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Abstract. We present a public-key encryption scheme with the following prop-
erties. Given a branching prograf and an encryptior: of an inputz, it is
possible to efficiently computesuccinctciphertextc’ from which P(z) can be
efficiently decoded using the secret key. The size’ afepends polynomially on

the size ofr and thelengthof P, but does not further depend on the sizerof

As interesting special cases, one can efficiently evaluate finite automata, decision
trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
¢ does not depend on the size of the object being evaluated. These are the first
general representation models for which such a feasibility result is shown. Our
main construction generalizes the approach of Kushilevitz and Ostrovsky (FOCS
1997) for constructing single-server Private Information Retrieval protocols.

We also show how to strengthen the above so ¢hebes not contain additional
information aboutP (other thanP(x) for somex) even if the public key and the
ciphertextc are maliciously formed. This yields a two-message secure protocol
for evaluating a length-bounded branching progrBnineld by a server on an
input z held by a client. A distinctive feature of this protocol is that it hides the
size of the server’s inpuP from the client. In particular, the client’s work is
independent of the size @t.

1 Introduction

Computing on encrypted data is arguably one of the most intriguing open problems in
cryptography. The variant of this problem we are interested in may be illustrated by the
following motivating scenario. Suppose that a client, holding a sensitive local input
wishes to run a remote prograf on this input. For instance; can be the medical
history of an individual and® a complex propriety algorithm determining whether to
offer insurance coverage to this individual. To the end of evalualifig), the client
wishes to publish aencryptedversion ofz, denoted by, while still allowing a server
owning P to effectively run its program on the ciphertextThat is, based o andc

the server should compute in polynomial time a messageom which the client can
recoverP(z) using its secret key.

As described so far, the problem can be solved by simply lettimgclude a com-
plete description ofP. However, this trivial solution has two significant weaknesses.
First, it completely reveal$ to the client, whereas ideally the client should only be
able to learnP(z). Second, when the description sizefs larger than its input and
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output, this solution is wasteful in terms of communication. Ideally, the communication
should bea-priori bounded by some polynomial in the size of the inputhe output

P(x) and the security parameter, independently of the description si?e Diie same
holds for the amount of local computation and storage used by the client. To summarize,
it is desirable to obtain solutions which satisfy the following two goals:

1. Hide P from the client (to the extent possible).

2. Make the client's work independent of the size ®f In particular,c’ should be
succinctin the sense that its size depends only on the size of the input and output
and not on that of°.

Jumping ahead, the main open problem in the area is that of realizing the second goal.
This problem is the focus of our work.

Before addressing known methods for realizing the above two goals, it is instruc-
tive to further clarify what we mean when referring to a “prograf”A program is
a string that represents a function, mapping an inptd an outputy. To simplify the
exposition, we restrict the attention to finite boolean functigns{0,1}" — {0,1}.

The correspondence between a progiamnd the function it represents is determined

by an underlyingepresentation modeCommon representation models for finite func-
tions include circuits, formulas, branching programs, OBDDs, finite automata, decision
trees, and truth tables. Once the representation model is fixed, every Bttiag a
unique interpretation as a program computing some specific fungtidm this work

we will be interested imniversalrepresentation models, in which every functiboan

be computed by some prografhin the model. Note that all of the models in the above
list are universal. However, thmomplexityof representing a function can greatly vary
between the models. Circuits are the most powerful model in the list, in the sense that
a program in any of the other models has an equivalent circuit of essentially the same
size. On the other extreme, truth tables are the least powerful of these models, requiring
a program of siz€" for any functionf. This makes truth tables useless for all but very
small input lengths:.

We return to the question of realizing the above two goals. Goal 1 can be addressed
by using techniques from the area of secure computation. Most notably, Yao’s gar-
bled circuit technique [36, 7, 25] can handle asifcuit P, allowing to computation-
ally hide all information abouf other thanP(z) and the size of?. A similar result
can be obtained for less powerful representation models, such as formulas or various
kinds of branching programs, with the additional feature of keegmigformation-
theoretically private [35, 4, 18, 22]. However, all these techniques inherently fail with
respect to Goal 2, as they require the size’db be comparable to the size Bf This
gives rise to the following question:

For which natural representation models can we realize Goal 2, namely evalu-
ate an arbitrary program® on an encrypted input so that the client’s work does
not depend on the size ¢f?

