, where c = a − b.

1. Alice and Bob exchange a seed of a pseudorandom generator G and generate a
pseudorandom orthonormal matrix A.

2. Set T = Tmax = NM2

3. Repeat ({Assertion: ‖c‖2 ≤ T})
(a) ∀j ∈ [l], a secure circuit with ROM (with lookup tables on Aa and Ab)

independently generates random coordinates ij , computes (Ax)2ij
, and inde-

pendently generates zj from a Bernoulli(N(Ax)2ij
/(TB)) distribution.

(b) T = T/2
4. Until

∑
i
zi ≥ l/(4B) or T < 1

5. Output E = (2TB)/l ·
∑

i zi as an estimate of ‖c‖2.

Protocol 1: Private approximation protocol of the square l2 difference [15].

Proposition 16 (Private l2 approximation [15]) Suppose Alice and Bob have
integer-valued vectors a and b in [−M, M]N and let c = a − b. Fix distortion ε
and security parameter k. There is a protocol norm estimation that computes
an approximation ‖c‖∼ to the Euclidean norm of the vector difference, ‖c‖2,
such that it (a) outputs 1

1+ε‖c‖2 ≤ ‖c‖∼ ≤ ‖c‖2; (b) requires poly(k log(M)N/ε)

local computation, poly(k log(M) log(N)/ε) communication, and O(1) rounds;
and (c) is a private approximation protocol for ‖c‖2 in the liberal sense.

Furthermore, the protocol’s only access to a and b is through the matrix-
vector products Aa and Ab, where A is a pseudorandom matrix known to both
players. The access is possible through evaluating a circuit with ROM securely;
i.e. a circuit with lookup gates on inputs Aa and Ab (see Proposition 9).

Observe that although the communication complexity of this protocol is low,
the computational complexity of their protocol is quadratic in the vector di-
mension N . The protocol multiplies the matrix A, which has Θ(N2) degrees
of freedom by the input vectors a and b, thus requiring Ω(N2) computations.
Before we present our enhancements to Protocol 1, we first sketch the intuition
behind its construction, correctness and privacy guarantees.

In [20], the authors have shown that picking a random N × N orthonormal
matrix A from a distribution defined by the Haar measure ensures that each
component of Ax, for any vector x, is tightly concentrated around its root mean
square, ‖x‖/

√
N . Formally, there exists a c > 0 such that

Pr
[
|(Ax)i| ≥ t‖x‖/

√
N
]
≤ e−ct2 (1)

holds for any i = 1, . . . , N , any t > 1 and any x ∈ R
N . This transformation

ensures that the “mass” of vector x is uniformly spread among the N coor-
dinates while preserving the vector norm, i.e. ‖x‖ = ‖Ax‖. Protocol 1 uses
this fact and constructs A using pseudorandom generators instead, guaranteeing
nonetheless that (1− 2−Θ(k))‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 holds except with neg(k, N)
probability. Note that with each component tightly concentrated around the root
mean square, one can construct an unbiased sample estimator which is an 〈ε, δ〉-
approximation by straightforward application of Chernoff bounds. However, to
achieve privacy, the protocol must sample the coordinates (Ax)i obliviously as to
prevent either party from learning the sampled values (it does so by using a se-
cure circuit with ROM; see Section 2.2). Furthermore, the protocol ensures that
the final estimate E depends only on ‖x‖ by using Bernoulli trials to squash the
higher moments of E, thus preventing non-simulatable information from leaking.
In particular, this also achieves Functional Privacy as needed in Definition 14.
For its correctness argument, the protocol guarantees that each zj has enough
information to approximate l2(x) tightly by scaling the Bernoulli trials by a loop
variable T and exiting the loop when the sum of the trials is large enough for
tight estimation. We refer the reader to [15] for complete analysis of Protocol 1.

