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Abstract. We study perfect zero-knowledge proofs (PZK). Unlike statistical
zero-knowledge, where many fundamental questions have been answered, vir-
tually nothing is known about these proofs.

We consider reductions that yield hard and complete problems in the statisti-
cal setting. The issue with these reductions is that they introduce errors into the
simulation, and therefore they do not yield analogous problems in the perfect set-
ting. We overcome this issue using an error shifting technique. This technique
allows us to remove the error from the simulation. Consequently, we obtain the
first complete problem for the class of problems possessing non-interactive per-
fect zero-knowledge proofs (NIPZK), and the first hard problem for the class of
problems possessing public-coin PZK proofs.

We get the following applications. Using the error shifting technique, we show
that the notion of zero-knowledge where the simulator is allowed to fail is equiv-
alent to the one where it is not allowed to fail. Using our complete problem,
we show that under certain restrictions NIPZK is closed under the OR opera-
tor. Using our hard problem, we show how a constant-round, perfectly hiding
instance-dependent commitment may be obtained (this would collapse the round
complexity of public-coin PZK proofs to a constant).

Key words: cryptography, non-interactive, perfect zero-knowledge, perfect simula-
tion, error shifting, complete problems.

1 Introduction

Zero-knowledge protocols allow one party (the prover) to prove an assertion to another
party (the verifier), yet without revealing anything beyond the validity of the asser-
tion [18, 5]. These protocols protect the privacy of the prover, which makes them very
useful to cryptography. Zero-knowledge protocols can guarantee three levels of privacy:
perfect, statistical, and computational. This is formulated using the notion of simula-
tion. When the simulation error is zero, the protocol is perfect zero-knowledge. This



means that the verifier learns absolutely nothing from the prover. When the simulation
error is negligible, the protocol is either statistical zero-knowledge or computational
zero-knowledge. This means that the prover leaks a little amount of information to the
verifier.

In this paper we focus on perfect zero-knowledge protocols. These protocols are
interesting from a cryptographic perspective because, unlike statistical or computational
zero-knowledge protocols, they provide the highest level of privacy to the prover. Such
protocols exist for a variety of well known languages, such as GRAPH-ISOMORPHISM,
DISCRETE-LOG, variants of QUADRATIC-RESIDUOUSITY, and more ([31, 13, 6, 26,
21]). The fact that the complexity of these languages is an open question also makes
perfect zero-knowledge protocols interesting from a complexity theoretic perspective.

Unfortunately, working with perfect zero-knowledge protocols is difficult. This is
so because they do not allow any error in the simulation. In contrast, statistical zero-
knowledge protocols allow a small error in the simulation. This means that in the statis-
tical setting we can use a variety of techniques, even if they introduce a small error into
the simulation. Indeed, such techniques were used to prove many fundamental results
about statistical zero-knowledge proofs (SZK). These results include complete prob-
lems, equivalence between private-coin and public-coin, equivalence between honest
and malicious verifier, and much more ([24, 26, 14, 16, 32, 23]). These results do not
apply to the perfect setting because they use techniques that introduce error into the
simulation, and such techniques cannot be used in the perfect setting. Consequently,
virtually nothing is known about perfect zero-knowledge proofs (PZK).

1.1 Our results

In this paper we consider reductions that yield hard and complete problems in the sta-
tistical setting. The issue with these reductions is that they introduce errors into the
simulation, and therefore they do not yield analogous problems in the perfect setting.

Our goal is to overcome this issue. This is important because if we understand
why techniques from the statistical setting introduce error into the simulation, then we
might be able to fix these techniques, and then apply them to the perfect setting. This
will enable us to translate the results from statistical zero-knowledge to perfect zero-
knowledge. In addition, results from the statistical setting are proved using the tool of
complete and hard problems. Thus, to be able to prove these results in the perfect setting
it is important that we obtain complete and hard problems for the perfect setting.

We remark that we are not the first to observe the fact that reductions from the
statistical setting do not apply to the perfect setting. Specifically, in the case of hard
problems, [26] showed that the reduction could eliminate the error using approximation
techniques. However, this solution does not yield a hard problem in the perfect setting
because it only applies in certain cases (for example, when the underlying problem has
perfect completeness).

In this paper we modify the reductions from the statistical setting so that they yield
hard and complete problems in the perfect setting. To do this we use what we call the
error shifting technique. What is new about this technique is that instead of dealing



with the error in the reduction itself, we shift it forward to the protocol. Intuitively, our
reduction isolates the error that the underlying problem incurs, and shifts it forward to
the protocol, where it is no longer a simulation error. Consequently, we obtain complete
and hard problems for the perfect setting. We remark that the error shifting technique
is also useful in other contexts (e.g., in Section 4 we use it to show that the notion of
zero-knowledge where the simulator is allowed to fail is equivalent to the one where it
is not allowed to fail).

The error shifting technique applies to reductions in both the interactive and the
non-interactive models. In the non-interactive model we apply it to the reduction of [30,
15], thus obtaining the first complete problem for the class of problems possessing non-
interactive perfect zero-knowledge proofs (NIPZK).

Theorem 1. The problem UNIFORM (UN) is complete for NIPZK.

Informally, instances of UNIFORM are circuits that have an additional output bit.
Ignoring this bit, we can think of YES instances of UN as circuits that represent the
uniform distribution, whereas NO instance are circuits that hit only a small fraction of
their range. This problem is identical to the NISZK-complete problem STATISTICAL
DISTANCE FROM UNIFORM (SDU) [15], except that YES instances of UNIFORM rep-
resent the uniform distribution, whereas YES instances of SDU represent a distribution
that is only “close” to uniform. This difference is natural because it reflects the differ-
ence between perfect and statistical simulation.