A positive answer for the case of circuits (hence also for all other models) would easily
follow from the existence of a completely malleable encryption scheme — one that
allows to freely perform both additions and multiplications on ciphertexts. However,
there is yet no candidate for an encryption scheme with this strong property.



The first protocols in which the client's work can go below the sizePoivere
given in the context of Private Information Retrieval (PIR) [10, 23]. A single-server
PIR protocol can be viewed as a protocol for evaluatitigith table P of size N = 2™
on an encrypted input of sizen. There are such protocols in which the client's work
is polynomial inn [6, 26], thus affirmatively answering the above question for the case
of a truth table representation. Extensions teearepresentation (wher@ lists the
set of inputs on whicly evaluates td) were given in the context of private keyword
search [23, 9, 13, 30]. Recently, an efficient protocol for evaluating 2-DNF formulas and
degree-2 polynomials on encrypted data was given by Boneh et alT[5. question
of realizing Goal 2 for more powerful and useful representation models remained open.

1.1 Our Contribution

We obtain an affirmative answer to our main question for the casength-bounded
branching programsTo explain the meaning of this result, we give some background
on branching programs and their complexity. A (deterministic) branching progtam

is defined by a directed acyclic graph in which the nodes are labeled by input variables
and every nonterminal node has two outgoing edges, labeled by 0 and 1. An input
x € {0,1}" naturally induces a computation path from a distinguished initial node
to a terminal node, whose label determines the oufut). The sizeof P is defined

as the number of nodes in the graph andeétsgthis the length of the longest path
from the initial node to a terminal node. Branching programs are a relatively powerful
representation model. In particular, any logarithmic spad§@t computation can be
carried out by a family of polynomial-size branching programs.

We consider classes of branching programs whose length is bounded by some pub-
lic parameter, where? = ¢(n) is polynomial inn. Representation b§(n)-bounded
branching programs is universal whene¥ét) > n. Indeed, any functiorf can be
computed by a complete decision tree of leng#nd sizeD(2"™). Branching programs
of length4(n) = n are of special interest, as they can simulate several representation
models that are often used in practice. For instancg¢,ddn be computed by a deter-
ministic finite automaton with states, then it can be computed by a branching program
of lengthn and sizesn + 1. Other useful models such as decision trees and OBDDs are
also special cases of lengthbranching programs.

Our main result is a public-key encryption scheme with the following properties.
Given a branching prograr® and an encryptiomr of an inputz, it is possible to effi-
ciently compute auccinctrandomized ciphertext from which P(z) can be efficiently
decoded using the secret key. The size’@nd the work required for decrypting it de-
pend polynomially on the size of and thelengthof P, but do not further depend on
the size ofP. Thus, whenever the lengtlin) is some fixed (polynomial) function of,
we realize Goal 2 above. As interesting special cases, one can evaluate finite automata,
decision trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
¢ does not depend on the size of the object being evaluated. These are the first general

Y In fact, the scheme of [5] realizes a stronger form of computing on encrypted data in which
the length of the ciphertext depends only on the security parameter and not on the length of
the input.



representation models for which such a feasibility result is shown. We also strengthen
the above protocol to realize Goal 1 in a very strong sense, guaranteeingdbas not
contain additional information aboii (other thanP(x) for somez) even if the public

key and the ciphertextare maliciously formed.

Size hiding.Our protocols have the followingjze hidingfeature: the ciphertext does

not reveal any information whatsoever about sieof P, no matter how large® is.?

This should be contrasted with previous methods of computing on encrypted data, in
which the communication complexity and the client’'s work directly reflect (an upper
bound on) the size oP. Thus, we achieve a stronger version of Goal 1 than in all
previous solutions. A similar notion of size hiding was previously considered by Micali
et al. in the context ofero-knowledge sef&7].

Applications to secure two-party computation.Our technique for computing on en-
crypted data immediately gives rise to a one-round (two-message) secure protocol for
evaluating a length-bounded branching progr@rmeld by a server on an inputheld

by a client. (This also implies a protocol for the setting in whiéhis public but its
inputs are partitioned between the two parties.) In the case of malicious parties, the pro-
tocol satisfies the same relaxed security definition used in previous works on one-round
secure computation [29, 1, 13, 20, 24]. A distinctive feature of our protocol is that the
client’s work is independent of the size 6fand moreover the protocol hides the size

of P from the client® The latter size hiding feature demonstrates that while hiding the
sizes otothinputs is impossible for interesting functions, there are useful special cases
where one can hide the sizeafeof the inputs while maintaining security.

