
Efficient Protocols for Set Intersection and
Pattern Matching with Security Against

Malicious and Covert Adversaries?

Carmit Hazay and Yehuda Lindell

Department of Computer Science
Bar-Ilan University, Israel

{harelc,lindell}@cs.biu.ac.il

Abstract. In this paper we construct efficient secure protocols for set
intersection and pattern matching. Our protocols for securely comput-
ing the set intersection functionality are based on secure pseudorandom
function evaluations, in contrast to previous protocols that used secure
polynomial evaluation. In addition to the above, we also use secure pseu-
dorandom function evaluation in order to achieve secure pattern match-
ing. In this case, we utilize specific properties of the Naor-Reingold pseu-
dorandom function in order to achieve high efficiency.
Our results are presented in two adversary models. Our protocol for
secure pattern matching and one of our protocols for set intersection
achieve security against malicious adversaries under a relaxed definition
where one corruption case is simulatable and for the other only privacy
(formalized through indistinguishability) is guaranteed. We also present
a protocol for set intersection that is fully simulatable in the model of
covert adversaries. Loosely speaking, this means that a malicious adver-
sary can cheat, but will then be caught with good probability.

1 Introduction

In the setting of secure two-party computation, two parties wish to jointly com-
pute some function of their private inputs while preserving a number of security
properties. In particular, the parties wish to ensure that nothing is revealed be-
yond the output (privacy), that the output is computed according to the specified
function (correctness) and more. The standard definition today (cf. [5] following
[13, 4, 17]) formalizes security by comparing a real protocol execution to an “ideal
execution” where an incorruptible trusted party helps the parties compute the
function. Specifically, in the ideal world the parties just send their inputs (over
perfectly secure communication lines) to the trusted party, who computes the
function honestly and sends the output to the parties. A real protocol (in which
parties interact arbitrarily) is said to be secure if any adversarial attack on a
real protocol can essentially be carried out also in the ideal world (of course,

? This research was supported by an Eshkol scholarship and Infrastructures grant from
the Israel Ministry of Science and Technology.

in the ideal world the adversary can do almost nothing and this guarantees
that the same is true also in the real world). This definition of security is often
called simulation-based because security is demonstrated by showing that a real
protocol execution can be “simulated” in the ideal world.

This setting has been widely studied, and it has been shown that any efficient
two-party functionality can be securely computed [24, 12, 11]. These feasibility
results demonstrate the wide applicability of secure computation, in principle.
However, they fall short of what is needed in implementations because they are
far from efficient enough to be used in practice (with a few exceptions). This
is not surprising because the results are general and do not utilize any special
properties of the specific problem being solved. The focus of this paper is the
development of efficient protocols for specific problems of interest.

Relaxed notions of security. Recently, the field of data mining has shown
great interest in secure computation, for the purpose of “privacy-preserving data
mining”. However, most of the protocols that have been constructed with this
aim in mind are only secure in the presence of semi-honest adversaries who follow
the protocol specification (but may try to examine the messages they receive to
learn more than they should). Unfortunately, in many cases, this level of security
is not sufficient. Rather, adversarial parties are willing to behave maliciously –
meaning that they may divert arbitrarily from the protocol specification – in
their aim to cheat. It seems that it is hard to obtain highly efficient protocols
that are secure in the presence of malicious adversaries (under the standard
simulation-based definitions), and two decades after the foundational feasibility
results of [12] we only know of very few non-trivial secure computation problems
that can be solved with high efficiency in this model. In this paper, we consider
two different relaxations in order to achieve higher efficiency:

– One-sided simulatability: According to this notion of security, full simulation
is provided for one of the corruption cases, while only privacy (via computa-
tional indistinguishability) is guaranteed for the other corruption case. This
notion of security is useful when considering functionalities for which only
one party receives output. In this case, privacy is guaranteed when the party
not receiving output is corrupted (and this is formalized by saying that the
party cannot distinguish between different inputs used by the other party),
whereas full simulation via the ideal/real paradigm is guaranteed when the
party receiving output is corrupted. This notion of security has been consid-
ered in the past; see [19, 8] for example.

– Security in the presence of covert adversaries: This notion of security pro-
vides the following guarantee. A malicious adversary may be able to cheat
(e.g., learn the other party’s private input). However, if it follows such a
strategy, it is guaranteed to be caught with probability at least ε, where ε is
called the “deterrence factor” (in this paper, we use ε = 1/2). This definition
is formalized within the ideal/real simulation paradigm and so has all the
advantages offered by it. This definition was recently introduced in [2].

We stress that both notions are relaxations and are not necessarily sufficient
for all applications. For example, security in the presence of covert adversaries

would not suffice when the computation relates to highly sensitive data or when
there are no repercussions to a party being caught cheating. Likewise, the guar-
antee of privacy alone (as in one-sided simulatability for one of the corruption
cases) is sometimes not sufficient. For example, the properties of independence of
inputs and correctness are not achieved, and they are sometimes needed. Never-
theless, in many cases, such relaxations are acceptable. Furthermore, using these
relaxations, we are able to construct protocols that are much more efficient than
anything known that achieves full security in the presence of malicious adver-
saries (where security is formalized via the ideal/real simulation paradigm).

Secure set intersection. The bulk of this paper is focused on solving the set
intersection problem. In this problem, two parties with private sets wish to learn
the intersection of their sets and nothing more. There are many cases where such
a computation is useful. For example, two health insurance companies may wish
to ensure that no one has taken out the same insurance with both of them (if
this is forbidden), or the government may wish to ensure that no one receiving
social welfare is currently employed and paying income tax. By running secure
protocols for these tasks, sensitive information about law-abiding citizens is not
unnecessarily compromised.

We present two protocols for this task. The first achieves security in the
presence of malicious adversaries with one-sided simulatability while the second
is secure in the presence of covert adversaries. Both protocols take a novel ap-
proach. Specifically, instead of using protocols for secure polynomial evaluation
[18], our protocols are based on running secure subprotocols for pseudorandom
function evaluation. In addition, we use only standard assumptions (e.g., the
decisional Diffie-Hellman assumption) and do not resort to random oracles.

In order to get a feel of how our protocol works we sketch the general idea un-
derlying it. The parties run many executions of a protocol for securely computing
a pseudorandom function, where one party inputs the key to the pseudorandom
function and the other inputs the elements of its set. Denoting the pseudorandom
function by F , the input of party P1 by X and the input of party P2 by Y , we
have that at the end of this stage party P2 holds the set {Fk(y)}y∈Y while P1 has
learned nothing. Then, P1 just needs to locally compute the set {Fk(x)}x∈X and
send it to P2. By comparing which elements appear in both sets, P2 can learn the
intersection (but nothing more). This is a completely different approach to that
taken until now that has defined polynomials based on the sets and used secure
polynomial evaluations to learn the intersection. We stress that the “polynomial
approach” has only been used successfully to achieve security in the presence of
semi-honest adversaries [14, 9], or together with random oracles when malicious
adversaries are considered [9]. (We exclude the use of techniques that use general
zero-knowledge proofs because these are not efficient.)