In the interactive model we obtain a similar result. That is, we apply the error shift-
ing technique to the reduction of [26], thus obtaining a hard problem for the class of
problems possessing public-coin HVPZK proofs. Instances of our hard problem are
triplets of circuits. Again, ignoring one of these circuits, our problem is a variant of
STATISTICAL-DISTANCE (SD) [26]. That is, we can think of YES instances of our
problem as pairs of circuits representing the same distribution, whereas instances of the
reduction of [26] are circuits representing “close” distributions.

Theorem 2 (informal). Essentially, SD1/2,0 is hard for public-coin-HVPZK.

To demonstrate the usefulness of our NIPZK-complete problem we prove that un-
der certain restrictions NIPZK is closed under the OR operator. What is special about
this result is that even in statistical setting, where we have more techniques to work
with, it is not clear how to prove (or disprove) it.1 Also, we show how our hard prob-
lem may lead to a constant-round, perfectly hiding instance-dependent commitment-
scheme. Notice that except for [21], who used the techniques of [8] to construct such
a scheme for V -bit protocols, all the known instance-dependent commitment-schemes
are only statistically hiding [33, 23, 22]. Thus, using our hard problem it might be pos-
sible to collapse the round complexity of public-coin PZK proofs to a constant. These
applications can be found in Section 4.

1 [30] claimed that NISZK is closed under the OR operator, but this claim has been retracted.



1.2 Related Work

As we mentioned, virtually nothing is known about perfect zero-knowledge proofs. The
only exception is the result of [9], who showed a transformation from constant-round,
public-coin HVPZK proofs to ones that are PZK. Also, a HVPZK-complete problem
was given by [26], but it is unnatural, and defined in terms of the class itself. We remark
that perfect zero-knowledge arguments for NP languages have been constructed under
various unproven assumptions (e.g., [19, 7]), but we are interested in the unconditional
study of perfect zero-knowledge proofs.

Variants of QUADRATIC-RESIDUOUSITY and QUADRATIC-NONRESIDUOUSITY
were shown to to be in NIPZK by [6, 27]. Bellare and Rogaway [3] showed that
a variant of GRAPH-ISOMORPHISM is in NIPZK. They also showed basic results
about NIPZK, but their notion of zero-knowledge allows simulation in expected (as
opposed to strict) polynomial-time. This notion is disadvantageous, especially when
non-interactive protocols are executed as sub-protocols. Other aspects of NIPZK were
studied in [27–29], but they apply to problems with special properties.

1.3 Organization

We use standard definitions, to be found in Appendix A. In Section 2 we present the
error shifting technique, and use it to obtain a NIPZK-complete problem. In Section 3
we apply this technique to the interactive setting, where we obtain a hard problem. In
Section 4 we show some applications of these results.

2 A complete problem for NIPZK

In this section we introduce the error shifting technique. Using this technique we mod-
ify the reduction of [15], hence obtaining a NIPZK-complete problem.

Starting with some background, we give the definition of STATISTICAL DISTANCE
FROM UNIFORM (SDU), the NISZK-complete problem of [15]. Instances of this prob-
lem are circuits. These circuits are treated as distributions, under the convention that
the input to the circuit is uniformly distributed. Specifically, YES instances are circuits
representing a distribution that is close to uniform, and NO instances are circuits repre-
senting a distribution that is far from uniform.

Definition 2.1. Define SDU def= 〈SDUY , SDUN 〉 as

SDUY = {X|∆(X,Un) < 1/n} , and
SDUN = {X|∆(X,Un) > 1− 1/n} ,

where X is a circuit with n output bits, and Un is the uniform distribution on {0, 1}n.

We informally describe the reduction of [15] to SDU. This reduction originated
from the work of [30]. Given a NISZK problem Π, this reduction maps instances x of Π
to circuits X of SDU. The circuit uses the simulator S from the proof of Π. Specifically,
X executes S(x), and obtains a transcript. This transcript contains a simulated message



of the prover, and a simulated reference string. If the verifier accepts in this transcript,
then X outputs the simulated reference string. Otherwise, X outputs the all-zero string.
Intuitively, this reduction works because if x is a YES instance, then the simulated
reference string is almost uniformly distributed, and thus X is a YES instance of SDU.
Conversely, if x is a NO instance, then the verifier rejects on most reference strings, and
thus X is a NO instance of SDU.

The issue with the reduction of [15]. When we apply the above reduction to NIPZK
problems, it is natural that we should get a NIPZK-complete problem whose instances
are circuits that represents the uniform distribution. This is so because the circuit X
outputs the simulated reference string, and when the simulation is perfect, this string is
uniformly distributed. Indeed, if we apply the above reduction to NIPZK problems that
have perfect completeness, then the verifier will accept, and thus we will get a circuit X
that represents the uniform distribution. However, if the underlying problem does not
have perfect completeness, then the distribution represented by X will be skewed. This
will cause problems later, when we try to construct a proof system and a simulator for
our complete problem. Hence, this reduction does not apply to NIPZK.

To overcome the above issue, instead of working only with the reduction to SDU,
our idea is to modify both the reduction and the proof system for SDU at the same time.

The Error Shifting Technique. In its most general form, the error shifting technique
shifts into the protocol errors that would otherwise become simulation errors. This de-
scription is a very loose, but we chose it because our technique can be applied in various
different contexts, and in each of these contexts it takes a different form. However, the
following application will clarify our technique.

I The first step of the error shifting technique is to identify where the simulation
error comes from, and then isolate it. In our case, the error comes from the reduction: if
the verifier rejects, then the circuit X does not represent the uniform distribution. Thus,
the error comes from the completeness error of the underlying problem. To separate
this error, we add an extra output bit to the circuit X . That is, X executes the simulator,
and it outputs the simulated reference string followed by an extra bit. This bit takes the
value 1 if the verifier accepts, and 0 if the verifier rejects.