As a concrete application, one can obtain a secure one-round proto&elyfeord
searchwhich totally hides from the client the size of the data set held by the server.
That is, a client holding a secret keywardcan query a databade held by a server
without revealing: and while assuring the server that it cannot learn anything about
(including its size) other than whethere D. Previous solutions to the secure keyword
search problem [9, 13, 30] fall short of achieving the size hiding goal. A size hiding
protocol as above is obtained by representihgs atrie data structure, which can be
viewed as an instance of a lengtiranching program.

We finally note that the one-round protocol obtained using our technique yields a
simpler alternative to similar protocols from the literature that provideonditional
security to the server [35, 4, 18, 22]. Its complexity improves over previous protocols
even in the case of branching programs of unbounded length. For evaluating a branch-
ing program of sizes overn inputs, the communication complexity of our protocol is
O(kns) (wherek is a security parameter), improving over th¢ks?) complexity of
the best previous solutions in this setting [18].

2 We note that perfect size hiding cannot be achieved in the physical reality, tméietakes
the server to respond reveals an upper bound on the si2eldbwever, increasing this upper
bound on the size aP does not involve additional work. This should be contrasted with the
partial size hiding that can be achieved using previous protocols by simply padding the inputs.
3 A secure two-party protocol in which the client’s work is almost independent of the siPe of
can be obtained using the technique of Naor and Nissim [28]. However, this protocol requires
multiple rounds of interaction and does not achieve size hiding.



Techniques.The basic version of our protocol uses a simple generalization of the tech-
nique of Kushilevitz and Ostrovsky [23] for constructing single-server PIR protocols.
In fact, the protocol of [23] (as well as its variants from [34, 26]) can be viewed as an
instance of our protocol in which the branching program is a complete (but possibly
non-binary) decision tree whoséh level depends only on theth input variable.

Our protocol proceeds roughly as follows. The ciphertégtobtained by separately
encrypting each bit of using a homomaorphic public-key encryption scheme. (For effi-
ciency reasons we rely on the Daamg-Jurik scheme [11]; this scheme was previously
used in the context of PIR by Lipmaa [26].) To evalu&ten x we proceed in a bottom
up manner. Starting from the terminal nodes, in kb iteration we handle all nodes
whose distance from the terminal nodes.iBor each such node, we compute a cipher-
text containing an (iterated) encryption of its value. Using the homomorphic property,
the encryption assigned to every node can be computed from the encryptions assigned
to its children (which were computed in previous iterations) and the encryption of the
input bit labeling this node. The ciphertextis the (iterated) encryption assigned to the
initial node. The client can recovét(z) by applying iterated decryptions to.

The stronger variant of our protocol which remains secure in the case of malicious
clients is more involved, and relies on variants of previous techniques of Aiello et al. [1],
Naor and Pinkas [29], Laur and Lipmaa [24], and (especially) Kalai [20].

Organization. In Section 2 we define our general notion of representation models as
well as the specific branching program model for which our results apply. In Section 3
we define the problem of computing on encrypted data as well as a variant of Oblivious
Transfer on which our solution relies. Our main protocol is presented in Section 4. This
protocol guarantees the privacy of the client as well as the privacy of the server against
a semi-honest client. The case of malicious clients is discussed in Section 5. For lack of
space, some details are deferred to the full version.

2 Preliminaries

We denote by «— A(zx) the process of invoking the (possibly randomized) algorithm
A on inputz and assigning the result 10 We say that a functioa(k) is negligible if

for every constant > 1 we havee(k) < 1/k¢ for all sufficiently largek. We use the
following standard notion of statistical distance:

Definition 1 (Statistical distance).Let X, Y be random variables over the finite set
U. Denote the distance betwe&handY by

SD(X,Y) =mazycy | Pr [xr € U] — Pr [ye U’
- T — X y—Y

2.1 Representation Models

Loosely speaking, a representation model is a way of interpreting strings as “programs”
for evaluating (families of) functions over some finite domain. We are only interested
in representation models which aw@iversalin the sense that every function has a



program evaluating it in that model. For simplicity we restrict the attention to functions
defined over a binary input alphabet. An extension to the general case is straightforward.

