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Abstract. In one of the pioneering papers on public-key cryptography, Ralph
Merkle suggested a heuristic protocol for exchanging a secret key over an in-
secure channel by using an idealized private-key encryption scheme. Merkle’s
protocol is presumed to remain secure as long as the gap between the running
time of the adversary and that of the honest parties is at most quadratic (rather
than super-polynomial). In this work, we initiate an effort to base similar forms
of public-key cryptography on well-founded assumptions.
We suggest a variant of Merkle’s protocol whose security can be based on the
one-wayness of the underlying primitive. Specifically, using a one-way function
of exponential strength, we obtain a key agreement protocol resisting adversaries
whose running time is nearly quadratic in the running time of the honest parties.
This protocol gives the adversary a small (but non-negligible) advantage in guess-
ing the key. We show that the security of the protocol can be amplified by using
a one-way function with a strong form of a hard-core predicate, whose existence
follows from a conjectured “dream version” of Yao’s XOR lemma. On the other
hand, we show that this type of hard-core predicate cannot be based on (even
exponentially strong) one-wayness by using a black-box construction.
In establishing the above results, we reveal interesting connections between the
problem under consideration and problems from other domains. In particular, we
suggest a paradigm for converting (unconditionally) secure protocols in Mau-
rer’s bounded storage model into (computationally) secure protocols in the ran-
dom oracle model, translating storage advantage into computational advantage.
Our main protocol can be viewed as an instance of this paradigm. Finally, we
observe that a quantum adversary can completely break the security of our pro-
tocol (as well as Merkle’s heuristic protocol) by using the quadratic speedup of
Grover’s quantum search algorithm. This raises a speculation that there might be
a closer relation between (classical) public-key cryptography and quantum com-
puting than is commonly believed.

1 Introduction

The fundamental cryptographic primitives and protocols can be roughly divided into
two categories: “private cryptography” which includes private key encryption, pseudo-
random generators, pseudo-random functions, bit commitment and digital signatures,
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and “public cryptography” which includes public key encryption, key agreement, obliv-
ious transfer, and secure function evaluation. Since the existence of these primitives
implies that P 6=NP, given the current state of complexity theory we need to base it on
unproven computational assumptions. These assumptions may turn out to be false; thus,
basing primitives on the minimal possible assumptions has been put forward as one of
the most important goals in cryptography.

The weakest assumption that is commonly used in cryptography is the existence
of one-way functions; it is weakest in the sense that if such functions do not exist,
none of the above primitives exist [15]. The existence of one-way functions implies
the existence of all of the private cryptography primitives (cf. [16, 6] and references
therein). In contrast, it is not known how to base public cryptography primitives on
one-way functions. Obtaining such a construction is arguably one of the most intriguing
open questions in cryptography. In addition to its fundamental importance, this question
is also motivated by the big efficiency gap between the best current implementations of
public primitives and the (much more efficient) implementations of private primitives.
This gap is mostly due to the fact that current approaches for obtaining public primitives
rely on algebraic intractability assumptions. Since the underlying algebraic objects are
highly structured, there are sophisticated attacks that exploit this structure. Thus, the
underlying objects must be very large in order to defeat known attacks. An additional,
more recent, motivation for basing public cryptography on one-way functions is the
advent of efficient quantum algorithms that break most (but not all) of the concrete
algebraic intractability assumptions that currently underly public cryptography [22].

In light of the above, basing public-key cryptography on one-way functions can be
viewed as a “holy grail” both from a theoretical and from a practical point of view. In
fact, from the latter point of view even a heuristic construction based on a random oracle
might be considered satisfactory (as the random oracle can often be replaced in practice
by a sufficiently “structureless” function). However, a seminal result of Impagliazzo
and Rudich [16] suggests that standard methods cannot be used to realize such con-
structions. Specifically, this result rules out the possibility of a black-box construction
based on a one-way permutation (see also [20]). Furthermore, the result of [16] shows
that a provable construction of a public-key primitive based on a random permutation
oracle is unlikely to be found, as it would imply a proof that P 6=NP.

Weak public-key cryptography. An implicit assumption in the last statements is that
the gap between the resources of the honest parties and those of the adversary must
be super-polynomial. It is natural to relax this assumption and consider a weaker vari-
ant of public-key cryptography, where the resource gap between the adversary and the
honest parties is bounded by some fixed polynomial. Such a weaker form of public-key
cryptography has a similar qualitative flavor as standard public-key cryptography, and
might be relevant to practice. Indeed, even with a quadratic resource gap, the ratio be-
tween the amount of time required by the adversary and that required by honest parties
grows linearly with the computing power. Thus, security gets better with technology.
In this work, we study the possibility of basing such weak public-key cryptography on
one-way functions and related primitives.

Merkle’s puzzles. Our point of departure is the pioneering work of Merkle [19], who
proposed the following protocol for secret key agreement over public channels. Merkle’s
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protocol involves two honest parties, Alice and Bob. It relies on the ability to efficiently
create “puzzles” which encapsulate a value chosen by the puzzle creator and require a
“moderate” amount of time T to be solved by another party. The protocol proceeds by
letting Alice pick a large number S of random pairs (ki, idi) and send to Bob S puz-
zles encapsulating these pairs. Bob picks a random puzzle r and, after spending time T
solving it, obtains a pair (kr, idr). It then sends idr to Alice. Now both parties have a
common key kr. The time spent by Alice in this protocol is roughly S (assuming that a
puzzle can be generated at a unit cost), and the time spent by Bob is roughly T . How-
ever, from the point of view of an external eavesdropper Eve, r remains secret. Thus, the
intuition is that Eve will need to solve S/2 puzzles on average, spending Ω(ST ) time,
before she can learn kr. Setting S = T , both Alice and Bob have a quadratic advantage
over Eve. Merkle suggested a heuristic implementation of the puzzles using a weak-
ened version of a private-key encryption scheme, where solving the puzzle amounts to
exhaustively searching over a (moderately sized) key space.