I The second step of the error shifting technique is to shift the error forward, to
the completeness or the soundness error of the protocol. In our case, from the circuit X
to the protocol of our complete problem. This step is not trivial because we cannot just
use the protocol of [15] for SDU. Specifically, in this protocol the prover sends a string
r, and the verifier accepts if X(r) equals the reference string. If we use this idea in
our case, then we will get a simulation error. Thus, we modify this protocol by starting
with the simulator, and constructing the prover based on the simulator. Informally, the
simulator samples the circuit X , and the verifier accepts if the extra bit in this sample is
1. The prover simply mimics the simulator. This shows that the error was shifted from
X to the completeness error (of a new protocol).

The above reduction yields our NIPZK-complete problem UNIFORM. A formal
description of the above reduction and our proof system is given in the next section.



2.1 A complete problem for NIPZK

In this section we formalize the intuition given in the previous section, thus proving our
first result.

Theorem 2.1. UNIFORM is NIPZK-complete.

We start with the definition of UNIFORM (UN). Recall that when we applied the er-
ror shifting technique we got circuits X with an extra output bit. We use the convention
that n + 1 denotes the number of output bits of X . We need the following notation.

– TX is the set of outputs of X that end with a 1. Formally, TX
def= {x|∃r X(r) = x,

and the suffix of x is 1}. As we shall see, the soundness and completeness properties
will imply that the size of TX is large for YES instances of UN, and small for NO
instances of UN.

– X ′ is the distribution on the first n bits that X outputs. That is, X ′ is obtained from
X by taking a random sample of X , and then outputting the first n bits. As we shall
see, the zero-knowledge property will imply that if X is a YES instance of UN,
then X ′ is the uniform distribution on {0, 1}n.

Now, letting X be a circuit with n + 1 output bit, we say that X is β-negative if
|TX | ≤ β · 2n. That is, TX is small, and contains at most β · 2n strings. We say that
X is α-positive if X ′ is the uniform distribution on {0, 1}n and Prx←X [x ∈ TX ] ≥ α.
This implies that TX is large, and contains at least α · 2n strings.

Definition 2.2. The problem UNIFORM is defined as UN def= 〈UNY, UNN〉, where

UNY = {X|X is 2/3− positive} , and

UNN = {X|X is 1/3− negative} .

To prove that UN is NIPZK-complete we first show that the reduction from the
previous section reduces every NIPZK problem to UN.

Lemma 2.1. UN is NIPZK-hard.

Proof. Let Π = 〈ΠY, ΠN〉 be a NIPZK problem. Fix a non-interactive protocol 〈P, V 〉
for Π with completeness and soundness errors 1/3. Let rI denote the common reference
string in 〈P, V 〉, and fix i such that |rI | = |x|i for any x ∈ ΠY ∪ΠN. Fix a simulator S
for 〈P, V 〉. Since S is efficient, we can fix an efficient transformation t and an integer
` such that on input x ∈ ΠY ∪ ΠN the output of t(x) is a circuit S′ that executes S on
inputs x and randomness rS of length |x|`. That is, t(x) = S′, and on input a string rS

of length |x|` the output of S′(rS) is the output of S(x; rS).
We show that Π Karp reduces to UN. That is, we define a polynomial-time Turing

machine that on input x ∈ ΠY ∪ ΠN outputs a circuit X such that if x ∈ ΠY, then
X ∈ UNY, and if x ∈ ΠN, then X ∈ UNN. The circuit X : {0, 1}|x|` → {0, 1}|x|i+1

carries out the following computation.

– Let rS be the |x|`-bit input to X , and let S′ = t(x). Execute S′(rS), and obtain
S(x; rS) = 〈x, r′I , m

′〉.



– If V (x, r′I ,m
′) = accept, then output the string r′I1 (i.e., the concatenation of r′I

and 1). Otherwise, output r′I0.

Now we analyze our reduction. Let x ∈ ΠY, and let X be the output of the above
reduction on x. We show that X is 2/3-positive. Consider the distribution on the output
〈x, r′I ,m

′〉 of S(x). Since S(x) and 〈P, V 〉(x) are identically distributed, r′I is uni-
formly distributed. Thus, X ′ (i.e., the distribution on the first |x|i output bits of X) is
uniformly distributed. It remains to show that Pr[X ∈ TX ] ≥ 2/3. This immediately
follows from the perfect zero-knowledge and completeness properties of 〈P, V 〉. That
is, the output of S is identically distributed to 〈P, V 〉(x), and V accepts in 〈P, V 〉 with
probability at least 2/3.

Let x ∈ ΠN, and let X be the output of the above reduction on x. We show that X
is 1/3-negative. Assume towards contradiction that X is β-negative for some β > 1/3.
We define a prover P ∗ that behaves as follows on CRS rI . If rI1 ∈ TX , then there is an
input rS to X such that X(rS) = rI1. By the construction of X , there is randomness rS

for the simulator such that S(x; rS) = 〈x, rI ,m
′〉, and V (x, rI , m

′) = 1. In this case
P ∗ sends rS to V . If rI1 /∈ TX , then P ∗ fails. Notice that P ∗ makes V accept on any rI

such that rI1 ∈ TX . Since |TX | > 2|x|
i

/3, and since rI is uniformly chosen in 〈P ∗, V 〉,
the probability that rI1 ∈ TX is strictly greater than 1/3. Thus, V accepts in 〈P ∗, V 〉(x)
with probability strictly greater than 1/3, and contradiction to the soundness error of
〈P, V 〉. Hence, X is 1/3-negative.

To prove Theorem 2.1 it remains to give a NIPZK proof for UN.

Lemma 2.2. UN has a NIPZK proof with a deterministic verifier.