Definition 2 (Representation model).A representation modés a polynomial-time
computable functiod’ : {0,1}" x {0,1}" — {0,1}", whereU (P, x) is referred to as
the value returned by a “program’P on the inputz. WhenU is understood from the
context, we usé(z) to denotel/ (P, z). We say that a functiofi : {0,1}" — {0,1}"
can be implemented in a representation moteif there exists an infinite sequence
(Po, P1,...), referred to as an implementation ¢fin U, such thatf(z) = U(P,, )
for everyz € {0,1}*.

We now define the branching programs model. This is the representation model for
which our main result applies.

Definition 3 (Branching program (BP)). A (deterministic) branching program over
the variablest = (x4, ..., z,) with input domain/ and output domaii® is defined by
atuple(G = (V, E), v, T,¢¥v, ¥ ) where:

— G is a directed acyclic graph. Denote BY(v) the children set of a node

— g is an initial node of indegree 0. We assume without loss of generality that every
u €V — {wg} is reachable fromy.

— T C V is a set of terminal nodes of outdegree 0.

— ¢y : V — [n]UO is a node labeling function assigning an output value to each
terminal node inT’, and a variable index fronfn] to each nonterminal node in
V-T.

— ¢ : E — 2! is an edge labeling function, such that every edge is mapped to a
non-empty set, and for every nodehe sets labeling the edges to nodedifv)
form a partition ofI.

BP evaluation.The outputP(z) of a branching prograr® on an input assignmente
I™ is naturally defined by following the path induced byrom v, to a terminal node
vg, where the successor of nodés the unique node’ such thatr,, () € ¢¥g(v,v’).
The output is the valugy (vy) labeling the terminal node reached by the path.

BP complexity measuresLet P = (G(V, E), v, T, v, ¥ r) be a BP. Theizeof P

is |E|. (Note that in the case whel#| is constant we haviz| = O(]V|).) Theheight

of a nodev € V, denotecdheight(v), is the length (in edges) of the longest path from
v to a node inT". Thelengthof P is the height ofvy. We say that an implementation
(Po, P1,...)of afunctionf in the branching program model is length-bounded by

if the length of eactP, is at most/(n).

Remark 1.In the following we will sometimes assume that branching programs have
binary inputs and outputs, namely that= O = {0, 1}. We stress, however, that the
generalization to non-binary domains is useful for some of the applications we have in
mind. For instance, non-binary input alphabets are useful for casting the PIR protocol
from [23] as a special case of our main construction, and large output alphabets are
useful for applications such as private retrieval by keywords [9, 13].



Our protocols take the simplest form when the branching program being evaluated
is layeredin the following sense.

Definition 4 (Layered BP). We say thaf” is alayeredbranching program of length
if the node sel” can be partitioned intd + 1 disjoint levelsV = Uf:o V;, such that
Vo ={wo}, Ve =T, and for evere = (u,v) we haveu € V;,v € V;;, for somei. We
refer toV; asthe:-th levelof P.

Every branching program of sizecan be efficiently transformed into a layered
branching program of size at mast and same length (cf. [32]). For convenience, we
assume in our protocol that the server’s BP is layered, which may square the server's
work but has no effect on the communication complexity or the client’s work. The
quadratic overhead in the server’s work can be avoided in most useful special cases
(e.g., evaluating decision trees or finite automata) and can be avoided in the general
case if only client privacy is required.

3 Cryptographic Primitives

In this section we define both our goal of computing on encrypted data and the main
cryptographic tool on which we rely.

3.1 Computing on Encrypted Data

We consider a scenario where a client, holding an inppublishes a public keyk and

an encryptiort of 2 underpk. This encryption is used by a server to efficiently evaluate
a programP (in some given representation model) @mobtaining a ciphertext’. The
client then uses its secret key to recofr:) from ¢’. This is formalized as follows.

Definition 5 (Computing on encrypted data).LetU : {0,1}" x {0,1}" — {0,1}"
be a representation model. protocol for evaluating programs frofii on encrypted
datais defined by a tuple of algorithn{&en, Enc, Eval, Dec) and proceeds as follows.

SETUP: Given a security parametéy, the client compute@k, sk) < Gen(1%) and
savessk for a later use.