Secure pattern matching. We present an efficient secure protocol for solving
the basic problem of pattern matching [3, 15]. In this problem, one party holds
a text T and the other a pattern p. The aim is for the party holding the pattern
to learn all the locations of the pattern in the text (and there may be many)
while the other learns nothing about the pattern. As with our protocols for

secure set intersection, the use of secure pseudorandom function evaluation lies
at the heart of our solution. However, here we also utilize specific properties of
the Naor-Reingold pseudorandom function [20], enabling us to obtain a simple
protocol that is significantly more efficient than that obtained by running known
general protocols. Our protocol is secure in the presence of malicious adversaries
with one-sided simulatability, and is the first to address this specific problem.

Related work. The problem of secure set intersection was studied in [9] who
presented protocols for both the semi-honest and malicious cases. However, their
protocol for the case of malicious adversaries assumes a random oracle. This
problem was also studied in [14] whose main focus was the semi-honest model;
their protocols for the malicious case use multiple zero-knowledge proofs for
proving correct behavior and as such are not very efficient. As we have mentioned,
both of the above works use oblivious polynomial evaluation as the basic building
block in their solutions.

2 Definitions and Tools

2.1 Definitions

We denote the security parameter by n and computational indistinguishability
of ensembles X and Y by X

c≡ Y ; see [11] for formal definitions. We adopt the
convention whereby a machine is said to run in polynomial-time if its number of
steps is polynomial in its security parameter alone. We use the shorthand ppt to
denote probabilistic polynomial-time. Two basic building blocks that we utilize
in our constructions are ensembles of pseudorandom functions, denoted by FPRF,
and ensembles of pseudorandom permutations, denoted by FPRP, as defined in
[10]. We also denote the ensemble of truly random functions by HFunc and the
ensemble of truly random permutations by HPerm.

One sided simulation for two-party protocols. Two of our protocols achieve
a level of security that we call one-sided simulation. In these protocols, P2 re-
ceives output while P1 should learn nothing. In one-sided simulation, full simu-
lation is possible when P2 is corrupted. However, when P1 is corrupted we only
guarantee privacy, meaning that it learns nothing whatsoever about P2’s input
(this is straightforward to formalize because P1 receives no output). This is a
relaxed level of security and does not achieve everything we want; for example,
independence of inputs and correctness are not guaranteed. Nevertheless, for
this level of security we are able to construct highly efficient protocols that are
secure in the presence of malicious adversaries. The formal definition appears
in the full version; we present it very briefly here. Let REALπ,A(z),i(x, y, n) de-
note the output of the honest party and the adversary A (controlling party Pi)
after a real execution of protocol π, where P1 has input x, P2 has input y, A
has auxiliary input z, and the security parameter is n. Let IDEALf,S(z),i(x, y, n)
be the analogous distribution in an ideal execution with a trusted party who
computes f for the parties. Finally, let VIEW

A
π,A(z),i(x, y, n) denote the view of

the adversary after a real execution of π as above. Then, we have the following
definition:

Definition 1 Let f be a two-party functionality where only P2 receives output.
We say that a protocol π securely computes f with one-sided simulation if the
following holds:

1. For every non-uniform ppt adversary A in the real model, there exists a non-
uniform ppt adversary S for the ideal model, such that for every x, y, z ∈
{0, 1}∗ {

REALπ,A(z),2(x, y, n)
}

n∈N

c≡ {
IDEALf,S(z),2(x, y, n)

}
n∈N

2. For every non-uniform ppt adversary A, all pairs of inputs y, y′ ∈ {0, 1}∗
with |y| = |y′|, and all inputs x, z ∈ {0, 1}∗,

{
VIEW

A
π,A(z),1(x, y, n)

}
n∈N

c≡
{

VIEW
A
π,A(z),1(x, y′, n)

}
n∈N

Security in the presence of covert adversaries. In this setting, the adver-
sary may deviate from the protocol specification in an attempt to cheat, and as
such is malicious. However, if it follows a strategy which enables it to achieve
something that is not possible in the ideal model (like learning the honest party’s
input), then its cheating is guaranteed to be detected by the honest party with
probability at least ε, where ε is a deterrent parameter. This definition is for-
malized in three ways in [2]; we consider their strongest definition here. In this
definition, the ideal model is modified so that the adversary may send a special
cheat message to the trusted party. In such a case, the trusted party tosses coins
so that with probability ε the adversary is caught and a message corrupted is
sent to the honest party (indicating that the other party attempted to cheat).
However, with probability 1 − ε, the ideal-model adversary is allowed to cheat
and so the trusted party sends it the honest party’s full input and also allows
it to set the output of the honest party. We refer the reader to [2] and the full
version of this paper for further details. The output distribution of an execution
of this modified ideal model for a given ε and parameters as above is denoted
IDEALSC

ε
f,S(z),i(x, y, n). We have the following:

Definition 2 Let f , π and ε be as above. Protocol π is said to securely compute
f in the presence of covert adversaries with ε-deterrent if for every non-uniform
ppt adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every i ∈ {1, 2},
every x, y ∈ {0, 1}∗ with |x| = |y|, and every auxiliary input z ∈ {0, 1}∗:

{
IDEALSC

ε
f,S(z),i(x, y, n)

}
n∈IN

c≡
{

REALπ,A(z),i(x, y, n)
}

n∈IN

The two notions of security. We remark that one-sided simulatability and
security in the presence of covert adversaries are incomparable notions. On the
one hand, the guarantees provided by security under one-sided simulation cannot

be breached, even by a malicious adversary. This is not the case for security in
the presence of covert adversaries where it is possible for a malicious adversary
to successfully cheat. On the other hand, the formalization of security for covert
adversaries is such that any deviation from what can be achieved in the ideal
model is considered cheating (and so will result in the adversary being caught
with probability ε). This is not the case for one-sided simulatability where one
of the parties can make its input depend on the other, or cause the result to not
be correctly computed, without ever being caught.

2.2 Tools

In this section, we describe the basic tools used in our constructions. Full de-
scriptions and proofs are provided in the full version of this paper.