4.1 Faster Approximation

As argued in the last Section, the computation bottleneck of Protocol 1 is the
multiplication of the pseudorandom matrix A by the input vectors a and b.
Computing Aa (and Ab) requires Ω(N2) due to the Θ(N2) degrees of freedom
of matrix A. We recall that this multiplication step is crucial for both the cor-
rectness and privacy guarantees. The matrix transformation ensures that the

“mass” of the vector is uniformly spread among all coordinates while preserving
the norm. Such process allows a circuit to sample logarithmic many coordinates
for a tight estimation of the same norm. Preserving the norm ensures that the
Bernouilli trials can be simulated for the privacy proof.

We perform a similar but faster matrix transformation on Alice and Bob’s in-
put vectors. The transformation also spreads the “mass” of the vector uniformily
and preserves the vector norms as required by the correctness and privacy argu-
ments of Protocol 1. However, our matrix multiplication takes only O(N log N)
time as opposed to Ω(N2).

Our approach, based on the technique of Ailon and Chazelle [1], is to ran-
domly choose from a “sufficiently random” family of easily computable orthonor-
mal transformations, as follows. Given a vector x = (x1, x2, . . . , xN), we flip the
sign of each xi independently with probability 1/2 and then apply a Hadamard
transform to it, yielding a new vector x∗. Thus we choose uniformly from a
family of 2N linear transformations, each corresponding to a choice of which
variables to sign-flip. Since the Hadamard transform is orthonormal and can be
computed in O(N log N) time, it follows that each transformation in our family
is orthonormal and computable in O(N log N) time, as flipping the sign of a
variable is an orthonormal transformation with trivial computational overhead.

Next, we observe that each x∗
j , viewed in isolation, is a random linear combi-

nation of signed and unsigned xi’s, scaled by 1/
√

N . We prove that each x∗
i is not

larger than the root mean square of x, or ‖x‖/
√

N , with high probability. Thus,
we achieve a similar bound for each coordinate (Ax)i as in equation Eq. (1),
which suffices for the correctness and privacy proofs of the original protocol.

The following lemma summarizes the above discussion and claims.

Lemma 1. Let x and x′ be vectors of dimension N , with each x′
i being the result

of flipping the signal of the corresponding xi with probability 1/2. Then, for any
λ > 0, applying a Hadamard transform to vector x′, yielding x∗ = 1√

N
HNx′,

where HN is the N × N Hadamard matrix, we have that

Pr

[
|x∗

i | ≥ λ
|x|√
N

]
≤ 2e−λ2/2. (2)

Proof. We analyze the case for a particular x∗
j , for j ∈ [1, N]. Let Z1, . . . , ZN

be independent variables such that Zi = (ζixi)/
√

N , where ζi ∈R {+1,−1}.
Here, ∈R denotes drawing each ζi independently and uniformily at random.
Note that E[Zi] = 0. Now, let S =

∑N
i Zi. We then define a martingale

sequence X0, X1, . . . , XN by setting X0 = E[S] and, for i ∈ [1, N], Xi =
E[S|Z1, . . . , Zi]. We now apply Azuma’s inequality as follows. Recall that for a
martingale sequence X0, X1, . . . , XN s.t. |Xk−Xk−1| ≤ ck, Pr [|Xt − X0| ≥ λ] ≤
2 exp

(
− λ2

2
∑

t
k=1 c2

k

)
for any t ≥ 0 and any λ > 0. For our martingale difference

sequence let ck = |Xk − Xk−1| and thus we get

Pr

[
|XN − X0| ≥ λ

|x|√
N

]
≤ 2 exp

(
−λ2

2

|x|2
N

1
∑N

k=1 c2
k

)
. (3)

Thus, to prove Eq. (2) it suffices to show that
∑N

k=1 c2
k ≤ |x|2/N . Note that

Xk − Xk−1 = Zk = (ζkxk)/
√

N , and thus
∑N

k=1 c2
k =

∑N
k=1(Xk − Xk−1)

2 =
∑N

k=1

(
ζkxk√

N

)2

= |x|2
N . Therefore, applying it to Eq. (3) guarantees Eq. (2). ut

4.2 More Secure Approximation

In [15], the authors have shown that Protocol 1 is secure in the liberal sense.
They provided the norm estimation simulator that guarantees both functional
privacy and private computation of protocol π̂ (Protocol 1) computing an ap-

proximation ĝ of g = ‖x‖2
. Their simulator receives the exact output ‖x‖2

for
generating the protocol transcripts. To be secure in the strict sense, besides
showing functional privacy, one must provide a simulator that is able to produce
computationally indistingishable views from Alice’s and Bob’s without access to
the exact output, but only to the approximation output ĝ (see Definition 13).
The original norm estimation simulator from [15] is shown next.