Trying to instantiate the puzzles in the above protocol using a standard (semanti-
cally secure) private-key encryption scheme is problematic for several reasons. First,
an implicit assumption that underlies the security of the protocol is that there is a sharp
bound T between the maximal time required by honest parties to completely solve a
puzzle and the minimal time required by an adversary to gain some information about
the solution. One might try to achieve this goal by requiring the encryption to have “ex-
ponential strength” in its key size. However, it is not clear how to realize such a strong
primitive based on (even strong versions of) low-level primitives such as a one-way
function. A second problem is that the security of the resulting protocol seems to rely
on the assumption that the adversary has no better strategy for recovering the key kr

than by trying to solve the puzzles one by one until finding the one that contains sr.
Again, this is an unsubstantiated assumption in a complexity-based cryptography.

1.1 Our Contribution

The question whether weak public key cryptography can be based on one-way func-
tions, or some variation of them, is largely unexplored. Our goal is to understand what
kinds of weak public key cryptography are possible and under what assumptions.

We start by suggesting a variant of Merkle’s protocol which admits a simple proof
of security in the random oracle model. In this protocol, each party (independently)
evaluates a random permutation on a random set of inputs whose size is roughly the
square root of the domain size, and the parties communicate the set of the outputs
of these evaluations. By the birthday paradox, the two sets of outputs intersect with
high probability, and the preimage of this intersection can be used to extract a common
key. (The above protocol can be viewed as based on a similar protocol of Cachin and
Maurer [2] in the bounded storage model – see below.)

We then show that the random permutation oracle in this protocol can be instantiated
with an exponentially strong one-way permutation (OWP), or even an exponentially
strong 1-1 OWF, yielding a key agreement protocol with a polynomial gap between the
bounded parties and the adversary. Specifically, if the OWP is secure against adversaries
that run in time 2(1−δ)n, the protocol is secure as long as the running time of the ad-
versary is less than the running time of the honest parties to the power of 2− 2δ. Thus,
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we approach quadratic security as δ tends to 0. Towards obtaining a similar result under
any one-way function, we show a way for transforming an exponentially strong OWF
into a family of exponentially strong OWFs that are “almost” 1-1. (We stress that this
transformation inherently relies on the exponential strength of the underlying OWF; its
analysis gives a general method for redistributing the hardness of OWFs which may be
of independent interest.) Using this transformation we obtain a similar key agreement
protocol based on an exponentially strong OWF.

On the existence of strong one-way functions. Our protocols rely on one-way func-
tions whose strength goes beyond the birthday paradox bound of 2n/2. The existence
of such OWFs can be regarded as a very mild assumption from a cryptanalytic point of
view. For instance, an explicit attack against AES that runs in time 20.9n, where n is the
key size, would be considered as indicating a major vulnerability. Exponentially strong
OWFs were recently exploited in several cryptographic contexts. In the context of pro-
gram obfuscation, Wee [23] uses a OWF with a form of exponential strength which is
even stronger than ours in terms of the ratio between the adversary’s time bound and
its success probability. OWFs with milder forms of exponential strength were recently
employed for constructing pseudorandom generators [14, 11, 4]. It should be noted that
given generic time-space tradeoffs for inverting functions [12, 5], one cannot expect a
fixed function (rather than a collection of functions) to be non-uniformly one-way with a
very good exponential strength (say, better than 22n/3). Thus, in the context of this work
one should either restrict adversaries to be uniform, or alternatively rely on a collection
of strong one-way functions.

On reducing the adversary’s advantage. The key agreement protocols described above
allow the adversary to gain an inverse polynomial advantage in guessing the secret key.
This type of insecurity may be viewed as reasonable in the context of weak public-key
cryptography, but it is still desirable to obtain the standard notion of security with neg-
ligible advantage with respect to a weaker class of adversaries. Unfortunately, known
techniques for converting weak key agreement to strong one (e.g., those of Holen-
stein [13]) do not seem sufficient for this purpose. We show that the security of the
protocol can be boosted to allow only a negligible advantage if one assumes the un-
derlying primitive to have a strong form of a hard-core predicate [8] which we call a
multi-source hardcore predicate (MSHCP). Roughly speaking, an MSHCP applies a
predicate to several inputs, such that an (exponentially strong) adversary can only pre-
dict the value of the predicate on independently chosen inputs with an advantage that
is negligible in the size of the input domain. (This should be contrasted with a standard
hard-core predicate in which the predicate is applied to a single input, and it is only
guaranteed that the advantage is negligible in the bit-length of the input.) We show that
the existence of an MSHCP follows from a conjectured “dream version” of Yao’s XOR
lemma (a close variant of a conjecture appearing in [9]). On the other hand, we show
that in contrast to standard hard-core predicates, the existence of an MSHCP cannot be
based on (even exponentially strong) one-wayness by using a black-box construction.

Our results reveal some interesting and perhaps unexpected connections between
the problem under consideration and problems from other domains.

Relation with the Bounded Storage Model. In Maurer’s bounded storage model (BSM)
[18], it is assumed that a large random source is transmitted, out of which the adversary
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can only store a limited amount of information. Viewing the random source as an oracle,
the transmission of the random source can be replaced by local computation. In terms
of security, the resulting model is incomparable to the original BSM: the adversary here
is weaker in that it can only access “physical” bits of the source by querying the oracle
(rather than store an arbitrary function of the source), but it is stronger in the sense that
it is allowed access to the source even after the execution of the protocol. To get around
the latter problem, a natural approach is to code the source in the image of the oracle.
That is, the evaluation of the oracle f at point x gives a pair (i, b) indicating that the
ith bit of the source is b. When the honest parties in the BSM protocol only need to
access the source at random locations, the protocol can still be efficiently implemented
using the random oracle. Our main protocol can be viewed as applying this conversion
paradigm to the BSM protocol from [2]. A similar transformation can be applied to
the oblivious transfer protocol from [3] to yield an oblivious transfer protocol (with
quadratic security) in the random oracle model.

Relation with quantum computing. Finally, we observe that a quantum adversary can
completely break the security of our protocol (as well as that of Merkle’s heuristic
protocol) by using the quadratic speedup of Grover’s quantum search algorithm [10].
Thus, the two most prominent examples for speedup by quantum algorithms – the strong
speedup of Shor’s algorithm and the weaker speedup of Grover’s algorithm – seem to be
“tailored” to break the two main types of public-key cryptosystems – strong ones based
on number-theoretic assumptions4 and weak ones based on Merkle’s technique. While
this can be dismissed as a pure coincidence, it also raises the interesting speculation
that there might be a closer relation between (classical) public-key cryptography and
quantum computing than is commonly believed. This speculation may be supported by
the relative scarcity of useful algorithms in the two domains.