ENCRYPTION: The client computes«— Enc(pk, x), wherez is the input on which
a programP should be evaluated.

EVALUATION : Given the public keyk, the ciphertext, and a programP, the
server computes an encrypted output- Eval(1¥, pk, ¢, P).

DECRYPTION: Given the encrypted output, the client outputy < Dec(sk, ¢').

We require that if both parties act according to the above protocol, then for every input
x, programP, and security parametédr € N, the outputy of the final decryption phase
is equal toU (P, =) except, perhaps, with negligible probability in

An essential security requirement for computing on encrypted deli@ig privacy
requiring that the pai(pk, ¢) produced in the above process keep the client’s input
semantically secure [17, 16].



Definition 6 (Client privacy). Let IT = (Gen, Enc, Eval, Dec) be a protocol for com-
puting on encrypted data. We say thatsatisfies thelient privacyrequirement if the
advantage of any PPT adversakgv in the following game is negligible in the security
parameterk:

— Adv is given1* and generates a paitg, 21 € {0,1}" such thatzg| = |z1].

— Letb & {0,1}, (pk, sk) — Gen(1*), andc — Enc(pk, zs).
— Adv is given the challengépk, ¢) and outputs a guess.

The advantage oidv is defined a®Pr[b = V'] — 1/2.

Client privacy alone can be realized by simply lettibgal output P. However, it be-
comes nontrivial to satisfy whejiP| > |z| and the communication complexity is re-
quired to be sublinear ifP|. The latter requirement is in the center of this work.

While client privacy suffices for some applications, we will also be interested in
protecting the privacy of the server by hiding the progr&rto the extent possible. For
simplicity we consider here the case of a semi-honest client, who generates a valid pub-
lic key pk and ciphertext. The case of malicious clients will be addressed in Section 5.

Definition 7 (Server privacy: semi-honest model)Let IT = (Gen, Enc, Eval, Dec)
be a protocol for evaluating programs from a representation maédein encrypted
data. We say thafl has statistical server privacy in the semi-honest maofleéhere
exists a PPT algorithrSim and a negligible functiom(-) such that the following holds.
For every security parametdr, inputz € {0,1}*, pair (pk, ¢) that can be generated
by Gen, Eval on inputsk, z, and programP’ € {0, 1}*, we have

SD(Eval(1*, pk,c, P), Sim(1%, 112l pk, U(P, ), 1171)) < e(k).

The case operfect server privacis defined similarly, except thatk) = 0 andSim
is allowed to run in expected polynomial time.

In the case otomputational server privacyim should satisfy the following re-
quirement. For every polynomial-size circuit familythere is a negligible function(-)
such that for anyk, z, pk, ¢, P as above we have

Pr[D(Eval(1*, pk, ¢, P)) = 1] — Pr[D(Sim(1%, 117! pk, U(P, z),11F1)) = 1] < (k).

Our main protocol will have perfect server privacy. In fact, it will additionally hide
the size of the server’s inpudt from the client. We refer to this property aize hiding
This implies, in particular, that the length dfmust be independent of the lengthof

Definition 8 (Size hiding server privacy: semi-honest model)We say that/l has
(perfect, statistical, or computationadize hiding server privacin the semi-honest
model if it satisfies the requirements of Definition 7 with the following differefice:
does not get the length &f as an input.

Remark 2.ProtocolslT which satisfy our definitions of client privacy (Definition 6) and
standard server privacy (Definition 7) can be easily derived from previous protocols for
one-round secure computation. In particular, Yao's protocol [36] yields a protocol for



evaluating circuits on encrypted data with computational server privacy, and protocols
from [35, 21, 14, 18, 4, 22] yield protocols for evaluating formulas, branching programs,
and even non-deterministic branching programs on encrypted data with perfect or sta-
tistical server privacy. However, in all these protocols the lengthisfgenerally bigger

than the length of. In particular, none of these protocols satisfies the additional size
hiding property of Definition 8.

3.2 Oblivious Transfer

It will be convenient to present our main protocol in a modular way, using a variant
of one-round Oblivious Transfer (OT) [33, 12] as a subprotocol. To this end it will be
necessary to rely on a stronger server privacy property than the one implied by standard
definitions of OT. As before, we focus here on the case of a semi-honest client and
postpone the treatment of malicious clients to Section 5.