norm estimation simulator

Input: ‖x‖2

Output: a computationally indistinguishable distribution from Protocol 1

1. Generate a random seed of G
2. Set T = Tmax = nM2

3. Repeat:
(a) ∀j ∈ [l], independently generate zj from a Bernoulli(‖x‖2/(TB)) distribution
(b) T = T/2

4. Until
∑

i
zi ≥ l/(4B) or T < 1

5. Output E = (2TB)/l ·
∑

i
zi

Simulator 1: The norm estimation simulator from [15].

Simulator 1 above guarantees that the probabilities of the Bernoulli trials
from the real and simulated views differ only by neg(k, N). Thus, given access
to the exact and approximate outputs, g(x) and ĝ(x) respectively, all messages
exchanged —the seed, the oblivious transfer (OT) invocations by the secure
circuit, and the output—are simulatable. Specifically, the final value of T is also
simulatable. Note that simulating the final value of T is crucial to the privacy
argument. If the number of invocations made by the secure circuit differ between
the real and simulated views, the distribution on the resulting transcripts will
no longer be indistinguishable. Furthermore, observe that the exact output g(x)
is necessary for simulating such number of steps since its magnitude dictates the
loop exit condition. Clearly, using ĝ(x) = (1 ± ε)‖x‖2

to replace g(x) = ‖x‖2
in

the Bernoulli trials would make the probabilities differ by a factor in the order
of O(ε), a non-negligible factor in our security setting; i.e. we expect O(2−Θ(k)).

Nonetheless, we show how can we transform this liberal protocol into a strict
one, by using the general technique outlined in Section 3. We define a new
approximation function g̃ based on ĝ. Let τ̂ denote the transcript of protocol π̂
and let g̃ = ĝ.τ̂ , meaning that the output of the new approximation function is
the output of the original approximation function ĝ concatenated to the entire
transcript of protocol π̂ (one can view τ̂ as encoded into the low-order bits of
the approximation—in which case we assume the goodness of approximation is
not substantially changed—or, alternatively, as auxiliary data and not part of
the output itself). The transcript τ̂ in this case is just a concatenation of the
seed used for the pseudorandom generator, all OT invocations by the secure
circuit, and the final approximate output. Thus, the communication costs at
most doubled; and thus still remain asymptotically poly(k log(M) log(N)/ε).

Let the new protocol π̃ computing g̃ be identical to π̂ with the additional
output of τ̂ along with ĝ. It remains to show that π̃ can be privately computed.
We thus create Simulator 2, which clearly generates indistinguishable views for
Alice and Bob, since all messages exchanged in protocol π̃ are simulated properly:
the random seed messages, a matching number of OT calls as well as the final
output. Finally, it is clear that g̃ is functionally private to g since one can use the
norm estimation simulator to output τ̂ along with ĝ(x) given only g(x) = ‖x‖.

π̃ simulator

Input: g̃(x) = ĝ(x).τ̂
Output: a computationally indistinguishable transcript from π̃(x)

1. Extract ĝ(x) and τ̂ from the input g̃(x) = ĝ(x).τ̂
2. Extract the random seed for the pseudorandom generator from τ̂ and send it to

the other party.
3. Simulate the OT calls from Step 3 in Protocol 1 by playing back the messages

exchanged in τ̂ .
4. Output g̃(x)

Simulator 2: Simulator for π̃.

5 Private Euclidean Heavy Hitters

Consider the same input setting from the previous Section. Here, both par-
ties want to learn a representation c̃ =

∑
t∈Tout

t such that ‖c − c̃‖2
2 ≤ (1 +

ε)‖c − copt‖2
2 and such that at most copt and ‖c‖2 is revealed. Unless otherwise

stated, we consider the private Euclidean Heavy Hitters problem as simply the
private Heavy Hitters problem. A protocol is given in Figure 2.