Oblivious transfer. We use oblivious transfer in order to achieve secure pseu-
dorandom function evaluation (see below), which in turn is used for our set
intersection protocols. For our protocols that achieve one-sided simulatability,
we need an oblivious transfer protocol that achieves one-sided simulatability.
Such a protocol can be constructed using homomorphic encryption, based on
the protocol of [1]. The protocol needs some modifications in order to obtain
simulatability in the case that the receiver is corrupted. We can instantiate our
protocol with either the El-Gamal [6] or Paillier [21] homomorphic encryptions
schemes. However, our instantiation using El-Gamal is considerably more effi-
cient; see the full version. We remark that our protocols actually need to run
multiple oblivious transfers in parallel. For the sake of this, we define the multi-
oblivious transfer functionality with m executions, denoted Fm

OT as follows:

((x0
1, x

1
1), . . . , (x

0
m, x1

m), (σ1, . . . , σm)) → (λ, (xσ1
1 , . . . , xσm

m))

Our protocol for computing this functionality works by running the basic pro-
tocol in parallel, using the same homomorphic encryption key in each execu-
tion. This yields higher efficiency and the number of asymmetric operations per
transfer is essentially two. We denote a protocol that securely realizes Fm

OT with
one-sided simulation by πm

OT.
Our protocol that achieves security for covert adversaries needs an oblivi-

ous transfer protocol that is secure for covert adversaries. Such a protocol was
presented in [2] and essentially requires 4 exponentiations only per execution.

Oblivious pseudorandom function evaluation. Let (IPRF, FPRF) be an en-
semble of pseudorandom functions, where IPRF is a probabilistic polynomial-time
algorithm that generates keys (or more exactly, that samples a function from the
ensemble). The task of oblivious pseudorandom function evaluation with FPRF

is that of securely computing the functionality FPRF defined by

(k, x) 7→ (λ, FPRF(k, x)) (1)

where k ← IPRF(1n) and x ∈ {0, 1}n.1 We will use the Naor-Reingold [20] pseu-
dorandom function ensemble FPRF (with some minor modifications). For every n,
1

If k is not a “valid” key in the range of IPRF(1n), then we allow the function to take any arbitrary
value. This simplifies our presentation.

the function’s key is the tuple k = (p, q, ga0 , a1, . . . , an), where p is a prime, q is
an n-bit prime divisor of p − 1, g ∈ Z∗p is of order q, and a0, a1, . . . , an ∈R Z∗q .
(This is slightly different from the description in [20] but makes no difference to
the pseudorandomness of the ensemble.) The function itself is defined by

FPRF(k, x) = ga0·
∏n

i=1 a
xi
i mod p

We remark that this function is not pseudorandom in the classic sense of it being
indistinguishable from a random function whose range is composed of all strings
of a given length. Rather, it is indistinguishable from a random function whose
range is the group generated by g as defined above. This suffices for our purposes.
A protocol for oblivious pseudorandom function evaluation of this function was
presented in [8] and involves the parties running an oblivious transfer execution
for every bit of the input x. In the full version we prove that the protocol of [8]
preserves the security level of the oblivious transfer used (whether it be full secu-
rity, one-sided simulatability, or security in the presence of covert adversaries).
Using the oblivious transfer of [2] we therefore have that for x ∈ {0, 1}`, the cost
of securely computing FPRF in the presence of covert adversaries is essentially 4`
exponentiations. We remark that by using a multi-oblivious transfer protocol,
we can run many executions of πPRF simultaneously. This is of great importance
for efficiency.

3 Secure Set-Intersection

In this section we present our main result. We show how to securely compute
the two-party set-intersection functionality F∩, where each party enters a set
of values from some predetermined domain. If the input sets are legal, i.e. they
are made up of distinct values, then the functionality sends the intersection of
these inputs to P2 and nothing to P1. Otherwise P2 is given ⊥. Let X and Y
denote the respective input sets of P1 and P2, and let the domain of elements
be {0, 1}p(n) for some known polynomial p(n). We assume that p(n) = ω(log n);
this is needed for proving security and can always be achieved by padding the
elements if necessary. Functionality F∩ is defined by:

(X,Y) 7→
{

(λ,X ∩ Y), if X, Y ⊆ {0, 1}p(n) and are legal sets
(λ,⊥), otherwise

We present two protocols in this section: the first achieves one-sided simulata-
bility in the presence of malicious adversaries, and the second achieves security
in the presence of covert adversaries with deterrent ε = 1/2.

3.1 Secure Set Intersection with One-Sided Simulatability

The basic idea behind this protocol was described in the introduction. We there-
fore proceed directly to the protocol, which uses a subprotocol πPRF that securely
computes FPRF with one-sided simulatability (functionality FPRF was defined in
Eq. (1) above).

Protocol πINT

– Inputs: The input of P1 is X where X ⊆ {0, 1}p(n) contains m1 items, and the
input of P2 is Y where Y ⊆ {0, 1}p(n) contains m2 items.

– Auxiliary inputs: Both parties have the security parameter 1n and the polyno-
mial p bounding the lengths of all elements in X and Y . In addition, P1 is given
m2 (the size of Y) and P2 is given m1 (the size of X).

– The protocol:

1. Party P1 chooses a key k ← IPRF(1p(n)) for the pseudorandom function. Then,
the parties run m2 parallel executions of πPRF. P1 enters the key k chosen
above in all of the executions, whereas P2 enters a different value y ∈ Y
in each execution. The output of P2 from these executions is the set U =
{(FPRF(k, y))}y∈Y .

2. P1 sends P2 the set V = {FPRF(k, x)}x∈X in a randomly permuted order,
where k is the same key P1 used in Protocol πPRF in the previous step.

3. P2 outputs all y’s for which FPRF(k, y) ∈ V . I.e., for every y let fy be the output
of P2 from πPRF when it used input y. Then, P2 outputs the set {y | fy ∈ V }.

Theorem 3 Assume that πPRF securely computes FPRF with one-sided simula-
tion. Then πINT securely computes F∩ with one-sided simulation.

Proof Sketch: In the case that P1 is corrupted we need only show that P1 learns
nothing about P2’s inputs. This follows from the fact that the only messages that
P1 receives are in the executions of πPRF which also reveals nothing about P2’s
input to P1. The formal proof of this follows from a standard hybrid argument.

We now proceed to the case that P2 is corrupted; here we must present a
simulator but can also rely on the fact that the πPRF subprotocol is simulatable.
Thus, we can analyze the security of πINT in a hybrid model where a trusted party
computes FPRF for the parties. In this model, P1 and P2 just send their inputs to
πPRF to the trusted party. Thus, the simulator S for A who controls P2 receives
A’s inputs y1, . . . , ym2 to the pseudorandom function evaluations. S chooses a
unique random value zi for each distinct yi and hands it to A as its output in
the ith evaluation. S then sends y1, . . . , ym2 to the trusted party computing F∩
and receives back a subset of the values (this is the output X ∩ Y); let t be the
number of values in the subset. S completes X ∩ Y with a set of m1− t random
values of length p(n) each, computes the set V from this set as an honest P1

would and hands it to A.2 Finally, S outputs whatever A outputs. The proof is
completed by proving that the ability to distinguish the simulation from a real
execution can be converted into the ability to distinguish the pseudorandom
function from random.