Proof. We start with our non-interactive proof for UN. This proof is based on our sim-
ulator, which we describe later. On input X : {0, 1}` → {0, 1}n+1 and common ref-
erence string rI ∈ {0, 1}n the prover P picks z according to the distribution X such
that the n-bit prefix of z equals rI . Such a z exists because X ′ (i.e., the distribution on
the first n bits of X) is the uniform distribution when X ∈ UNY. The prover uniformly
picks r ∈ X−1(z), and sends r to the verifier V . The deterministic verifier accepts if
X(r) = rI1, and rejects otherwise. Our prover is based on the following simulator. Let
S be a probabilistic, polynomial-time Turing machine that on input X uniformly picks
r′ ∈ {0, 1}`, and computes z′ = X(r′). The simulator assigns the n bit prefix of z′ to
r′I (i.e., the simulated reference string), and outputs 〈X, r′I , r

′〉.
Let X ∈ ΠY. We show that S perfectly simulates 〈P, V 〉. Consider the distribution

S(X) on simulated transcripts 〈X, r′I , r
′〉, and the distribution 〈P, V 〉(X) on the view

〈X, rI , r〉 of V . Since X ′ is uniformly distributed over {0, 1}n, the string r′I obtained by
the simulator is uniformly distributed over {0, 1}n. Since rI is uniformly distributed,
r′I and rI are identically distributed. It remains to show that r and r′ are identically
distributed conditioned on rI = r′I . For each y ∈ {0, 1}n, we define By to be the set
of all strings r̂ for which the prefix of X(r̂) is y. Now, for any simulated reference
string r′I , the randomness r′ chosen by the simulator is uniformly distributed in Br′I .
Similarly, for any reference string rI the message of the prover is a string r chosen
uniformly from BrI . Hence, conditioned on rI = r′I , the strings r and r′ are identically



distributed. We conclude that S(X) and 〈P, V 〉(X) are identically distributed for any
X ∈ ΠY.

Turning our attention to the completeness property, we show that V accepts X
with probability at least 2/3. By the zero-knowledge property, the output 〈X, r′I , r

′〉
of S(X) is identically distributed to the view 〈X, rI , r〉 of V on X . Thus, it is enough
to show that when choosing a transcript 〈X, r′I , r

′〉 according to S(x) the probability
that V (X, r′I , r

′) = 1 is at least 2/3. Since S uniformly chooses r′, and since X is
2/3-positive, the probability that X(r) ∈ TX is at least 2/3. Thus, the probability that
the suffix of X(r) is 1 is at least 2/3. Hence, V accepts X with probability at least 2/3.

The soundness property follows easily. Let X ∈ UNN. Since X is 1/3-negative,
|TX | ≤ 1/3 · 2n. Since rI is uniformly distributed, the probability that rI1 ∈ TX is at
most 1/3. Hence, if X ∈ UNN, then V accepts X with probability at most 1/3.

3 A hard problem for public-coin PZK proofs

In this section we use the error shifting technique to modify the reduction of [26] for
public-coin HVSZK proofs. Hence, we obtain a hard problem for the class of problems
possessing public-coin HVPZK proofs (AM ∩HVPZK). We start with motivation.

The reduction of [26] originated from the works of [11, 1]. Informally, given a prob-
lem Π that has a public-coin HVSZK proof, this reduction maps instances x of Π to
pairs of circuits 〈X0, X1〉. The circuits X0 and X1 are statistically close when x is a
YES instance of Π, and statistically far when x is a NO instance of Π.

The issue with this reduction is that it does not apply to the perfect setting. Specif-
ically, when we apply it to YES instances of a problem that has a public-coin HVPZK
proof, we get a pair of circuits 〈X0, X1〉 that are only statistically close, but not iden-
tically distributed. This is unnatural because the closeness between X0 and X1 reflects
the closeness of the simulation. Thus, in the perfect setting we expect X0 and X1 to be
identically distributed, as in the complement of SD1/2,0.

Definition 3.1. The problem SD1/2,0 [26] is the pair 〈SD1/2,0
Y, SD1/2,0

N〉, where

SD1/2,0
Y = {〈X0, X1〉|∆(X0,X1) = 0} , and

SD1/2,0
N = {〈X0, X1〉|∆(X0, X1) ≥ 1/2} .

Sahai and Vadhan [26] were aware of this issue, and they addressed it by directly
calculating the errors of the underlying problem. However, their technique applies only
in certain cases (for example, when the underlying problem has a proof with perfect
completeness). In the next section we will show how to overcome this issue by using
the error shifting technique. Essentially, we obtain a hard problem where YES instances
are pairs of circuits representing identical distributions, and NO instances are circuits
representing statistically far distributions. Formally, our hard problem is as follows.

Definition 3.2. The problem IDENTICAL DISTRIBUTIONS is ID def= 〈IDY, IDN〉, where

IDY = {〈X0, X1, Z〉|∆(X0, X1) = 0 and Pr[Z = 1] ≥ 2/3} , and

IDN = {〈X0, X1, Z〉|∆(X0,X1) ≥ 1/2 or Pr[Z = 1] ≤ 1/3} .



3.1 Modifying the reductions for public-coin HVSZK proofs

In this section we show that ID is hard for AM ∩HVPZK, and then we conclude that,
essentially, SD1/2,0 is also hard for AM ∩ HVPZK. Starting with some background,
we describe the reduction of [26].

Notation. Let 〈P, V 〉 be a public-coin HVPZK proof for a problem Π with a simulator
S. Given a string x we use v

def= v(|x|) to denote the number of rounds in the interaction
between P and V on input x. That is, in round i the prover P sends mi and V replies
with a random string ri, until P sends its last message mv , and V accepts or rejects.
We denote the output of S(x) by 〈x,m1, r1, . . . ,mv〉.

The reduction of [26] maps instances x of Π to pairs of circuits 〈X ′
0, X

′
1〉. These

circuits are constructed from the circuits Xi and Yi, defined as follows. The circuit
Xi chooses randomness, executes S(x) using this randomness, and outputs the sim-
ulated transcript, truncated at the i-th round. That is, Xi obtains 〈x,m1, r1, . . . ,mv〉,
and outputs 〈m1, r1, . . . , mi, ri〉. The circuit Yi is defined exactly the same, except that
it replaces ri with a truly random string r′i.