5.1 Analysis

First, to gain intuition, we consider some easy special cases of the protocol’s
operation. For our analysis, assume that the terms in c are already positive

and in decreasing order, c0 > c1 > · · · > cN−1 > 0. We will be able to find
the coefficient value of any desired term, so we focus on the set of indices. Let
Iopt = {0, 1, 2, . . . , B − 1} denote the set of indices for the optimal B terms.
The set I of indices is defined in Figure 2. Thus Qc,B,θ ⊆ Qc,B, θ

1+ε
⊆ Iopt and

Qc,B, θ
1+ε

⊆ I.

The ideal output is Iopt, though any superset of Qc,B,θ suffices to get an
approximation with error at most (1 + ε) times optimal. This includes the set
I ⊇ Qc,B,θ that the non-private algorithm has recovered. The set IB of the
largest B terms indexed by I contains Qc,B,θ, so IB is a set of at most B terms
with error at most (1+ε) times optimal. If |Qc,B,θ| = B, then IB = Qc,B,θ = Iopt,
and IB is a private and correct output.

private heavy hitters

– Known parameters: N, M, B, ε, k, which determine θ = ε

B(1+ε)
and B′.

– Inputs: N-dimensional vectors a and b with integer values in the range [−M, M].
– Output: With probability at least 1 − 2−k, a set Tout of at most B terms, such

that
∥∥∥c −

∑
t∈Tout

t
∥∥∥

2

2
≤ (1 + ε)

∥∥∥c −
∑

t∈Topt
t
∥∥∥

2

2
.

1. Exchange pseudorandom seeds (in the clear). Generate measurement matrices R1

and R2. Alice locally constructs sketches R1a and R2a = (R0
2a, R1

2a, . . . RB−1
2 a),

where the matrix R1 is used for a non-private Euclidean Heavy Hitters and
the matrix R2 = (R0

2, R
1
2, . . . , R

B−1
2) is used for B independent repetitions of

norm estimation. Bob similarly constructs R1b and R2b.
2. Using general-purpose SMC, do

– Use an existing (non-private) Euclidean Heavy Hitters protocol to get, from
R1a and R1b, a secret-sharing of a superset I of Q

c,B, θ
1+ε

, in which I has

exactly B′ ≤ poly(log(N), log(M), B, k, 1/ε) indices. (Pad, if necessary.)
3. Use private-sample-sum to compute, from I, a, and b, secret-shared values for

each index in I . Let T denote the corresponding set of secret-shared terms. (Both
the index and value of each term in T is secret shared.) Enumerate I as I =
{i0, i1, . . .} with ti0 > ti1 > · · · .

4. Using SMC, do
– for j = 0 to B − 1

(a) From Rj
2, R

j
2a, Rj

2b, t0, t1, . . . , tij−1 , sketch rj = c− (ti0 + ti1 + · · ·+ tij−1)

as Rj
2rj = (Rj

2a + Rj
2b − Rj

2(ti0 + ti1 + · · · + tij−1)).

(b) use norm estimation to estimate ‖rj‖
2
2 as ‖rj‖

2
∼, satisfying 1

1+ε
‖rj‖

2
2 ≤

‖rj‖
2
∼
≤ ‖rj‖

2
2.

(c) If |cij
|2 < θ‖rj‖

2
∼

, break (out of for-loop)
(d) Output tj

5. Encode the pseudorandom seeds for R1 and R2 into the low-order bits of the
output or (as we assume here) provide R1 and R2 as auxiliary output.

Protocol 2: Protocol for the Euclidean Heavy Hitters problem.