Efficiency. Note first that since πPRF can be run in parallel and has only a con-
stant number of rounds, protocol πINT also has only a constant number of rounds.
Next, the number of exponentiations is O(m2 ·p(n)+m1). This is due to the fact
that each local computation of the Naor-Reingold pseudorandom function can be
carried out with just one modular exponentiation and n modular multiplications
2

Since p(n) is superlogarithmic, the probability that any of the random values sent by S are in
P1’s input set is negligible.

(which are equivalent to another exponentiation). Thus, computing the set V
requires O(m1) exponentiations. In addition, for inputs of length p(n), Protocol
πPRF consists of running p(n) oblivious transfers (each requiring O(1) exponen-
tiations). Thus m2 such executions require O(m2 · p(n)) exponentiations. We
remark that since p(n) is the size of the input elements it is typically quite small
(e.g., the size of an SSN). If this is not the case, then the input can be hashed
to a fixed size using a collision-resistant hash function. Thus, m2 · p(n) + m1

will typically be much smaller than m1 ·m2. (Recall that we do need to assume
that p(n) is large enough so that a randomly chosen string does not intersect
with any of the sets except with very small probability. However, this can still
be quite small.)

We remark that our protocol is much more efficient than that of [14] (al-
though they achieve full simulatability). This is due to the fact that in their
protocol every party Pi is required to execute O(m1 ·m2) zero-knowledge proofs
of knowledge, and a similar number of asymmetric computations. (Many of these
proofs can be made efficient but not all. In particular, their protocol is only se-
cure as long as the players prove that they do not send the all-zero polynomial.
However, no efficient protocols for proving this are known.)

3.2 Secure Set Intersection in the Presence of Covert Adversaries

In this section we present a protocol for securely computing set-intersection
in the presence of covert adversaries. Our protocol is based on the high-level
idea demonstrated in protocol πINT (achieving one-sided simulation for malicious
adversaries). In order to motivate this protocol, we explain why πINT cannot be
simulated in the case that P1 is corrupted. The problem arises from the fact
that P1 may use different keys in the different evaluations of πPRF and in the
computation of V . In such a case, the simulator cannot construct a set of values
X that corresponds with P1’s behavior. Another problem that arises is that if P1

can choose the key k by itself, then it can make it so that for some distinct values
y and y′ it holds that FPRF(k, y) = FPRF(k, y′). This enables P2 to effectively
make its set X larger, affecting the size of the intersection. Needless to say, this
strategy cannot be carried out in the ideal model. Thus, the main objective of
the additional steps in our protocol below is to ensure that P1 uses the same
randomly chosen k in all of the πPRF evaluations as well as in the construction
V . This is achieved in the following ways. First, the parties run two series of
executions of the πPRF protocol where in one execution real values are used and
in the other dummy values are used. Party P2 then checks that P1 used the
same key in all of dummy executions. This check is carried out by having P1

and P2 generate the randomness that P1 should use in these subprotocols by
coin tossing (where P1 receives coins and P2 receives a commitment to those
coins). Then, P1 simply reveals the coins used in the dummy series and P2

can fully verify its behavior. Second, P1 and P2 first apply a pseudorandom
permutation to their inputs and then a pseudorandom function. Then, P1 sends
two sets V0 and V1, and opens one of them to P2 in order to prove that it was
constructed by applying the pseudorandom function with the same key as used in

P1(X) P2(Y)

(s0, s1) −→ Oblivious transfer ←− α
−→ sα

For β ∈ {0, 1}:
CPRPβ ={com(FPRP

sβ
(xi))}m1

i=1

CPRP0 , CPRP1 -

1n −→ Coin tossing ←− 1n

(ρ0, r0), (ρ1, r1) ←− −→ com(ρ0; r0), com(ρ1; r1)

Using coins ρ0: k0 −→ FPRF evaluations T0 =

{ {FPRP
s0 (yi)}, if α = 0

{random}, if α = 1
−→ {FPRF

k0 (t)}t∈T0

Using coins ρ1: k1 −→ FPRF evaluations T1 =

{ {random}, if α = 0
{FPRP

s1 (yi)}, if α = 1
−→ {FPRF

k1 (t)}t∈T1

fσ
i =FPRF

kσ
(FPRP

sσ
(xi))

∀ 1 ≤ i ≤ m1, σ ∈ {0, 1}
V0 = {f0

i }, V1 = {f1
i }-

¾ sα

d1 = decommit(CPRP1−α)
d2 = decommit(com(ρ1−α))

{FPRP
s1−α

(xi)}, k1−α, d1, d2- verify CPRP1−α and that
P1 used coins ρ1−α

Fig. 1. A high-level diagram of our protocol.

the dummy evaluations. The reason that the pseudorandom permutation is first
applied is to hide P1’s values from P2 when one of the sets V0, V1 is “opened”. The
difficulty in implementing this idea is to devise a way that P2 can compute the
intersection and check all of the above, without revealing more about P1’s input
than allowed. Technically, this is achieved by having V0 equal the set of values
FPRF(k0, FPRP(s0, x)) and having V1 equal the values FPRF(k1, FPRP(s1, x)). Then,
P2 learns either (k0, s1) or (k1, s0). In this way, it cannot derive any information
from the sets (it only knows one of the keys). However, it is enough to check
P1’s behavior. A high-level overview of the protocol appears in Figure 1 and the
full description (starting with the tools that we use) follows below.

Tools: Our protocol uses the following primitives and subprotocols:
– A pseudorandom permutation with sampling algorithm IPRP. We denote a

sampled key by s and the computation of the permutation with key s and
input x by FPRP(s, x).

– A pseudorandom function with sampling algorithm IPRF. We denote a sam-
pled key by k and the computation of the permutation with key k and input
x by FPRF(k, x).

– A perfectly-binding commitment scheme com; we denote by com(x; r) the
commitment to a string x using random coins r.

– An oblivious transfer protocol that is secure in the presence of covert adver-
saries with deterrent ε = 1/2 and can be run in parallel. An efficient protocol
that achieves this was presented in [2]. We denote this protocol by πOT.

– An efficient coin-tossing protocol that is secure in the presence of covert
adversaries with deterrent ε = 1/2. Such a protocol can be constructed by
using the protocol of [16], with commitments based on El-Gamal encryp-
tion [6] (this enables highly efficient zero-knowledge proofs; see the full ver-
sion). The exact functionality we need is not plain coin-tossing but rather
(1n, 1n) 7→ ((ρ, r), com(ρ; r)) where ρ ∈R {0, 1}n and r is random and of
sufficient length for committing to ρ. We denote this protocol by πCT.

– A protocol πPRF for computing FPRF as defined in Eq. (1), that is secure in
the presence of covert adversaries with ε = 1/2; see Section 2.2.

We are now ready to present our protocol.

Protocol π∩

– Inputs: The input of P1 is X where X ⊆ {0, 1}p(n) contains m1 items, and the
input of P2 is Y where Y ⊆ {0, 1}p(n) contains m2 items.