It is important to stress that the quadratic speedup that can be achieved using Grover’s
algorithm is by no means universal, and applies only in scenarios that involve parallel
search. An interesting problem left open by our work is that of obtaining a weak key
agreement protocol, even in the random oracle model, that resists this kind of quan-
tum attack. A natural approach for achieving this is by obtaining efficient implementa-
tions of puzzles that resist parallel search attacks. A similar problem was considered by
Boneh and Naor [1] in the context of timed commitments. However, the only known im-
plementations of this primitive rely on number-theoretic assumptions that do not resist
a quantum attack. The possibility of implementing such “non-parallelizable” puzzles
using a one-way function, or even a random function, remains open.

Organization. The remainder of this paper is organized as follows. Following some
preliminaries, in Section 3 we describe a key agreement protocol based on a random
function. The protocol resists adversaries whose running time is nearly quadratic in the
running time of the honest parties. In Section 4 we replace the random function with
an exponentially strong one-way permutation, and in Section 5 we show how to base a

4 One should note in this context that we do have candidates for strong public-key cryptosystems
that resist quantum attacks, mostly ones based on lattice problems and error-correcting codes.
However, because of the strong algebraic structure of the underlying computational problems,
the existence of efficient quantum algorithms for these problems does not seem unlikely.
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variant of this protocol on an exponentially strong one-way function. Some details and
proofs that were omitted from this version can be found in the full version.

2 Definitions

In contrast to conventional cryptography, in this work we assume the resource gap be-
tween the honest parties and the adversary to be bounded by a fixed polynomial. This
requires us to introduce an “exact” variant for some common definitions and to set a
concrete model of computation which is sensitive to such gaps. We use a RAM model
(e.g., a “log-cost” RAM) as our default model of computation, for both honest parties
and adversaries. A T (n)-bounded algorithm is an algorithm whose running time on
input of length n is bounded by T (n).

Our results are stated for uniform adversaries, but are valid for non-uniform adver-
saries as well. In this case the bound on the running time serves also as a bound on the
size of the advice string given to the adversary. Specific differences between the results
for uniform and non-uniform adversaries will be discussed when relevant.

Notation. We write f(n) = Õ(g(n)) if there exists some constant c such that f(n) =
O(g(n) logc(g(n))). We say that a function ε(·) is negligible and denote such a function
by neg(·) if for any constant c, ε(n) < 1

nc for sufficiently large n. We say that ε(·) is
bounded away from c if ε(n) ≤ c − 1/p(n) for some polynomial p and all sufficiently
large n. We denote by Un the uniform distribution over {0, 1}n. By IP we denote the
modular inner product function defined by IP (x, r) =

∑n
i=1(xi · ri) mod 2.

2.1 Key Agreement Protocols

An l(·)-bit key agreement protocol is an interactive protocol in which Alice and Bob
receive a security parameter k, exchange messages over a public channel and each out-
put a key in {0, 1}l(k). Throughout the paper we deal only with 1-bit key agreement
as defined below. Our protocols can be extended to l(k)-bit key agreement for any
l(k) ≤ polylog(k) with similar asymptotic parameters by independent repetition. (A
longer key will reduce the polynomial advantage of the honest parties.) Such an l-bit
key can then be used to encrypt longer messages using a (conventional) symmetric en-
cryption scheme. We note that the key agreement protocols presented in this paper are
limited to two rounds. Hence what we achieve can be viewed as a (weak) public key
encryption scheme, where the first message serves as the public key.

Definition 1 (Key agreement). A protocol (Alice, Bob) is a (d, ε)-secure key agree-
ment protocol if the following conditions hold:

– Correctness: Alice and Bob are Õ(k)-bounded and they output the same bit except
for a failure probability δ(k) = neg(k).

– Security: For any constant d′ < d and any O(kd′)-bounded adversary, for suffi-
ciently large k the probability that the adversary guesses Bob’s output on a random
transcript of the protocol is bounded by 1

2 + ε(k).

We say that the protocol has quadratic security if it is (d, ε)-secure for d = 2 and some
negligible ε(·).
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2.2 Strong One-Way Functions and Hard-Core Predicates

Definition 2 (One-way function). An efficiently computable function f : {0, 1}∗ →
{0, 1}∗ is a (T, ε) one-way function if for any T (n)-bounded adversary A and for all
sufficiently large n, Prx∈Un

[f(A(1n, f(x))) = f(x)] < ε(n). If in addition f is a
permutation we say that it is a (T, ε) one-way permutation. If f is (T, ε) one-way with
ε(n) ≤ 1

16 , we say that it is a T (n) one-way function.

We note that a standard one-way function is (nc, 1
nc ) one-way for every constant c > 1.

Definition 3 (Hard-core predicate). An efficiently computable function h : {0, 1}∗ →
{0, 1} is a (T, ε) (randomized) hard-core predicate for f if for any T (n)-bounded ad-
versary A, for sufficiently large n,

Prx∈Un,r∈Un
[A(f(x), r) = h(x, r)] < 1/2 + ε(n).

The following definition generalizes the concept of hard-core predicates to allow the
predicate to depend on several pre-images.

Definition 4 (Multi-source hard-core predicate). A polynomial time computable func-
tion H : {0, 1}∗ → {0, 1} is a (T, ε) multi-source (randomized) hard-core predicate
(MSHCP) for f if there exist two polynomials t(·) and s(·) such that for any T (n)-
bounded adversary A and all sufficiently large n,

Prx1...xt(n)∈Un,r∈Us(n) [A(1n, f(x1) . . . f(xt(n)), r) = H(x1 . . . xt(n), r)] < 1/2+ε(n).

If H is a (T, ε) MSHCP with ε(n) = neg(2n) we say that it is a strong MSHCP.

Note that a strong MSHCP can be guessed only with an advantage that is negligible
in the size of the input domain. This is not possible with standard hard-core predicates
since a single invocation of f is enough for finding a pre-image with probability which
is the inverse of the input domain size. We also note that it is easy to show that a random
function has a strong MSHCP; however, its security does not seem to follow from one-
wayness alone. A relevant black-box separation is given in the full version.