The difficulty arises when |Qc,B,θ| < B, in which case some of IB may be
arbitrary and should not be allowed to leak. So the algorithm needs to find
a private subset Iout with Qc,B,θ ⊆ Iout ⊆ IB. The challenge is subtle. Let
s denote |Qc,B,θ|. If the algorithm knew s, the algorithm could easily output
Qc,B,θ, which is the indices of the top s terms, a correct and private output.
Unfortunately, determining Qc,B,θ or s = |Qc,B,θ| requires Ω(N) communication
(see Section 5.2), so we cannot hope to find Qc,B,θ exactly. Non-private norm
estimation can be used to find a subset Iout with Qc,B,θ ⊆ Iout ⊆ Qc,B, θ

1+ε
⊆ Iopt,

which is correct, but not quite private. Given |Iout|, the contents of Iout ⊆ Iopt

are indeed private, but the size of Iout is, generally, non-private. Fortunately, if
we use a private protocol for norm estimation, |Iout| remains private. We now
proceed to a formal analysis.

Theorem 17. Protocol private heavy hitters requires poly(N, log(M), B, k, 1/ε)
local computation, poly(log(N), log(M), B, k, 1/ε) communication, and O(1) rounds.

Proof. By existing work, all costs of Steps 1 to 3 are as claimed. Now consider
Step 4. Observe that the function being computed there has inputs and outputs
of size bounded by poly(log(N), log(M), B, k, 1/ε) and takes time polynomial in
the size of its inputs. In particular, the instances of norm estimation do not
start from scratch with respect to a or b; rather, they pick up from the precom-
puted short sketches R2a and R2b. It follows that this function can be wrapped
with SMC, preserving the computation and communication up to polynomial
blowup in the size of the input and keeping the round complexity to O(1). ut

We now turn to correctness and privacy. Let Iout denote the set of indices
corresponding to the set Tout of output terms.

Theorem 18. Protocol private heavy hitters is correct.

Proof. The correctness of Steps 2 and 3 follows from previous work. In Step 4,
we first show that QB, ε

B(1+ε)
⊆ Iout. We assume that 1

1+ε‖rj‖2
2 ≤ ‖rj‖ 2

∼ ≤ ‖rj‖2
2

always holds; by Proposition 16, this happens with high probability. Thus, if
|cij

|2 ≥ ε
B(1+ε)‖rj‖2

2, then |cij
|2 ≥ ε

B(1+ε)‖rj‖2
2 ≥ ε

B(1+ε)‖ri‖ 2
∼. By construction,

QB, ε
B(1+ε)

⊆ I. A straightforward induction shows that, if j ∈ QB, ε
B(1+ε)

, then

iteration j outputs tij
and the previous iterations output exactly the set of the

j larger terms in I. By Proposition 4, since Iout is a superset of QB, ε
B(1+ε)

, if

c̃ =
∑

j∈Iout
cij

δij
, then ‖c̃ − c‖2

2 ≤ (1 + ε)‖copt − c‖2
2, as desired. ut

Before giving the complete privacy argument, we give a lemma, similar to
the above. Suppose a set P of indices is a subset of another set Q of indices. We
will say that P is a prefix of Q if i ∈ P, tj > ti, and j ∈ Q imply j ∈ P .

Lemma 2. Output set Iout is a prefix of QB, ε

B(1+ε)2
except with probability 2−k.

Proof. Note that QB, ε

B(1+ε)2
is a subset of I and QB, ε

B(1+ε)2
is a prefix of the

universe, so QB, ε

B(1+ε)2
is a prefix of I. The set Iout is also a prefix of I. Thus,

of the sets Iout and QB, ε

B(1+ε)2
, one is a prefix of the other (or they are equal).

So suppose, toward a contradiction, that QB, ε

B(1+ε)2
is a proper prefix of Iout.

Let q =
∣∣∣QB, ε

B(1+ε)2

∣∣∣, so q is the least number such that iq is not in QB, ε

B(1+ε)2
. If

the protocol halts before considering q, then Iout ⊆ QB, ε

B(1+ε)2
, a contradiction.

So we may assume that q < B (so the for-loop doesn’t terminate). Then, by
definition of QB, ε

B(1+ε)2
, we have |ciq

|2 < ε
B(1+ε)2

∑
j≥q |cij

|2. It follows that

|ciq
|2 < ε

B(1+ε)2

∑
i≥q |ci|2 = ε

B(1+ε)2 ‖rq‖2
2 ≤ ε

B(1+ε)‖rq‖ 2
∼. Thus the protocol

halts without outputting tq, after outputting exactly QB, ε

B(1+ε)2
. ut

Finally, Theorem 19 ensures privacy and Theorem 20 summarizes our results.