– Xi(r): execute S(x; r) to obtain 〈x, m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . ,mi, ri〉.
– Yi(r, r′i): execute S(x; r) to obtain 〈x, m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . ,mi, r

′
i〉.

Notice that Xi and Yi represent the same distribution when x is a YES instance.
This is so because S(x) perfectly simulates the view of the verifier, and therefore ri is
uniformly distributed, just like r′i. We define X = X1 ⊗ · · · ⊗Xv . That is, X executes
all the circuits Xi and outputs the concatenation of their outputs. Similarly, we define
Y = Y1 ⊗ · · · ⊗ Yv . Again, X and Y are identically distributed when x is a YES
instance. Now, the pair 〈X ′

0, X
′
1〉 is defined from 〈X,Y 〉 as follows. The circuit X ′

1

outputs 1 followed by the output of Y . The circuit X ′
0 outputs the output of Z followed

by the output of X , where Z is the circuit that outputs 1 if with high probability S(x)
outputs accepting transcripts, and 0 otherwise.

The issue with the reduction of [26]. The above reduction does not apply to the perfect
setting (except for the case where 〈P, V 〉 have perfect completeness). This is so because
there is a non-zero probability that Z will output 0, in which case X ′

0 and X ′
1 will

not represent the same distribution. To overcome this issue we use the error shifting
technique in two steps, just like we did in the previous section. Our goal is to show that,
essentially, SD1/2,0 is hard for AM ∩HVPZK

Our first step is to separate the error that the circuit Z incurs. Thus, instead of
including Z in the circuits X ′

0 and X ′
1, our reduction simply maps an instance x of Π

to the triplet 〈X,Y, Z〉. By the analysis from [26], if x is a YES instance, then X and Y
are identically distributed, and Z outputs 1 with high probability. Such a triplet is a YES
instance of or hard problem. Similarly, if x is a NO instance, then either X and Y are
statistically far, or Z outputs 0 with a high probability. Such a triplet is a NO instance of
our hard problem. The following lemma shows that IDENTICAL DISTRIBUTIONS (ID)
is hard for AM ∩HVPZK.



Lemma 3.1 (Implicit in [26]). For any problem Π = 〈ΠY, ΠN〉 possessing a public-
coin HVPZK proof there is a Karp reduction mapping strings x to circuits 〈X, Y, Z〉
with the following properties.

– If x ∈ ΠY , then ∆(X,Y) = 0 and Pr[Z = 1] ≥ 2/3.
– If x ∈ ΠN , then ∆(X,Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3.

Indeed, instances of ID are triplets of circuits 〈X, Y, Z〉, as opposed to pairs 〈X,Y 〉.
Thus, we are not done yet. We need to show that ID and SD1/2,0 are essentially the
same. Hence, we continue to our second step.

Recall that the second step of the error shifting technique is to shift the error for-
ward to the protocol. However, SD1/2,0 is not known to have a PZK proof. Thus, our
second step is to modify any PZK protocol 〈P, V 〉 for this problem into a PZK protocol

〈P, V ′〉 for ID. That is, we take an arbitrary protocol 〈P, V 〉 for SD1/2,0, and then we
show that even if the input to this protocol is an instance 〈X, Y, Z〉 of ID (instead of
a pair 〈X, Y 〉), then the behavior of P and the modified verifier V ′ on input 〈X, Y, Z〉
is identical to the behavior of 〈P, V 〉 on input 〈X,Y 〉. This will show that the two
problems are essentially the same, and therefore we will be done.

Our modification is as follows. On input 〈X, Y, Z〉 the first step of the modified
verifier V ′ is to estimate the value of Pr[Z = 1], and reject if this value is at most 1/3.
If V ′ did not reject, then P and V ′ execute 〈P, V 〉 on input 〈X, Y 〉. This modification
is a part of the error shifting technique because we shift the error from the circuit Z into
an arbitrary protocol 〈P, V 〉 for SD1/2,0.

We analyze the modified protocol 〈P, V ′〉 for our hard problem. We observe that
V ′ is very unlikely to reject if Pr[Z = 1] ≥ 2/3. We also observe that if the protocol
continues, then either 〈X, Y, Z〉 is a YES instance of our hard problem and ∆(X,Y) =
0, or 〈X,Y, Z〉 is a NO instance of our hard problem and ∆(X,Y) ≥ 1/2. Thus, in
this case the behavior of P and V ′ on instances of our hard problem is identical to the
behavior of P and V on instances of SD1/2,0.

Our modification shows that although we did not prove that SD1/2,0 is hard for
AM ∩HVPZK, it can be treated as such (because any protocol that we design for this
problem can be immediately modified to a protocol with the same properties for ID).

4 Applications

We show an application of the error shifting technique. We also show how our complete
and hard problems can facilitate the study of zero-knowledge in the perfect setting.

4.1 Obtaining simulators that do not fail

We use the error shifting technique to show that the notion of zero-knowledge where the
simulator is allowed to fail is equivalent to the one where it is not allowed to fail. This
holds in both the interactive and the non-interactive models, and regardless of whether
the simulator runs in strict or expected polynomial-time.



Starting with background, we recall that the notion of perfect zero-knowledge re-
quires that the view of the verifier be identically distributed to the output of the simula-
tor [18]. Later, this notion was relaxed by allowing the simulator to output fail with
probability at most 1/2, and requiring that, conditioned on the output of the simulator
not being fail, it be identically distributed to the view of the verifier [9].