3 Key Agreement in the Random Oracle Model

We describe a variant of Merkle’s key agreement protocol in which all parties have
access to a random function oracle, and show that adversaries whose running time is
nearly quadratic in the running time of the honest parties can only have a negligible
advantage in guessing the agreed key. For simplicity of presentation we assume that
the function which the oracle computes is chosen uniformly from some set of functions
after the adversary has been set, and in this scenario we bound the adversary’s advantage
in guessing the key. This result can be extended, using a standard argument [16], to
show that the protocol is secure against any uniform adversary when the oracle is set
to a specific function from the set, with probability 1 over the choice of functions.
Alternatively, the protocol is secure against non-uniform adversaries when the function
is chosen after the adversary is set (i.e. no single non-uniform adversary can break the
protocol for a significant fraction of the functions).

We start with a protocol which uses an oracle to a random permutation and a random
predicate and then extend the result for the case of a random function.
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The ROM protocol: For a security parameter k we use an oracle to a random permu-
tation f : [k2] → [k2] and a random predicate h : [k2] → {0, 1}. We set a minimal
intersection size parameter l(k) to be l(k) = 1

2 log2(k).

– Alice chooses a random set A ⊂ [k2] of size k · log k, queries the oracle on these
inputs and sends f(A) = {f(a)|a ∈ A} to Bob.

– Bob chooses a random set B ⊂ [k2] of size k · log k and queries the oracle on
these inputs. If |f(A) ∩ f(B)| < l(k) Bob aborts and both parties output random
values. Otherwise, Bob randomly chooses l(k) common outputs c1, . . . , cl(k) ∈
f(A) ∩ f(B) and sends them to Alice.

– Alice and Bob find the common inputs s1, . . . , sl(k) ∈ A ∩ B such that f(si) = ci

and output
⊕l(k)

i=1 h(si).

In the full version we prove that the above protocol has quadratic security. We also
show a similar protocol which uses a random function instead of a permutations and a
predicate and prove the following theorem.

Theorem 1. Given an oracle to a random function f : {0, 1}∗ → {0, 1}, there exists a
key agreement protocol with quadratic security.

4 Key Agreement from One-Way Permutations

In order to construct key agreement from one-way permutations we replace the random
permutation and random predicate used in the ROM protocol with an exponentially
strong one-way permutation and a hard-core predicate. The analysis is divided into
two parts: first we show how to construct a key agreement protocol from a one-way
permutation with an MSHCP and then we show how to construct an MSHCP for any
one-way function. The maximal possible advantage in guessing the MSHCP determines
the advantage the protocol allows adversaries in guessing the key. Using a conjectured
dream XOR lemma we construct a strong MSHCP (in which the maximal advantage is
negligible in the size of the input domain) and hence key agreement protocols in which
the adversary’s advantage is negligible. Without this conjecture we do not know how to
construct strong MSHCPs, but can get a weaker MSHCP that suffices for limiting the
adversary’s advantage to 1/poly(k). In the full version we show that the limitation on
the strength of the MSHCP is inherent to black-box constructions.

The results in this section hold in both uniform and non-uniform settings, depending
on the setting in which the permutations are assumed to be one-way. However, it follows
from generic time-space tradeoffs for inverting functions [12, 5] that one cannot expect a
fixed function (rather than a collection of functions) to be non-uniformly one-way with
a very good exponential strength. In order to achieve meaningful results in the non-
uniform case, one may use a collection of one-way functions in the protocol described
in Section 5.4. Finally, we note that the results of this section can be generalized to any
1-1 one-way function.

4.1 Key Agreement from a One-Way Permutation with an MSHCP

We use a variant of the ROM protocol in which the random permutation is replaced by
a one-way permutation and the random predicate is replaced by an MSHCP.
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The OWP protocol: For a security parameter k we set n = 2 · log k (i.e. k = 2n/2)
and use a one-way permutation f : {0, 1}n → {0, 1}n for which H is a (T, ε) MSHCP
with T = 2n(1−δ). We set the minimal size of the intersection to be l(k) = t(n) where
t(·) is the number of inputs for H as in Definition 4.

– Alice chooses a random setA ⊂ {0, 1}n of size k
√

2l(k), applies f to these inputs
and sends f(A) = {f(a)|a ∈ A} to Bob.

– Alice also sends Bob a random string r ∈ {0, 1}s(n), where s(·) is the size of the
random input for H as in Definition 4.

– Bob chooses a random set B ⊂ {0, 1}n of size k
√

2l(k) and applies f to these
inputs. If |f(A)∩ f(B)| < l(k) Bob aborts and both parties output random values.
Otherwise, Bob randomly chooses l(k) common outputs c1, . . . , cl(k) ∈ f(A) ∩
f(B) and sends them to Alice.

– Alice and Bob find the common inputs s1, . . . , sl(k) ∈ A ∩ B such that f(si) = ci

and output H(s1, . . . , sl(k), r).

Theorem 2 (Key agreement from a one-way permutation with an MSHCP). For
any constant δ < 1

2 , if there exists a one-way permutation with a (T, ε) MSHCP such
that T = 2n(1−δ) then there exists a (d, ε)-secure key agreement protocol with d =
2− 2δ.

Proof. The proof of correctness is the same as in the ROM protocol. The proof of
security is by contradiction. Suppose that for some constant d′ < 2 − 2δ, an O(kd′)-
bounded adversary A guesses the agreed bit with probability at least 1

2 +ε when given a
random transcript of the protocol. We show how to use A to guess H(x1, . . . , xl(k), r),
given f(x1), . . . , f(xl(k)) and r on random x1, . . . , xl(k) ∈ {0, 1}n and r ∈ {0, 1}s(n).
We create a random transcript of the protocol using the following procedure:

– Randomly choose a set A ⊂ {0, 1}n of size k
√

2l(k)− l(k), and apply f to these
inputs. Randomly interleave f(x1), . . . , f(xl(k)) within the set f(A) and use the
result as the first part of Alice’s message to Bob.

– Use the random string r as the second part of Alice’s message to Bob.
– Use f(x1), . . . , f(xl(k)) as Bob’s message to Alice.