Theorem 19. Protocol private heavy hitters leaks only ‖c‖2
2 and copt.

Proof. With the random inputs R1 and R2 encoded into the output, it is straight-
forward to show that Protocol private heavy hitters is a private protocol in
the traditional sense that the protocol messages leak no more than the inputs
and outputs. This is done by composing simulators for private-sample-sum

and SMC. It remains only to show only that we can simulate the joint distribu-
tion on (c̃, R1, R2) given as simulator-input copt and ‖c‖. We will show that R1

is indistinguishable from independent of the joint distribution of (c̃, R2), which
we will simulate directly.

First, we show that R1 is independent. Except with probability 2−Ω(k), the
intermediate set I is a superset of QB, ε

B(1+ε)2
and the norm estimation is correct.

In that case, the protocol outputs a prefix of QB, ε

B(1+ε)2
and we get identical

output if I is replaced by QB, ε

B(1+ε)2
. Also, QB, ε

B(1+ε)2
can be constructed from

copt and ‖c‖2. Since the protocol proceeds without further reference to R1, we
have shown that the pair (c̃, R2) is indistinguishable from being independent of
R1. It remains only to simulate (c̃, R2).

Note that the output c̃ does depend non-negligibly on R2. If |cij
|2 is very

close to θ‖rj‖2
2, then the test |cij

|2 < θ‖rj‖ 2
∼ in the protocol may succeed with

probability non-negligibly far from 0 and from 1, depending on R2, since the
distortion guarantee on ‖rj‖ 2

∼ is only the factor (1 ± ε).
The simulator is as follows. Assume that the terms in copt are t0, t1, . . . , tB−1

with decreasing order, t0 > t1 > · · · > tB−1. For each j ≤ B, compute
Ej = ‖c − (t0 + t1 + · · · + tj−1)‖2

2 = ‖c‖2
2 −‖t0 + t1 + · · · + tj−1‖2

2 and then run
the norm estimation simulator on input Ej and ε to get a sample from the

joint distribution (Ẽj , R2), where Ẽj is a good estimate to Ej . Our simulator

then outputs tij
if |cij

|2 ≥ ε
B(1+ε)Ẽj , and halts, otherwise, following the final

for-loop of the protocol. Call the output of the simulator s̃ =
∑

j tij
δij

.
Again using the fact that a prefix of QB, ε

B(1+ε)2
is output, if j ∈ QB, ε

B(1+ε)2
,

then ij = j; i.e., the jth largest output term is the jth largest overall, so that,

if j is output, Ej = ‖rj‖2
2. Thus (Ẽj , R2) is distributed indistinguishably from

(‖rj‖ 2
∼, R2). The protocol finishes deterministically using I and ‖rj‖ 2

∼ and the

simulator finishes deterministically using QB, ε

B(1+ε)2
and Ẽj , but, since the pro-

tocol output is identical if I is replaced by QB, ε

B(1+ε)2
, the distributions on output

(c̃, R2) of the protocol and (s̃, R2) of the simulator are indistinguishable. ut

Theorem 20. Suppose Alice and Bob hold integer-valued vectors a and b in
[−M, M]N , respectively. Let B, k and ε be user-defined parameters. Let c =
a + b. Let Topt be the set of the largest B terms in c. There is a protocol, tak-
ing a, b, B k and ε as input, that computes a representation c̃ of at most B
terms such that it: (a) outputs c̃ with ‖c̃ − c‖2 ≤ (1 + ε)‖copt − c‖2; (b) uses
poly(N, log(M), B, k, 1/ε) time, poly(log(N), log(M), B, k, 1/ε) communication,
and O(1) rounds; and (c) succeeds with probability 1 − 2−k and leaks only copt

and ‖c‖2 on security parameter k.