A known trick to remove the fail output is to execute the simulator for |x| times
(where x is the input to the simulator), and output the first transcript, or fail if the
simulator failed in all |x| executions [12]. This works for statistical and computational
zero-knowledge, but not for perfect zero-knowledge. Notice that in all of these cases
we actually introduce an extra error into the simulation, and we do not understand why.
Furthermore, despite the fact that important problems have PZK proofs (e.g., GRAPH-
ISOMORPHISM, QUADRATIC-RESIDUOUSITY [18, 13, 31]), all of these proofs have a
simulator that outputs fail with probability 1/2. Now we fix this issue.

The transformation. Let 〈P, V 〉 be a PZK proof for a problem Π, and let S be a
simulator for 〈P, V 〉. Notice that S may fail with some probability. We use the error
shifting technique to obtain a simulator S′ that does not fail.

Recall that the error shifting technique is applied in two steps: we need to find where
the error is coming from, and then we shift it forward. For the first step, we observe that
when S outputs fail, the verifier V actually learns that S failed. This is something that
V does not learn from the prover P (because transcripts between P and V are never of
the form fail). Thus, the error comes from the fact that P is not teaching V that S(x)
may output fail with some probability. We are done with the first step. In the second
step we shift this error forward by letting P teach V that S(x) may output fail. That
is, on input x, the new prover P ′ executes S(x) for |x| times, and if S(x) = fail in
all of these executions, then P ′ outputs fail. Otherwise, P ′ behaves like P . In other
words, we shifted the error from the simulation to the protocol.

The new simulator S′ simply executes S, and if all executions failed, then it behaves
just like P ′. Namely, it outputs the transcript 〈x,fail; rV 〉, where rV is the random-
ness of V . Otherwise, S′ outputs a simulated transcript of S. Notice that we increased
the completeness error by 1/2n, but by executing S(x) polynomially many times, the
probability that P ′ will fail can be made extremely small. We conclude that 〈P ′, V 〉 is
a PZK proof for Π with a simulator S′ that never fails.

4.2 Under certain restrictions NIPZK is closed under the OR operator

We use our NIPZK-complete problem to show that under certain restrictions NIPZK
is closed under the OR operator. We remark that these restrictions are severe, but our
goal is to show the usefulness of our complete problem, rather than proving a closure
result (in fact, even with these restrictions it is hard to see how to prove this result).

Motivation. We want to construct a NIPZK proof where the prover and the verifier are
given two instances x and y of some problem Π ∈ NIPZK, and the verifier accepts
only if either x or y are YES instances of Π. Since we now have a NIPZK-complete
problem, we can construct a protocol where the prover and the verifier reduce x and y
to circuits X and Y , respectively, and then work with these circuits.



A natural approach to design our protocol is to ask what is the difference between
YES and NO instances of UN, and then, based on this difference, to design a protocol
and a simulator. As we saw, instances of UN differ in their number of output strings
that end with a 1. That is, |TX | + |TY | is large if either X or Y is a YES instance, and
small if both X and Y are NO instances. Thus, it seems that we should use lower bound
protocols [17]. However, we avoid using these protocols because they incur error into
the simulation, and we do not know how to remedy this problem.

Thus, we take a different approach. Instead of focusing on the difference between
YES and NO instances, we focus on the simulation. That is, instead of starting with the
protocol, taking care of completeness and soundness, we start with the simulator, taking
care of perfect zero-knowledge. Indeed, this approach is implicit in Section 2, where we
first modified the simulator, and then modified the prover to mimic the simulator. This
approach has the advantage that we retain perfect simulation, but on the other hand we
are forced to make restrictions in order to guarantee completeness and soundness.

The protocol. Recall that the prover and the verifier are given instances X and Y of
UN, and the verifier should accept if X ∈ UNY or Y ∈ UNY. As usual, we use n+1 to
denote the number of output bits of X and Y . Since the main obstacle is how to achieve
perfect simulation, we start with the zero-knowledge property. That is, we start with the
simulator, and then we design the protocol based on the simulator.

Consider a simulator that uniformly picks rX and rY , and computes z = X(rX)⊕
Y (rY ). The simulator may not know which of X or Y is a YES instance of UN. How-
ever, the n-bit prefix of z is uniformly distributed because either X ′ or Y ′ represent
the uniform distribution. This observation allows us to use the n-bit prefix of z as the
simulated reference string.

Our simulator informs the following protocol: on reference string rI the prover
sends rX and rY to the verifier such that the n-bit prefix X(rX) ⊕ Y (rY ) equals rI .
The issue with this protocol is that we need to make two restrictions in order to prove
completeness and soundness.

Achieving completeness. Suppose that the verifier accepts only if the last bit of both
X(rX) and Y (rY ) is 1. This works when both circuits X and Y are YES instances of
UN. However, if one of the circuits is a NO instance of UN, then it is possible that all
the strings outputted by this circuit end with a 0 (e.g, for any rX the suffix of X(rX) is
0), and this will make V reject.

Since we do not know how to overcome this issue without introducing error into the
simulation, we add the restriction that instances of PUY be 1-positive. That is, for any
circuit Z ∈ PUY, all the strings that Z outputs have 1 as the rightmost bit. Intuitively,
this restriction helps the simulator in identifying NO instances. For example, if a sample
of X ends with a 0, then X must be a NO instance. However, notice that X could be a
NO instance and still have outputs that end with a 1. Thus, this help is limited.

We redefine the simulator based on the above restriction. As before, the simulator
uniformly picks rX and rY , computes z = X(rX) ⊕ Y (rY ), and if both X(rX) and
Y (rY ) end with a 1, then the simulator uses the n-bit prefix of z to simulate the ref-
erence string. Otherwise, one of the samples ends with a 0. For example, suppose that
X(rX) ends with a 0. This implies that Y is a YES instance. Hence, the simulator uses



the n bit prefix of Y (rx) to simulate the reference string. Similarly, we redefine the
verifier. That is, when the verifier receives 〈rX , rY 〉 from the prover, it only checks that
the n-bit prefix of Y (rY ) equals to the reference string, and that Y (rY ) ends with a 1.