– Auxiliary inputs: Both parties have the security parameter 1n and the polyno-
mial p bounding the lengths of all elements in X and Y . In addition, P1 is given
m2 (the size of Y) and P2 is given m1 (the size of X).

– The protocol:
1. Oblivious transfer (secure in the presence of covert adversaries):

(a) Party P1 chooses a pair of keys s0, s1 ← IPRP(1p(n)) for a prp.
(b) Party P2 chooses a random bit α ∈R {0, 1}.
(c) P1 and P2 execute the oblivious transfer protocol πOT. P1 inputs the keys

s0 and s1 and plays the sender, and P2 inputs α and plays the receiver. If
one of the parties receives corrupti or aborti as output, it outputs it and
halts. Otherwise P2 receives sα.

2. P1 computes CPRP0 ={com(FPRP(s0, x))}x∈X , CPRP1 ={com(FPRP(s1, x))}x∈X

and sends CPRP0 and CPRP1 to P2.
3. The parties run the coin-tossing protocol πCT computing (1q(n), 1q(n)) →

((ρ, r), com(ρ; r)) twice, where q(n) is the number of random bits needed to
both choose a key k ← IPRF(1p(n)) and run m2 executions of the prf protocol
(see below). Party P1 receives for output (ρ0, r0) and (ρ1, r1), and P2 receives
cρ0 = com(ρ0; r0) and cρ1 = com(ρ1; r1), where ρ0, ρ1 are each of length q(n).

4. Run oblivious prf evaluations:
(a) The parties run m2 executions of the oblivious prf evaluation proto-

col πPRF in parallel, in which P1 inputs the same randomly chosen key
k0 ← IPRF(1p(n)) in each execution, and P2 enters the elements of the set
T0 = {FPRP(s0, y)}y∈Y (if α = 0), and m2 random values of size p(n) (if
α = 1). Let U0 be the set of outputs received by P2 in these executions.
The randomness used by P1 in all of the executions (and for choosing the
key k0) is the string ρ0 from the coin-tossing above.

(b) The parties run another m2 executions of πPRF in parallel, in which P1

inputs the same randomly chosen key k1 ← IPRF(1p(n)) each time, and P2

enters m2 random values of size p(n) (if α = 0), and the elements of the set
T1 = {FPRP(s1, y)}y∈Y (if α = 1). Let U1 be the set of outputs received by
P2 in these executions. The randomness used by P1 in all of the executions
(and for choosing the key k1) is the string ρ1 from the coin-tossing above.

5. P1 computes and sends P2 the sets of values V0 = {FPRF(k0, FPRP(s0, x))}x∈X

and V1 = {FPRF(k1, FPRP(s1, x))}x∈X , in randomly permuted order.
6. Run checks:

(a) If either |V0| or |V1| are smaller than m1 or not distinct, P2 outputs
corrupted1, otherwise it sends P1 the key sα.

(b) If P2 sends s such that s /∈ {s0, s1}, then P1 halts. Otherwise, P1 sets α
such that s = sα. Then, P1 sends P2 the decommitments for all values in
the set CPRP1−α , and the decommitment of cρ1−α .

(c) Let W1−α denote the opening of CPRP1−α and ρ1−α the opening of cρ1−α .
First, P2 checks that the responses of P1 to its messages in the m2 exe-
cutions of the prf evaluations in which it input random strings are ex-
actly the responses of an honest P1 using random coins ρ1−α to gener-
ate k1−α and run the subprotocols. Furthermore, P2 checks that V1−α =
{FPRF(k1−α, w)}w∈W1−α using k1−α as above. In case the above does not
hold, P2 outputs corrupted1. Otherwise, let fy be the output received by P2

from the prf evaluation in which it input FPRP(sα, y). Party P2 outputs
the set {y | fy ∈ Vα}.

We now prove the security of the protocol:

Theorem 4 Assume that πOT, πCT, πPRF are secure in the presence of covert
adversaries with deterrent ε = 1

2 , and assume that com is a perfectly-binding
commitment scheme and that FPRF and FPRP are pseudorandom function and
permutation families, respectively. Then Protocol π∩ securely computes the set-
intersection functionality F∩ in the presence of covert adversaries with ε = 1

2 .

Proof: We will separately consider the case that P1 is corrupted and the case
that P2 is corrupted. The case where both parties are honest is straightforward
and therefore omitted. We present the proof in a hybrid model in which a trusted
party is used to compute the oblivious transfer and coin-tossing computations.
We denote these functionalities by FOT and FCT. (Unfortunately, we cannot do
the same for πPRF because P1 needs to use the coins ρ0, ρ1 in the protocol.)

Party P1 is corrupted. Let A be an adversary controlling the party P1; we
construct a simulator S as follows:

1. S receives X and z, and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the

sender, and receives the input that A sends to the trusted party:
(a) If this input is abort1 or corrupted1, then S sends abort1 or corrupted1

(respectively) to the trusted party computing F∩, simulates P2 aborting
and halts (outputting whatever A outputs).

(b) If the input is cheat1, then S sends cheat1 to the trusted party. If it
receives back corrupted1, then it hands A the message corrupted1 as if
it received it from the trusted party, simulates P2 aborting and halts
(outputting whatever A outputs). If it receives back undetected (and the
input set Y of the honest P2) then S proceeds as follows. First, it hands
A the message undetected together with a random α that A expects to
receive (as P2’s input to πOT). Next, it uses the input Y of P2 that it

obtained in order to perfectly emulate P2 in the rest of the execution.
That is, it runs P2’s honest strategy with input Y while interacting with
A playing P1 for the rest of the execution. Let Z be the output for P2

that it receives. S sends Z to the trusted party (for P2’s output) and
outputs whatever A outputs. The simulation ends here in this case.

(c) If the input is a pair of keys s0, s1, S proceeds with the simulation below.3

3. S receives from A two sets of commitments CPRP0 and CPRP1 .
4. S receives from A its input for FCT. In case it equals abort1, corrupted1, or

cheat1, then S behaves exactly as above in the ot execution. Otherwise S
chooses random (ρ0, r0) and (ρ1, r1) of the appropriate length and hands
them to A.

5. S runs the simulator SPRF guaranteed to exist for the protocol πPRF (by
the assumption that it is secure) on the residual A at this point (i.e., S
defines an adversary A′ that is just A with the messages sent until now
hardwired into it). If SPRF wishes to send abort1, corrupted1 or cheat1 in any
of the executions, then S acts exactly as above. Otherwise, S proceeds. Let
t be the transcript of messages sent by A in the simulated view of πPRF as
generated by SPRF (we define the residual A so that it outputs this transcript
and so this is also what is output by SPRF).

6. S receives from A two sets of computed values V0 and V1. If they are not
of size m1 or not distinct, S sends corrupted1 to the trusted party, simulates
P2 aborting and halts (outputting whatever A outputs).