Corollary 21 With the same hyptotheses and resource bounds, there is a pro-
tocol that computes c̃ and an approximation ‖c̃ − c‖∼ to ‖c̃ − c‖2 such that

1
1+ε‖c̃ − c‖2 ≤ ‖c̃ − c‖∼ ≤ ‖c̃ − c‖2 and the protocol leaks only copt and ‖c̃ − c‖2.

Proof. Run the main protocol and output also ‖c̃ − c‖∼, computed in the course

of the main protocol. Note that ‖c̃ − c‖2
2 = ‖c‖2

2 − ‖c̃‖2
2 and both ‖c‖2 and c̃ are

available to the main simulator (as input and output, resp.), so we can modify

the main simulator to compute ‖c̃ − c‖2
2 as well. ut

5.2 Lower Bounds

In this Section, we state some lower bounds for problems related to our main
problem in this Section, such as computing an approximation to copt without
leaking ‖c‖2. The results are straightforward, but we include Theorem 22 to mo-
tivate the approximation and Theorem 23 to motivate leakage of the Euclidean
norm in protocols we present. The proofs, based on the set disjointness problem,
will appear in the journal version of this article.

Theorem 22. There is an infinite family of settings of parameters M, N, B, k
such that any protocol that computes the Euclidean norm exactly on the sum c
of individually-held inputs a and b, uses communication Ω(N). Similarly, any
protocol that computes the exact Heavy Hitters or computes the qualified set
Qc,1,1 exactly uses communication Ω(N).

Theorem 23. There is an infinite family of settings of parameters M, N, B, k, ε
such that any protocol that solves the Euclidean Heavy Hitters problem on the
sum c of individually-held inputs a and b, leaking only copt, uses communication
Ω(N). Furthermore, for an infinite class of inputs in which ‖c‖2 is not constant,
any such protocol either computes ‖c‖2 or uses communication Ω(N).

References

1. Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform. In Proc. 38th Annual ACM STOC, pages 557–
563, 2006.

2. Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the k
th-ranked element. In EUROCRYPT04, pages 40–55, 2004.

3. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join
sizes in limited storage. J. Comput. Syst. Sci., 64(3):719–747, 2002.

4. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

5. A. Beimel, P. Carmi, K. Nissim, and E. Weinreb. Private approximation of search
problems. In Proc. 38th Annual ACM STOC, pages 119–128, 2006.

6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Annual ACM

STOC, pages 1–10. ACM Press, 1988.
7. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval

with polylogarithmic communication. In EUROCRYPT’99, LNCS 1592, pages
404–414. Springer-Verlag, 1999.

8. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in
public databases. In Proc. Second TCC, pages 363–385, 2005.

9. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
Journal of the ACM, 45:965–981, 1998.

10. G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most
frequent items dynamically. In Proc. ACM PODS, pages 296–306, 2003.

11. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. N. Wright.
Secure multiparty computation of approximations. Transactions on Algorithms,
2006. An extended abstract appeared in ICALP 2001.

12. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In EUROCRYPT’04, LNCS 3027, pages 1–19. Springer-Verlag, 2004.

13. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Fast, small-space algorithms for approximate histogram maintenance. In Proc.

34th Annual ACM STOC, pages 389–398, 2002.
14. S. Halevi, E. Kushilevitz, R. Krauthgamer, and K. Nissim. Private approximations

of NP-hard functions. In Proc. 33th Annual ACM STOC, pages 550–559, 2001.
15. P. Indyk and D. P. Woodruff. Polylogarithmic private approximations and efficient

matching. In Proc. Third Theory of Cryptography Conference, pages 245–264, 2006.
16. E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier sprectrum.

In Proc. 23th Annual ACM STOC, pages 455–464, 1991.
17. E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University

Press, 1997.
18. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,

computationally-private information retrieval. In Proc. 38th IEEE FOCS, pages
364–373, 1997.

19. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002.

20. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional
Normed Spaces. Lecture Notes in Mathematics, Volume 1200, 1986.

21. M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Proc. 33th Annual ACM STOC, pages 590–599, 2001.

22. A. Yao. Protocols for secure computation. In Proc. 23rd IEEE FOCS, pages
160–164, 1982.