Achieving soundness. Notice that even when both X and Y are NO instances, there
could be many combinations for X(rX) ⊕ X(rY ). That is, for most reference strings
rI a cheating prover may find rX and rY such that the n bit prefix of X(rX)⊕ Y (rY )
equals rI , and both X(rX) and Y (rY ) end with a 1. This compromises the soundness
property. Since we do not know how to overcome this issue without introducing error
into the simulation, we restrict the number of such pairs.

Discussion. We used our NIPZK-complete problem to show that under certain re-
strictions NIPZK is closed under the OR operator (See Appendix B for the proof).
Indeed, we added severe restrictions to retain perfect simulation, but without our com-
plete problem it is not clear how to prove this result (even with these restrictions). Thus,
we interpret these restrictions as evidence that in the perfect setting there are few tech-
niques to work with. Recall that even in the statistical setting, where we have more
techniques to work with, such closure result is not known.

4.3 Applications of the AM ∩ HVPZK-hard problem

In this paper we showed that IDENTICAL DISTRIBUTIONS (ID) is hard for the class
of problems admitting public-coin HVPZK proofs, and that we can treat it as SD1/2,0.
Unfortunately, our result is restricted to public-coin. In contrast, the reduction of [26]
for HVSZK (which follows from the works of [11, 1, 25]) is not restricted to public-
coin, but it manipulates distributions in a way that skews the distributions, and we do
not know how to apply it to HVPZK.

However, what is special about ID, and what makes it different from SD, is that
its YES instances are pairs of circuits 〈X0, X1〉 representing identical (as opposed to
statistically close) distributions. Thus, they can be used to obtain perfectly (as opposed
to statistically) hiding instant-dependent commitment-schemes. Using the observation
of [20], such schemes could then be plugged into the protocols for NP [4, 13], thus
yielding a HVPZK proof for ID. We mention that, except for [21], who used the tech-
niques of [8] to construct a perfectly hiding scheme for V -bit protocols, all the known
instance-dependent commitment-schemes are only statistically hiding [33, 23, 22].

Notice that if we can use instances 〈X0, X1〉 of ID to construct a constant-round,
perfectly hiding, instance-dependent commitment-scheme, then we would collapse the
round complexity of public-coin HVPZK proofs. One idea for a commitment is to take
a sample of Xb. That is, given common input 〈X0, X1〉, a commitment to a bit b is
computed by uniformly choosing r and outputting Xb(r). Thus, on YES instances the
scheme is perfectly hiding. However, the scheme may not be binding on NO instances
because there could be r and r′ for which X0(r) = X1(r′). Thus, other techniques are
needed to make sure that the binding property is achieved.



5 Conclusion

We explained why reductions that apply to the statistical setting do not apply to the
perfect setting. Using the error shifting technique we modified these reductions. Thus,
we obtained complete and hard problems, and interesting applications. We believe that
insight provided here will be useful in the study of perfect zero-knowledge proofs.
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A Preliminaries

We use standard definitions [12]. We study promise-problems [10], which are a gener-
alization of languages. Formally, Π def= 〈ΠY, ΠN〉 is a problem if ΠY ∩ ΠN = ∅. The
set ΠY contains the YES instances of Π, and the set ΠN contains the NO instances of Π.
We define Π def= 〈ΠN,ΠY〉.



Let X : {0, 1}m → {0, 1}n be a circuit. We treat X both as a circuit and as a
distribution (under the convention that the input to the circuit is uniformly distributed).
For example, given a set T , the probability Prx←X [x ∈ T ] equals Prr←Um

[X(r) ∈ T ],
where Um is the uniform distribution on {0, 1}m, and d ← D denotes choosing an
element d according to the distribution D. The statistical distance between two discrete
distributions X and Y is ∆(X, Y) def=

∑
α |Pr[X = α] − Pr[Y = α]|. We define

non-interactive protocols.

Definition A.1 (Non-interactive protocols). A non-interactive protocol 〈c, P, V 〉 is a
triplet (or simply a pair 〈P, V 〉, making c implicit), where P and V are functions, and
c ∈ N. We denote by rP the random inputs to P . The interaction between P and V on
common input x is the following random process.

1. Uniformly choose rP , and choose a common random string rI ∈ {0, 1}|x|c .
2. Let π = P (x, rI ; rP ), and let m = V (x, rI , π).
3. Output 〈x, rI , π, m〉.

We call 〈P, V 〉(x) def= 〈x, rI , π〉 the view of V on x. We say that V accepts x (respec-
tively, rejects x) if m = accept (respectively, m = reject).

Definition A.1 considers a deterministic V , and is equivalent to a the definition that
considers a probabilistic V [2]. We define non-interactive proofs.

Definition A.2 (Non-interactive proofs). A non-interactive protocol 〈c, P, V 〉 is a non-
interactive proof for a problem Π if there is a ∈ N and c(n), s(n) : N → [0, 1] such
that 1− c(n) ≥ s(n) + 1/na for any n, and the following conditions hold.

– Efficiency: V runs in time polynomial in |x|.
– Completeness: V accepts all x ∈ ΠY with probability at least 1 − c(|x|) over rI

and rP .
– Soundness: PrrI [V (x, rI , P

∗(x, rI)) = accept] ≤ s(|x|) for any function P ∗

and any x ∈ ΠN.

The function c is called the completeness error, and the function s is called the sound-
ness error. We say that 〈P, V 〉 has perfect completeness if c ≡ 0.

We proceed to zero-knowledge. Our definition considers simulators that do not fail,
which is justified by our result from Section 4.