It is easy to verify that the result is indeed distributed identically to a random transcript
created by Alice and Bob. We then apply A to the transcript and output the same bit as
A does. By our assumption A’s output is equal to H(x1, . . . , xl(k), r) with probability
at least 1

2 + ε. The transcript can be created in time Õ(k) and since δ < 1
2 , for large

enough n the total running time is bounded by k2−2δ = 2n(1−δ), contradicting the
hardness of H . ut

4.2 Construction of an MSHCP for any One-Way Function

We first construct a (single-source) randomized hard-core predicate defined by h(x, r) =
IP (x, r) for a random r and prove its security using an exact version of the Goldreich-
Levin lemma. Then we use h to construct an MSHCP defined by H((x1, . . . , xt),
(r1, . . . , rt)) =

⊕t
i=1 h(xi, ri) and prove its security using an exact version of Yao’s

XOR lemma.
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Lemma 1 (Goldreich-Levin). If f is a (T, ε) one-way function then h(x, r) = IP (x, r)
(where IP denotes inner product modulo 2) is a (T ′, ε′) randomized hard-core predi-
cate for f with T ′(n) = T (n) · ε4

n3 and ε′(n) = 4ε.

The lemma follows from the alternative version of Proposition 2.5.3 in [7]. A conse-
quence of this lemma is that every T (n) one-way function has a (T ′, ε′) (randomized)
hard-core predicate with T ′ = T (n)/poly(n) and ε′ = 1/4.

Definition 5 (Hard predicate). We say that P : {0, 1}∗ → {0, 1} is a (T, ε) hard pred-
icate if for any T (n)-bounded adversary A and all sufficiently large n, Prx∈Un

[A(x) =
P (x)] < 1/2 + ε(n).

Lemma 2 (Yao’s XOR lemma). If P is a (T, ε) hard predicate and it is possible to ef-
ficiently sample from the distribution (Un, P (Un)), then for any µ(n) and t = poly(n),
P (t)(x1, . . . , xt) =

⊕t
i=1 P (xi) is a (T ′, ε′) hard predicate for T ′ = T · µ2

poly(n) −
poly(n) and ε′ = (2ε)t + µ.

The lemma can be derived by a careful analysis of Levin’s proof for Yao’s XOR lemma
given in [17, 9]; see full version. Combining Lemma 1 with Lemma 2 allows us to
construct an MSHCP but there is an inherent limitation to the strength of the MSHCP
which we may construct in this way. A (T ′, ε′) hard predicate constructed using Lemma
2 has the property that ε′ > µ and T ′ < T · µ2. For any (T, ε) hard-core predicate for
an efficiently computable one-way function, T = Õ(2n) since it is possible to invert
the one-way function by an exhaustive search. For our key agreement protocol we need
a (T ′, ε′) MSHCP in which T ′ = 2(1−δ)n for some δ < 1

2 . Any (T ′, ε′) MSHCP
constructed under the above restrictions will have ε′ > µ >

√
T ′/T > 2−n/4. The

following conjecture allows us to construct a (T ′, ε′) hard predicate with ε′ = neg(2n)
while T ′ remains close to T , and thus can be used to construct a strong MSHCP.

Conjecture 1 (Dream XOR lemma). If P is a (T, ε) hard predicate for some ε that is
bounded away from 1

2 and it is possible to efficiently sample from the distribution
(Un, P (Un)), then there exists a constant c < 1, a negligible µ(·) and some η(·)
which is bounded away from 1 such that for any t = poly(n), P (t)(x1, . . . , xt) =⊕t

i=1 P (xi) is a (T ′, ε′) hard predicate for T ′ = T · 2−o(n) and ε′ = 2cn · ηt + µ(2n).

A similar “dream version” of Yao’s XOR lemma was conjectured in [9] and it was
observed that it can not be proved using a black-box analysis. (The variant appearing
in [9] requires ε to be smaller but allows T to be smaller as well.) Theorem 3 states the
parameters of MSHCP that can be obtained with and without the dream XOR lemma
conjecture, while in the full version we show that a strong MSHCP cannot be obtained
from a OWF using a black-box construction.
We apply Lemma 2 and Conjecture 1 with t = poly(n) to the predicate defined in
Lemma 1 to get the following result (smaller values of t suffice for the first two cases,
but this does not improve the asymptotic result).

Theorem 3. For any δ < 1, every 2n(1−δ) one-way function has a (T, ε) MSHCP with
the following T and ε:
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- T = 2n(1−δ)/poly(n) ε = 1
poly(n) using µ = O(ε)

- T = 2n(1−δ−τ)/poly(n) ε = 2−τn/2 using µ = O(2−τn/2)
- T = 2n(1−δ)/2o(n) ε = neg(2n) assuming the dream XOR lemma

It is easy to verify that Theorem 2 holds also when T = 2n(1−δ) is replaced with
2n(1−δ)/2o(n). Combining this with Theorem 3 we get the main result regarding the
construction of key agreement from one-way permutations. It relates the strength of the
underlying one-way permutation to the security of the key agreement protocol that can
be constructed from it.

Corollary 1. For any constant δ < 1
2 if there exists a 2n(1−δ) one-way permutation

then there exists a (d, ε) secure key agreement protocol for the following d and ε:
- d = 2− 2δ ε = 1/ logc k for any constant c
- d = 2− 2δ − 2τ ε = k−τ for any τ < 1− δ
- d = 2− 2δ ε = neg(k) assuming the dream XOR lemma

5 Key Agreement from One-Way Functions

We extend the result from the previous section to obtain weak key agreement from
exponentially strong one-way functions. The main technical result in this section is a
construction of a collection of one-way functions which is almost 1-1 from an exponen-
tially strong one-way function which is not necessarily 1-1. The construction applies a
restriction to the domain of the one-way function such that the restricted function usu-
ally remains one-way and is almost always 1-1. The resulting collection of one-way
functions is then used to construct a key agreement protocol. The results in this section
hold in both uniform and non-uniform settings, depending on the setting in which the
functions are assumed to be one-way. We refer to the uniform setting by default.

5.1 Definitions

A collection of one-way functions is defined by a pair of functions G and F such that
G(1n) generates a key i of length l(n) which defines a function fi : {0, 1}n → {0, 1}∗
and F (i, x) computes fi(x).