7. Otherwise, S hands A the key s0 and receives back A’s decommitments of
CPRP1 and cρ1 . S then rewinds A, hands it s1 and receives back its decom-
mitments of CPRP0 and cρ0 . Simulator S runs the same checks as an honest
P2 would run (it uses the transcript t to check that A acted honestly using
the randomness ρ0, ρ1). We have two cases:
(a) Case 1 – all of the checks carried by S in both rewindings pass: Let k0

and k1 denote the keys that an honest P1 would have used in the prf
evaluations when its coins are ρ0 and ρ1, respectively (where ρb is value
committed to in cρb

). Then, S chooses a random bit α ∈R {0, 1} and
sends the trusted party the set {F−1

PRP(sα, w)}w∈Wα .
(b) Case 2 – there exists a bit α ∈ {0, 1} so that the checks when S sent

s1−α failed: Simulator S sends cheat1 to the trusted party. If it receives
back corrupted1 then it rewinds A and sends it s1−α again. If it receives
back undetected then it rewinds A and sends it sα. Then, it runs the last
step of the protocol exactly as P2 would, using P2’s real input. S then
sends the trusted party whatever P2 would output in the ideal model.

8. S outputs whatever A outputs and halts.

Let ε = 1
2 . We prove that for every X ⊆ {0, 1}p(n) of size m1 and Y ⊆

{0, 1}p(n) of size m2, and every z ∈ {0, 1}∗
{

IDEALSC
ε
F∩,S(z),1(X, Y, n)

}
n∈N

c≡
{

HYBRID
OT,CT

π∩,A(z),1(X, Y, n)
}

n∈N

3
We assume a mapping from any string to a valid key for the pseudorandom permutation.

Recall that in the above {FOT,FCT}-hybrid model, the view of P1 includes its
output from FCT, the messages sent during the πPRF executions, and the value
sα that P2 sends after receiving V0 and V1. Thus the only difference between
the hybrid and ideal executions is within the πPRF executions. This is due to the
fact that S invokes SPRF whereas in a hybrid execution a real πPRF execution
is run between P1 and P2. Clearly, the views of A in these executions are com-
putationally indistinguishable. The more interesting challenge is thus to prove
that the joint output distributions of P2 and these views are computationally
indistinguishable.

We consider three different cases. In the first case A’s input to FOT or FCT is
either corrupted1, abort1 or cheat1. Let bad1 denote this event. In this case, the
execution is either aborted (with P2 receiving abort1 or corrupted1) or S receives
the honest P2’s full input with which to perfectly complete the simulation. Thus,

{IDEALSC
ε
F∩,S(z),1(X,Y, n) | bad1} ≡ {HYBRID

OT,CT

π,A(z),1(X, Y, n) | bad1}

In the second case, A provides valid inputs for FOT and FCT, yet there exists an
α ∈ {0, 1} value for which A does not provide a valid response in Step 6 of the
protocol; denote this event by bad2. Now, if P2 sent α to FOT then A cannot
deviate from the protocol within the πPRF executions on T1−α without definitely
getting caught by P2 (and the simulator). Thus, in both the hybrid and ideal
executions, P2 outputs corrupted1 with the same probability. Furthermore, when
it does not output corrupted1, simulator S concludes the simulation with P2’s
real input (note that although these inputs are already used earlier in πPRF, since
S knows the values k0, k1 it can conclude the simulation even when receiving
P2’s inputs later). Thus, the only difference is that in the real protocol, the πPRF

executions are run with P2’s inputs whereas in the simulation SPRF is used. By
the security of SPRF we have:

{IDEALSC
ε
F∩,S(z),1(X,Y, n) | bad2} c≡ {HYBRID

OT,CT

π,A(z),1(X, Y, n) | bad2}

The last case we need to consider is when neither bad1 nor bad2 occur; denote
this event by ¬bad. Let k0 and k1 be the keys that A used in all of the πPRF

executions, and let s0 and s1 be the values that A input to the oblivious transfer.
Then we have the following claim:

Claim 5 Let Xα = {F−1
PRP(sα, w)}w∈Wα and consider the event ¬bad where nei-

ther bad1 nor bad2 occur. Then, for every α ∈ {0, 1} and set Y ⊆ {0, 1}p(n), it
holds that z ∈ Xα∩Y if and only if FPRF(kα, FPRP(sα, z)) ∈ Vα∩Uα, except with
negligible probability.

Proof Sketch: If z ∈ Xα ∩Y , then FPRF(kα, FPRP(sα, z)) ∈ Vα ∩Uα because A
uses the same key kα for the prf evaluation that defines Uα and for computing
Vα. If this were not the case, then A would be caught cheating with probability
at least 1/2 (whereas here we are dealing with the case that A provides answers
that never result in it being caught cheating).

As for the other direction, assume that FPRF(kα, FPRP(sα, z)) ∈ Vα ∩ Uα.
Then a problem can arise if there exist y ∈ Y and x ∈ X such that x 6= y and
yet FPRF(kα, FPRP(sα, x)) = FPRF(kα, FPRP(sα, y)). If A could choose X after kα

is known, then it could indeed cause such an event to happen. However, notice
that A is committed to its inputs (in CPRP0 and CPRP1) before kα is chosen in
the coin tossing. Thus, the probability that such a “collision” occurs, where the
probability is taken over the choice of kα and the sets X and Y are already fixed,
is negligible (or else FPRF can be distinguished from random).

This implies that the output received by P2 in the hybrid and ideal executions
is the same (except with negligible probability). Combining this with the fact
that the view of A is clearly indistinguishable in both executions, we have:

{IDEALSC
ε
F∩,S(z),1(X,Y, n) | ¬bad} c≡ {HYBRID

OT,CT

π,A(z),1(X, Y, n) | ¬bad}

Combining the above three cases, and noting that the events bad1 and bad2 hap-
pen with probability that is negligibly close in the hybrid and ideal executions,
we have that the output distributions are computationally indistinguishable, as
required.

Party P2 is corrupted. Let A be an adversary controlling party P2. We con-
struct a simulator S as follows:

1. S receives Y and z, and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the

receiver. S receives the input that A sends to the trusted party. If this input
is abort2, corrupted2 or cheat2, then S works in an analogous way as when
this occurs in the simulation when P1 is corrupted.
If the input equals a bit α, then S samples a key sα ← IPRP(1p(n)) as the
honest P1 does, and hands it to A emulating FOT’s answer. S samples a
second key s1−α ← IPRP(1p(n)) as above, and keeps it for later.

3. S sends A two sets of m2 commitments CPRP0 and CPRP1 to distinct random
values of length p(n).

4. S receives from A its input for FCT. In case it equals abort2, corrupted2, or
cheat2, then S behaves exactly as above in the ot execution. Otherwise S
chooses random (ρ0, r0) and (ρ1, r1) of the appropriate length and hands
cρ0 = com(ρ0; r0) and cρ1 = com(ρ1; r1) to A.