Definition A.3 (Non-interactive, zero-knowledge protocols). A non-interactive pro-
tocol 〈P, V 〉 is perfect zero-knowledge (NIPZK) for a problem Π = 〈ΠY,ΠN〉 if there
is a probabilistic, polynomial-time Turing machine S, called the simulator, such that
the ensembles

{〈P, V 〉(x)}x∈ΠY
and {S(x)}x∈ΠY

are statistically identical.
If these ensembles are statistically indistinguishable, then 〈P, V 〉 is a non-interactive

statistical zero-knowledge (NISZK) protocol for Π. Similarly, if the ensembles are
computationally indistinguishable, then 〈P, V 〉 is non-interactive computational zero-
knowledge (NICZK) protocol for Π.

The class of problems possessing NIPZK (respectively, NISZK, NICZK) protocols
is also denoted NIPZK (respectively, NISZK, NICZK).



B Under certain restrictions NIPZK is closed under OR

Lemma B.1. Let Π be a NIPZK problem with a proof 〈P ′, V ′〉, and let c ∈ N such that
on input of length n the reference string is of length nc. If 〈c, P ′, V ′〉 has perfect com-
pleteness and soundness error 21−nc/2, then Π ∨Π has a NIPZK proof with perfect
completeness, and soundness error 1/3.

Proof. Let 〈x0, x1〉 such that xi ∈ ΠY ∪ ΠN for each i ∈ {0, 1}, and let n = |x0|. We
start with the case where |x0| = |x1| because when we reduce x0 and x1 to UN we get
circuits whose output length is equal. As we will see, the general case follows easily
using the same proof.

We construct a NIPZK protocol 〈P, V 〉 for Π ∨Π. Initially, P sets i = 0 if both x0

and x1 are in ΠY. Otherwise, there is a unique i such that xi ∈ ΠN, and P fixes this i.
In addition, for each i ∈ {0, 1} both P and V reduce xi to an instance Xi of UN.

Recall that 〈c, P ′, V ′〉 is a NIPZK proof for Π such that on input of length n the
reference string is of length nc. By the properties of the reduction to UN, for each
i ∈ {0, 1} the circuit Xi has nc + 1 output gates and the following properties hold. If
xi ∈ ΠY, then X ′

i is the uniform distribution on {0, 1}nc

, and samples of Xi end with
a 1. If xi ∈ ΠN, then |TXi | ≤ 2−(nc/2+1) · 2nc

= 2nc/2−1.
The protocol proceeds as follows. Recall that P initially computes i. Thus, the first

step of P is to uniformly choose a string ri, and assign y the output of Xi(ri), excluding
the rightmost bit. On reference string rI , if Xi(ri) = y0, then P uniformly chooses
ri ∈ X−1

i
(rI1), and sends 〈r0, r1〉 to V . Otherwise, Xi(ri) = y1, in which case P

uniformly chooses ri ∈ X−1

i
(y1 ⊕ rI0), and sends 〈r0, r1〉 to V . The verifier accepts

if 〈r0, r1〉 are correctly computed. Namely, V computes X0(r0) and X1(r1), and if
there is i ∈ {0, 1} such that Xi(ri) ends with a 0 and Xi(ri) = rI1, then V accepts.
Otherwise, if X0(r0)⊕X1(r1) = rI0 (that is, both X0(r0) and X1(r1) end with a 1),
then V accepts. Otherwise, V rejects.

The completeness property of 〈P, V 〉 follows from its zero-knowledge property.
Thus, we start the simulator S for 〈P, V 〉. As in 〈P, V 〉, the simulator reduces 〈x0, x1〉
to 〈X0, X1〉. The simulator uniformly chooses r0 and r1, and computes X0(r0) and
X1(r1). If there is i ∈ {0, 1} such that Xi(ri) ends with a 0 (i.e., Xi ∈ PUN), then S
outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of Xi(ri). Otherwise,
S outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of X0(r0)⊕X1(r1).
In both cases r′I is uniformly distributed, and 〈r0, r1〉 are distributed as in 〈P, V 〉. Thus,
S perfectly simulates 〈P, V 〉. Since S always outputs accepting transcripts, 〈P, V 〉 has
perfect completeness.

We turn our attention to the soundness property. Let x0, x1 ∈ ΠN, and let 〈r0, r1〉
be the message received by V . We consider two cases in which V accepts. In the first
case there is i ∈ {0, 1} such that Xi(ri) ends with a 0, and Xi(ri) = rI1. Since
|TXi

| ≤ 2nc/2−1, and rI is uniformly distributed, it follows that in the first case V

accepts with probability at most 2 · PrrI
[Xi(ri) = rI1] ≤ 2 · 2−(nc/2+1). The reason

we multiplied the probability by 2 is because a cheating P ∗ may use either X0 or X1. In
the second case the suffix of both X0(r0) and X1(r1) is 1, and X0(r0)⊕X1(r1) = rI0.



In this case the probability over rI that X0(r0)⊕X1(r1) = rI0 is at most 1/4 because
|TX0 |·|TX1 | ≤ 2nc/2−1·2nc/2−1 = 2nc

/4, and rI is uniformly distributed. We conclude
that in total V accepts with probability at most 1/4 + 2 · 2−(nc/2+1), which is 1/3 for
sufficiently large inputs.

Recall that in the beginning of this proof we considered the case where |x0| = |x1|.
In this case the length of the output of X0 equals that of X1. The general case can
be treated exactly the same, except that X0 and X1 are modified before the protocol
begins. For example, if |x0| = n and |x1| = n + a (for some a ∈ N), then we simply
add (n+ a)c−nc input gates to X0. These gates are outputted as the prefix of X0. Call
this new circuit X ′

0. Now both X ′
0 and X1 have (n+a)c +1 output bits, and X ′

0 inherits
the properties of X0 (that is, for any α and β, if X0 is α-positive, then X ′

0 is α-positive,
and if X0 is β-negative, then X ′

0 is β-negative). Thus, we can apply the proof as above.
The lemma follows.