Definition 6 (Collection of one-way functions). Let F =
⋃

Fn be a collection of
functions where Fn = {fi : {0, 1}n → {0, 1}∗|i ∈ In}. We say that F is (T, ε)
one-way if there exist two PPT algorithms G and F such that the following holds:

1. Easy to compute: There exists a polynomially bounded function l(·) such that the
output of G on input 1n is in the set In ⊆ {0, 1}l(n). On input i ∈ In and x ∈
{0, 1}n, F (i, x) = fi(x).

2. Hard to invert: For every T (n)-bounded adversary A, for all sufficiently large n’s,

Pri∈G(1n),x∈Un
[fi(A(1n, i, fi(x))) = fi(x)] < ε(n).

We say that F is T (n) one-way if it is (T, ε) one-way with ε ≤ 1/32. We say that F is
almost 1-1 if the probability that fi ∈ Fn is not 1-1 is bounded by 2−n.
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We will be using a family of injective length-increasing, pairwise independent hash
functions in order to restrict the domain of a one-way function and increase the proba-
bility that it is 1-1. The function m(·) in the definition below determines the length of
the output of the hash functions relative to the input length.

Definition 7 (m(·) pairwise independent family of hash functions). Let H =
⋃

Hn

be a collection of functions where Hn = {hi : {0, 1}n → {0, 1}m(n)|i ∈ In}. We say
that H is a m(·) pairwise independent family of hash functions if there exist two PPT
algorithms G and H such that the following holds:

1. Easy to compute: There exists a polynomially bounded function l(·) such that the
output of G on input 1n is in the set In ⊆ {0, 1}l(n). On input i ∈ In and x ∈
{0, 1}n, H(i, x) = hi(x).

2. Pairwise independent: For every x1 6= x2 ∈ {0, 1}n and y1 6= y2 ∈ {0, 1}m,
Prh∈Hn [h(x1) = y1] = 1

2m and Prh∈Hn
[h(x2) = y2 | h(x1) = y1] = 1

2m−1 .

Definition 7 can be instantiated with the collection of functions of the form ha,b(x) =
ax+ b where a, b ∈ GF(2m), a 6= 0, both addition and multiplication are over GF(2m),
and every x is interpreted as a distinct element of the subfield GF(2n). Definition 7
implies that each function from the collection must injective. Moreover, it also implies
the following balance property that will be useful in our analysis: For every n and every
y ∈ {0, 1}m(n), Prh∈Hn [∃x such that y = h(x)] = 2n

2m .

5.2 Restricted Exponentially Strong One-Way Functions are 1-1

We show that strong one-way functions do not have many collisions to begin with
(Lemma 3), and that by restricting the domain of such a function we get a function
which is 1-1 with high probability (Theorem 4).

Definition 8 (Collision group of y relative to f ). [y]f = {y′|f(y′) = f(y)}
We denote the input length of the one-way function in the following lemma by m, as
we will use n for the input length of the family of one-way functions that we construct.

Lemma 3 (Exponentially strong one-way functions have few collisions). If f is a
(T, ε) one-way function then there exists a polynomial t(·) such that for sufficiently
large m and for every y ∈ {0, 1}m, |[y]f | ≤ 2m ·max{2ε(m), t(m)/T (m)}.

Proof. We give the proof for the uniform setting, for the non-uniform case a stronger
version of the lemma can be proved using the fact that a pre-image for y∗ defined
below can be given to the algorithm as advice. Let t(·) be the time required for evalu-
ation of f . Assume for contradiction that the statement does not hold for y∗. We first
show a T (m)-bounded algorithm that finds a pre-image for f(y∗) with probability 1

2 .
Randomly choose y1, . . . , yT/t ∈ {0, 1}m and apply f to them. By the assumption
|[y∗]f | > 2m · t/T , hence for each i, yi ∈ [y∗]f with probability at least t/T . Therefore
the probability that there is no i for which xi ∈ [y∗]f is at most (1− t/T )T/t < 1

2 .
By the assumption |[y∗]f | > 2m · 2ε, therefore y ∈ [y∗]f with probability at least

2ε. If indeed y ∈ [y∗]f , finding a pre-image for f(y) is the same as finding a pre-image
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for f(y∗) and the algorithm described above will find a pre-image with probability at
least 1

2 . The conclusion is that there exists a T (m)-bounded adversary which finds a
pre-image for f(x) on a random x with probability ε, contradicting the fact that f is a
(T, ε) one-way function. ut

Notation. From here on we let fh(·) def= f(h(·)).
Theorem 4 (Restricted exponentially strong one-way functions are 1-1). If H =⋃

Hn is an m(·) pairwise independent family of functions and f is a (T, ε) one-way
function with T (m) ≥ 2µ·m and ε(m) ≤ 2−µ·m for some µ > 0, then the probability
over h ∈ Hn that fh is not 1-1 is bounded by poly(m) · 22n−µm.

Proof. Fix x1 6= x2 ∈ {0, 1}n. We bound the probability that fh maps both inputs to
the same image for a random h ∈ Hn.
Prh∈Hn

[fh(x1) = fh(x2)] = Prh∈Hn
[h(x2) ∈ [h(x1)]f ]

=
∑

y1∈{0,1}m

Prh∈Hn
[h(x1) = y1] · Prh∈Hn

[h(x2) ∈ [y1]f | h(x1) = y1]

=
∑

y1∈{0,1}m

Prh∈Hn [h(x1) = y1] ·
∑

y2∈[y1]f

Prh∈Hn [h(x2) = y2 | h(x1) = y1]

≤ 2m · 2−m · 2m ·max{2ε, poly(m)/T} · 1
2m − 1

(1)

≤ 2−µ·m · poly(m) (2)

where (1) follows from the pairwise independence of H and from Lemma 3, and (2)
follows from the hypothesis of the theorem about ε and T . As there are 22n pairs of
inputs in {0, 1}n, by a union bound the probability that hf maps any two inputs of
length n to the same output is bounded by poly(m) · 22n · 2−µ·m. ut

5.3 Restricted Exponentially Strong One-Way Functions are One-Way

We show that if f is a strong one-way function and H is a pairwise independent family
of hash functions, then F = {fh | h ∈ H} is a collection of strong one-way functions.
The idea is that if we have an algorithm that finds a pre-image for z = fh(x) given z
and h for a random h and x, we can use it to find a pre-image for z = f(y) for a random
y in the following way. We randomly select sufficiently many functions h ∈ H so that
one of them will have y in its range, and apply the inversion algorithm to z and each
such h. If the algorithm succeeds, we get some x such that fh(x) = f(h(x)) = z and
h(x) is a pre-image of z under f . This approach gives the following theorem.