5. S simulates the prf evaluations as follows. If α = 0 (where α is A’s input to
the oblivious transfer), then S runs the simulator SPRF on the residual A for
the first m2 executions, and follows the honest P1’s instructions using random
coins ρ1 for the second m2 executions (where the “first” and “second” set
is as in the order described in the protocol). In contrast, if α = 1, then S
follows the honest P1’s instructions using random coins ρ0 for the first m2

executions and runs the simulator SPRF on the residual A for the second m2

executions.
In the m2 executions simulated by SPRF, simulator S receives the input that
SPRF wishes to send to the trusted party as its input in the prf executions:

(a) If any of these inputs is abort2, corrupted2, or cheat2, then S behaves
exactly as above in the ot execution.

(b) Else, let T ′ denote the set of m2 elements (with length bounded by p(n))
that SPRF wishes to send as A’s inputs to πPRF. Then S hands SPRF

the set {FPRF(kα, t)}t∈T ′ as its output from the trusted party, where
kα ← IPRF(1p(n)) is a randomly generated key. In addition, S defines the
set Y ′ = {F−1

PRP(sα, t)}t∈T ′ . (If Y ′ is not exactly of size m2, then S adds
m2 − |Y ′| random elements of size p(n); recall that p(n) = ω(log n) and
so random values are in the intersection with only negligible probability.)

6. S sends the trusted party computing F∩ the set Y ′ that it recorded and
receives back for output the set Z (note Z = X ∩ Y ′). Then it chooses
m2 − |Z| distinct random elements and adds them to Z. Finally, S com-
putes and sends A the sets Vα = {FPRF(kα, FPRP(sα, z))}z∈Z and V1−α =
{FPRF(k1−α, w)}com(w)∈CPRP1−α

. We remark that the elements of Vα are ran-
domly permuted before being sent.

7. S receives from A the value sα and responds with the decommitments of
CPRP1−α and the decommitment of cρ1−α . If A did not send sα, then S halts.

8. S outputs whatever A outputs.

Let ε = 1
2 . We prove that for every X ⊆ {0, 1}p(n) of size m1 and Y ⊆

{0, 1}p(n) of size m2, and every z ∈ {0, 1}∗
{

IDEALSC
ε
F∩,S(z),2(X, Y, n)

}
n∈N

c≡
{

HYBRID
OT,CT

π∩,A(z),2(X, Y, n)
}

n∈N

Note first that the simulation differs from a real execution with respect to
how the sets CPRFα and Vα are generated, and with respect to the decommit-
ments of CPRF1−α (recall that in the real execution P1 uses its input X for these
computations whereas the simulator does not know X). Nevertheless, the views
cannot be distinguished due to the hiding property of FPRF, FPRP and com. As
in the previous analysis, we begin with the case where A sends abort2, cheat2
or corrupted2 to FOT or FCT. Due to the similarity to the case were P1 is cor-
rupted we omit the details here. Let bad denote the event where A sends abort2,
corrupted2 or cheat2. Then relying on the above discussion it holds that,

{IDEALSC
ε
F∩,S(z),2(X,Y, n) | bad} ≡ {HYBRID

OT,CT

π,A(z),2(X, Y, n) | bad}
Next we analyze the security of P1 in case A provides valid inputs to FOT and
FCT, and prove through the following series of games that the output distribu-
tions are computationally indistinguishable. For lack of space in this abstract,
we only sketch this part of the proof.
Game H1: In the first game the simulator has access to an oracle OFPRP for
computing FPRP such that instead of computing FPRP using s1−α, it queries the
oracle. Clearly the output distribution of the current and original simulation is
identical.
Game H2: In this game we replace OFPRP with an oracle OHPerm computing a
truly random permutation while the rest of the execution is as above. Indistin-
guishability holds using a standard reduction.

Game H3: The next game is identical to the previous one except that the simu-
lator knows the real input X of P1 but uses it only for the computation of V1−α

and CPRP1−α
. Since the oracle is a truly random permutation, the distribution

here is identical (note that X is a set and thus all items are distinct).
Game H4: In this game the simulator is given an oracle OFPRF for computing
FPRF (with a random key) which it uses instead of computing FPRF using kα.
The only difference is that in H3, the coins used to generate kα are committed to
in cρα whereas in H4 the oracle uses a random key that is independent of those
coins. The fact that these games are indistinguishable therefore follows from the
hiding property of the commitment scheme. Note that the executions using k1−α

remain the same.
Game H5: Next we replace OFPRF with a truly random function OHFunc ; indis-
tinguishability here follows from the pseudorandomness of FPRF.
Game H6: In this game we let the simulator query its prf oracle on the real
input set X of P1. That is, the simulator uses X for the entire computation as
the real party P1. Now, since OHFunc is a truly random function, we have the
same output distribution in both games.
Game H7: Here we modify OHPerm back into OFPRP . This replacement affects
the prp computation for the (1− α)th set of prp evaluations.
Game H8: In this game we modify OHFunc back into OFPRF .
Game H10: Finally, we let the simulator conduct the prf and prp computations
by itself. This does not affect the outputs of these functions, but as above a
reduction to the hiding property of the commitment cρα is needed because now
the coins used to generate the key kα are committed to in cρα . In addition we let
S compute CPRPα as the honest P1 would. Since S is not required to decommit
these commitments, it is again easy to reduce indistinguishability here to the
hiding property of these commitments.

We therefore conclude that H10 is computationally indistinguishable from the
(original) ideal simulation by S. However, H10 is identical to the real execution
in the hybrid model, completing the proof.

Efficiency. We analyze the complexity of protocol π∩. We first count the number
of asymmetric operations; in particular, modular exponentiations. Note that each
invocation of πPRF with inputs of length p(n) requires 4p(n)+1 exponentiations,
because every invocation of the covert oblivious transfer requires at most 4 such
computations, and πPRF runs an oblivious transfer for every bit of P2’s input
(one additional exponentiation is used for obtaining the final result). Given that
there are 2m2 executions of πPRF, we have that the number of exponentiations
is approximately 8m2 · (p(n) + 1) + m1. As we have already mentioned, p(n) is
expected to be quite small in most cases (and a collision-resistant hash function
can be used when not). We note that our protocol is completely modular meaning
that any protocol πPRF for any pseudorandom function FPRF can be used. Thus,
the development of a more efficient protocol πPRF will automatically result in our
protocol also being more efficient. In terms of round efficiency, π∩ has a constant
number of rounds due to the round efficiency of πOT in the covert model, and
the fact that all these executions are run in parallel.

4 Secure Pattern Matching

The basic problem of pattern matching is the following one: given a text T of
length N and a pattern p of length m, find all the locations in the text where
pattern p appears in the text. Stated differently, for every i = 1, . . . , N −m + 1,
let Ti be the substring of length m that begins at the ith position in T . Then,
the basic problem of pattern matching is to return the set {i | Ti = p}. This
problem has been intensively studied and can be solved optimally in time that
is linear in size of the text [3, 15].