Theorem 5. Suppose f is (T, ε) one-way andH is a m(·) pairwise independent family
of functions. Then F = {fh | h ∈ H} is a (T ′, ε′) one-way collection of functions
for any T ′, ε′ such that for all sufficiently large n the following conditions hold with
m = m(n):

1. T ′(n) ≤ 1
2 · T (m)
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2. ε′(n) ≥ 2 · ε(m)
3. T ′(n)

ε′(n) ≤ 1
4 · 2n

2m · T (m)
ε(m)

4. T ′(n) > m(n)c for every constant c

Proof. Throughout the proof we view T ′ and ε′ as functions of n and T and ε as func-
tions of m (where m is itself a function of n). We omit m and n in order to sim-
plify notation. Assume for contradiction that f is a (T, ε) one-way function, but F
is not a (T ′, ε′) one-way collection for T, T ′, ε, ε′ as stated in the theorem. By Def-
inition 6 there exists a T ′-bounded adversary A′ such that for infinitely many n’s
Prh∈Hn,x∈Un [fh(A′(1n, fh(x), h)) = fh(x)] ≥ ε′. We construct a T -bounded al-
gorithm A such that for infinitely many m’s Pry∈Um

[f(A(1m, f(y))) = f(y)] ≥ ε, in
contradiction with the assumption that f is (T, ε) one-way.

The algorithm A, described below, finds a pre-image for z = f(y). On input
(1m, z), A repeats the following steps t = T

2T ′ times:

1. Choose a random h ∈ Hn.
2. Compute x = A′(1n, z, h)
3. If fh(x) = z stop and output h(x)

Assuming z = f(y), we define the random variables Ai(y) and Bi(y) for i = 1, . . . , t
as follows: Ai(y) = 1 if in the i’th iteration there exists a pre-image for y under h, and
Bi(y) = 1 if in the i’th iteration fh(x) = f(y). (Probabilities in these variables are
taken over the random coins of A.) The following two claims allow us to complete the
proof of Theorem 5.

Claim 1 Pry∈Um [∃i : Ai(y) = 1] ≥ ε
ε′

Claim 2 For every i, Pry∈Um [Bi(y) = 1 | Ai(y) = 1] ≥ ε′

By the above claims and the definitions of Ai and Bi, we can lower bound the proba-
bility that A finds a pre-image for f(y).

Pry∈Um [f(A(1m, f(y))) = f(y)] = Pry∈Um [∃i : Bi(y) = 1]
≥ Pr[∃i : Ai(y) = 1] · Pr[Bi(y) = 1 | Ai(y) = 1]

≥ ε

ε′
· ε′

= ε

A’s running time in every iteration is bounded by T ′+mc for some constant c. As there
are t = T

2T ′ iterations and T ′ > mc the total running time is bounded by T
2T ′ · (T ′ +

mc) < T , contradicting the assumption that f is (T, ε) one-way. ut
Proof of Claim 1. We show that for any fixed y ∈ {0, 1}m, Pr[∃i : Ai(y) = 1] ≥ ε

ε′
and the claim follows. By the balance property we have Pr[Ai(y) = 1] = Prh∈Hn [∃x
such that y = h(x)] = 2n

2m for every i = 1, . . . , t. We view A1, . . . , At as t = T
2T ′

independent experiments, each with success probability δ = 2n

2m . The probability that
none of the experiments succeed can be bounded by (1−δ)t < 1

tδ+1 . Therefore Pr[∃i :
Ai(y) = 1] ≥ 1 − 1

tδ+1 = tδ
tδ+1 . If tδ > 1, Pr[∃i : Ai(y) = 1] ≥ 1

2 ≥ ε
ε′ , otherwise,

Pr[∃i : Ai(y) = 1] ≥ t·δ
2 = 1

4 · 2n

2m · T
T ′ ≥ ε

ε′ . In both cases the last inequality follows
from the assumptions in the hypothesis of the theorem. ut
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Proof of Claim 2. We use the following notation:
p1 , Pry∈Um [Bi(y) = 1 | Ai(y) = 1]
p2 , Prh∈Hn,y∈Um [fh(A′(1n, f(y), h)) = f(y) | ∃x : y = h(x)]
p3 , Prh∈Hn,x∈Un [fh(A′(1n, fh(x), h)) = fh(x)]
By the definition of Ai and Bi we have p1 = p2 for every i, and by our assumption that
F is not (T ′, ε′) one-way, we have p3 ≥ ε′. Since Claim 2 is that p1 ≥ ε′ for every i,
it remains to show that p2 = p3. We show this by proving that the pair (y, h) under the
conditions in p2 is distributed identically to the pair (h(x), h) under the conditions in p3.
Fix some (y, h) such that y is in the range of h. We calculate the probability of getting
this pair under both distributions. Under the conditions in p2, y is chosen uniformly
from a set of size 2m and h is chosen uniformly from a set of size 2n

2m |Hn|, altogether
the probability is 1

|Hn|2n . Under the conditions in p3, h is chosen uniformly from a set
of size |Hn| and x is chosen from a set of size 2n. Since h is 1-1, the probability for
getting y = h(x) is 2−n, thus the overall probability is again 1

|Hn|2n . ut
The above construction allows us to ‘redistribute’ the hardness of a one-way func-

tion. For example a (T, ε) one-way function which is strongly secure (small ε) against
weak adversaries (small T ) can be used to construct a (T ′, ε′) one-way function fam-
ily F that is weakly secure against strong adversaries. The conditions in the theorem
give us the boundaries of the possible redistribution. Condition 1 limits the maximal
gap between T ′ and T . Condition 2 does the same for ε. Both conditions are easy to
satisfy when m(·) is large. Condition 3 defines the loss in the time over success ratio
caused by the transformation. The loss is bigger when m(·) is large. For m = c · n, if
T (n)
ε(n) = 2n(1−δ) we will get T ′(n)

ε′(n) < 2n(1−cδ).

Corollary 2. If there exists a (T, ε) one-way function with T, ε−1 ≥ 2m/3 and T/ε ≥
2m(1−δ) then there exists a collection of 2n(1−10δ) one-way functions which is almost
1-1.

Proof. By applying Theorem 4 to the familyH of m(·) pairwise independent family of
hash functions with m = 9n and a one-way function f , we get a family F = {fh|h ∈
H} which is 1-1, except for probability at most 2−n. F is 2n(1−10δ) one-way if it is
(T ′, ε′) one-way with T ′ = 2n(1−10δ) and ε′ = 1/32 and it remains to verify that for
sufficiently large n, the conditions of Theorem 5 are fulfilled.

1. T ′(n) = 2n(1−10δ) < 1
2 · 23n = 1

2 · 2m/3 ≤ 1
2 · T (m)

2. ε′(n) = 1
32 > 2 · 2−m/3 ≥ 2 · ε(m)

3. T ′(n)
ε′(n) = 32·2n(1−10δ) < 1

4 ·2n(1−9δ) = 1
4 ·2n−δm = 1

4 · 2n

2m ·2m(1−δ) ≤ 1
4 · 2n

2m · T (m)
ε(m)

4. T ′(n) = 2n(1−10δ) > (9n)c = mc ut

We note that in the non-uniform setting the parameters in the corollary can be im-
proved by using a stronger version of Lemma 3.
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5.4 Key Agreement from a Collection of 1-1 One-Way Functions

We show a key agreement protocol which is based on a collection of one-way functions
F which is almost 1-1. The protocol is similar to the one described for constructing key
agreement from a one-way permutation. However, there are two obstacles which pre-
vent us from directly applying the previous protocol to a random fi ∈ F . First, unlike
one-way permutations, fi ∈ F is not always 1-1 and hence Alice and Bob may have
different outputs. Second, since F is hard to invert only on average, it is possible that
a specific function fi ∈ F is easy to invert. We use standard techniques for amplify-
ing both correctness and security. Specifically, we begin by describing a basic protocol
which in itself lacks in both security and in correctness. By combining several copies of
the basic protocol we create an intermediate protocol which is secure but has a big error
probability. By combining several copies of the intermediate protocol we get the final
protocol which is both secure and correct. We note that the copies of the basic protocol
can be run concurrently and hence the final protocol remains a two message protocol.
The basic protocol. Let F =

⋃
Fn, be a collection of 2n(1−δ) one-way functions

which is almost 1-1. For a security parameter 1k, we set n = 2 · log k. In each copy of
the protocol, Alice chooses a random r ∈ {0, 1}n, a random index i ∈ In which defines
a function fi ∈ Fn and a random set A ⊂ {0, 1}n of size k · logk. She applies fi to the
inputs inA, and sends the outputs i and r to Bob. Bob randomly chooses a similar set of
inputs B, and applies fi to them. If f(A)∩ f(B) = ∅, he aborts and both parties output
random values; otherwise, he randomly chooses a common output c ∈ f(A)∩f(B) and
sends c to Alice. Alice and Bob each identify a source for the common input, xA ∈ A
and xB ∈ B, so that fi(xA) = fi(xB) = c. Their outputs are sA = IP (xA, r) and
sB = IP (xB , r) respectively.
The intermediate protocol. We denote Alice and Bob’s outputs in the i’th copy of the
basic protocol by si

A and si
B . The intermediate protocol consists of l = polylog(k)

copies of the basic protocol, where Alice and Bob’s outputs are SA =
⊕l

i=1 si
A and

SB =
⊕l

i=1 si
B respectively.

The final protocol. We denote Alice and Bob’s outputs in the i’th copy of the interme-
diate protocol by Si

A and Si
B . The final protocol consists of l = polylog(k) copies of

the intermediate protocol with the following addition to Bob’s messages. Bob chooses
a random S ∈ {0, 1} and for each copy of the intermediate protocol sends S

⊕
Si

B to
Alice. Bob’s output is S and Alice’s output is MAJ{S ⊕

Si
A

⊕
Si

B}l
i=1.

A straightforward analysis of the final protocol (appearing in the full version) gives
the following theorem:

Theorem 6 (Key agreement from a collection of one-way functions which is almost
1-1). For any constant δ < 1/2, if there exists a collection of 2n(1−δ) one-way functions
which is almost 1-1, then there exists a (d, ε) secure key agreement protocol for the
following d and ε:

- d = 2− 2δ ε = 1/ logc k for any constant c
- d = 2− 2δ − 2τ ε = k−τ for any τ < 1− δ
- d = 2− 2δ ε = neg(k) assuming the dream XOR lemma

Combining Theorem 6 with Corollary 2, we get our main result on weak public-key
cryptography from strong one-way functions.
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Corollary 3 (Key agreement from one-way functions). For any constant δ < 1/10,
if there exists a (T, ε) one-way function with T, ε−1 ≥ 2m/3 and T/ε ≥ 2m(1−δ) then
there exists a (d, ε) secure key agreement protocol for the following d and ε:

- d = 2− 20δ ε = 1/ logc k for any constant c
- d = 2− 20δ − 2τ ε = k−τ for any τ < 1− 10δ
- d = 2− 20δ ε = neg(k) assuming the dream XOR lemma

6 Conclusions and Open Problems

We established the feasibility of basing weak public-key cryptography on strong, but ar-
guably reasonable, forms of one-way functions. We leave open the possibility of basing
weak public-key cryptography on standard (polynomially strong) one-way functions,
as well as the possibility of amplifying the security of our protocols without relying
on a conjectured dream version of Yao’s XOR Lemma. Finally, an interesting open
question that was already discussed in the Introduction is the possibility of resisting
quantum attacks in our setting. The discussion in Section 1.1 referred to the case where
the honest parties are classical and the adversary is quantum. If the honest parties are
quantum (and can therefore also exploit the quadratic speedup of Grover’s algorithm),
it seems possible to retain some of the efficiency gap between the honest parties and
the adversary. Setting T = S2 in the description of Merkle’s protocol from Section 1,
honest quantum parties can run in time O(T ) whereas a quantum adversary needs to
run in time Ω(T 3/2). The optimality of this gap, as well as the possibility of basing it
on (quantum) one-way functions, remain to be further studied.

Acknowledgement. We thank the anonymous referees for helpful suggestions and com-
ments.
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