In this section, we address the question of how to securely compute the above
basic pattern matching functionality. The functionality, denoted FPM, is defined
by

((T, m), p) 7→
{

(λ, {i | Ti = p}) if |p| ≤ m
(λ, {i | Ti = p1 . . . pm}) otherwise

where Ti is defined as above, T and p are binary strings and pi is the ith bit
in p. Note that P1 who holds the text learns nothing about the pattern held by
P2, and the only thing that P2 learns about the text held by P1 is the locations
where its pattern appears.

Although similar questions have been considered in the past (e.g., keyword
search [8]), to the best of our knowledge, this is the first work considering the
basic problem of pattern matching as described above. The main difference be-
tween keyword search and the problem that we consider here is that in keyword
search, each keyword is assumed to appear only once. However, here the text
is viewed as a stream and a pattern can appear multiple times. Furthermore,
the strings Ti, Ti+1, ... are dependent on each other (adjacent Ti’s only differ in
their first and last characters). Thus, it is not possible to apply a pseudorandom
function to each Ti and use a protocol to securely compute FPRP on p as in
the case of keyword search. Thus it seems that finding a secure solution for this
problem is harder.

We present a protocol for securely computing FPM in the presence of mali-
cious adversaries with one-sided simulatability. The basic idea behind our pro-
tocol is for P1 and P2 to run a single execution of πPRF for securely computing a
pseudorandom function with one-sided simulatability; let f = FPRF(k, p) be the
output received by P2. Then, P1 locally computes the pseudorandom function
on Ti for every i and sends the results {FPRF(k, Ti)} to P2. Party P2 can then
find all the matches by just seeing where f appears in the series sent by P1.
Unfortunately, within itself, this is insufficient because P2 can then detect repe-
titions within T . That is, if Ti = Tj then P2 will learn this because this implies
that FPRF(k, Ti) = FPRF(k, Tj). However, if Ti 6= p, this should not be revealed.
We therefore include the index i of the subtext Ti in the computation and have
P1 send the values FPRF(k, Ti‖〈i〉) where 〈i〉 denotes the binary representation
of i. This in turns generates another problem because now it is not possible for
P2 to see where p appears given only FPRF(k, p); this is solved by having P2

obtain FPRF(k, p‖〈i〉) for every i. Although this means that P2 obtains n differ-
ent outputs of FPRF (because there are n different indices i), we utilize specific

properties of the Naor-Reingold pseudorandom function, and the protocol πPRF

for computing it, in order to have P2 obtain all of these values while running
only a single execution of πPRF. Due to lack of space, we defer the description of
how this is achieved to the full version.

Protocol πPM

– Inputs: The input of P1 is a binary string T of size N , and the input of P2 is a
binary pattern p of size m.

– Auxiliary Inputs: the security parameter 1n, and the input sizes N and m.
– The protocol:

1. Party P1 chooses a key for computing the Naor-Reingold function on inputs
of length m + log N ; denote the key k = (p, q, ga0 , a1, . . . , am+log N).

2. The parties execute a modified version of πPRF for computing the Naor-Reingold
function, where P1 enters the key k and P2 enters its pattern p of length m. The
modification is such that P2’s output is the set {fi = FPRF(k, p‖〈i〉)}N−m+1

i=1 ,
rather than just a single value.

3. For every i, let ti = FPRF(k, Ti‖〈i〉). Then, P1 sends P2 the set {(i, ti)}N−m+1
i=1 .

4. P2 outputs the set of indices {i} for which fi = ti.

Theorem 6 Let FPRF denote the Naor-Reingold function and assume that it is
pseudorandom. Furthermore, assume that protocol πPRF securely computes the
functionality (k, p) 7→ (λ, {FPRF(k, p‖〈i〉)}N−m+1

i=1) in the presence of malicious
adversaries with one-sided simulatability. Then protocol πPM securely computes
FPM in the presences of malicious adversaries with one-sided simulatability.

Proof Sketch: For the case that P1 is corrupted, we need to show that P1

learns nothing about P2’s input. This follows immediately from the fact that
πPRF is secure with one-sided simulatability and P1 receives no other messages.
For the case that party P2 is corrupted we need to present a simulator. Very
briefly, the simulator S works by obtaining the pattern p that A inputs to πPRF

and generating values ti that are completely random when p 6= Ti and that equal
fi when p = Ti (S knows when p 6= Ti and when p = Ti because this is given by
the output received from the trusted party). The security is thus reduced to the
pseudorandomness of the Naor-Reingold function.

Efficiency. πPM has a constant number of rounds, and each parties carries out
approximately 2N exponentiations where N is the length of the text.

References

1. W. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Transfer: How to Sell
Digital Goods. EUROCRYPT ’01, Springer-Verlag (LNCS 2045), pages 110–
135, 2001.

2. Y. Aumann, and Y. Lindell. Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries. In TCC 2007, Springer-Verlag (LNCS 4392),
pages 137–156, 2007.

3. R.S.Boyer, and J.S. Moore. A Fast String Searching Algorithm. Comm ACM,
20:762–772, 1977.

4. D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91,
Springer-Verlag (LNCS 576), pages 377–391, 1991.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. T. El-Gamal A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In CRYPTO’84, Springer-Verlag (LNCS 196), pages 10–
18, 1984.

7. U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds.
In CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

8. M.J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword Search and
Oblivious Pseudorandom Functions. In TCC 2005, Springer-Verlag (LNCS
3378), pages 303–324, 2005.

9. M.J. Freedman, K. Nissim and B. Pinkas. Efficient Private Matching and Set
Intersection. In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 1–19,
2004.

10. O. Goldreich. Foundations of Cryptography: Volume 1 - Basic tools. Cambridge
University Press, 2001.

11. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

12. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987.

13. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–
93, 1990.

14. L. Kissner and D.X. Song. Privacy-Preserving Set Operations. In CRYPTO
2005, Springer-Verlag (LNCS 3621), pages 241–257, 2005.

15. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching in Strings.
SIAM Journal on Computing, 6:323–350, 1977.

16. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Com-
putation. Journal of Cryptology, 16(3):143–184, 2003.

17. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992.
Preliminary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–
404, 1991.

18. M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In 31st
STOC, pages 245–254, 1999.

19. M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In 12th SODA,
pages 448–457, 2001.

20. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. In 38th FOCS, pages 231–262, 1997.

21. P. Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In EUROCRYPT ’99, Springer-Verlag (LNCS 1592), pages 223–238,
1999.

22. T. P. Pedersen. Non-Interactive and Information-Theoretical Secure Verifiable
Secret Sharing. In CRYPTO 1991, Springer-Verlag (LNCS 576) pp. 129–140,
1991.

23. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,
Aiken Computation Laboratory, Harvard U., 1981.

24. A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167,
1986.