A standard one-round OT protocol involves a server, holding a list sécrets
(s1,s2, -..,5t), and a client, holding a selection indéxThe client sends a queky
to the server, who responds with an answeldsinga and its random input, the client
should be able to recoveyf. The standard security requirements inclatient privacy
requiring thaty keepi hidden from the server, arsrver privacyrequiring thatz keep
all secrets other thags, hidden from the client. Note that the latter server privacy re-
quirement does not rule out the possibility thateveals information about the query
g which is not implied by the output; alone. (In facta can include the entire query
g without violating server privacy.) This might compromise the security of our main
protocol, in which the client issues multiple OT queries and each query is used by the
server to compute multiple answers. It will be crucial for the security of the protocol
that the client be unable to correlate answers with queries, beyond correlations which
follow from the outputs. Such correlations will reveal to the client information about
the structure of the server’s branching program.

Roughly speaking, our notion of strong OT strengthens the above server privacy
requirement by requiring the distribution of the answeronditioned on the outpu;
to be independent of the quegyln other words, the distribution of the answer depends
on the output alone. It turns out that a natural implementation of one-round OT based
on homomorphic encryption [23, 34] satisfies the required properties (see Section 4.1).
We now formally define strong OT.

Definition 9 (Strong OT). A strong OTprotocol is defined by a tuple of PPT algo-
rithms (GoT, QoT, AoT, DoT). The protocol involves two parties, a client and a server,
where the server’s input is &tuple of strings(sy, ..., s;) of lengthT each, and the
client’s input is an index € [t]. The parameters, 7 are given as inputs to both parties.
The protocol proceeds as follows:

— The client generate@k, sk) < Got(1%), computes a query— Qot(pk, 1*,17, 1),
and sendspk, q) to the server.

— The server computes— Aot (pk, ¢, s1, - . - , s¢) and sends to the client.

— The client computes and outpi¥sr(sk, a).

We require that if both parties follow the protocol, the client always outputsVe
denote the length of the querpy «(k, t, 7) and the length of the answeby 5(k, ¢, 7).



Our main protocol will requires(k,t,7) = 7 + poly(k, t) to efficiently accommodate
BPs of arbitrary length. (In fact, it suffices that the above holdg fer 2.) This will
be our default efficiency requirement. However, this requirement can be relaxed if one
settles for weaker forms of our main result that apply to shallow BPs, such as constant-
length BPs over a polynomial-size input alphabet.

We now define the client privacy and (strong) server privacy requirements.

Definition 10 (Strong OT: client privacy). We require that the client’s querykeepi
semantically secure. That is, the advantage of any PPT advefghrin the following
game is negligible in the security parameter

— Adv is given1” and generates$?, 17 andiy, i; such thatig, i, € [t].

— Letb & {0,1}, (pk, sk) — Gor(1*), andq — Qot(pk, 1,17, ip).
— Adv is given the challengék, ¢) and outputs a gueds for b.

The advantage d&dv is defined a®Pr[b = b'] — 1/2.
Our strong variant of perfect server privacy is defined similarly to Definition 7.

Definition 11 (Strong OT: server privacy). There exists an expected polynomial time
simulatorSimoT such that the following holds. For evekyt, 7, i € [t], pair (pk, ¢) that
can be generated b§iot, QoT On inputsk, ¢, 7, 4, and stringss, ..., s;—1 € {0,1}7,
the distributionsAot (pk, q, s1, - - - , 5¢) andSimot(pk, 1%, s;) are identical.

In the following it will sometimes be convenient to index the server’s inputsy
0,1,...,(t — 1) instead ofL, 2, ..., t.

4 Main Protocol

In this section we will describe our main protocol for evaluating branching programs on
encrypted data. The protocol will provide client privacy, along with size hiding server
privacy in the semi-honest model. Extensions that achieve server privacy in the mali-
cious model will be presented in Section 5.

We fix a polynomially bounded length functidf-), and assume that if the client's
input z is of lengthn, then the server's BR is of length/(n). (To conform to our
general definition of representation models, one may ddfite = 0 for P andx
that do not match.) We also view the input domdiand output domai® as being
implicitly determined byn. However, in the following it will be convenient to vied
|I], and|O| as separate parameters which are given to both parties, and analyze the
complexity of the protocol as a function of these parameters. We will also assume that
P is layered (see Definition 4). As discussed in Section 2.1, every BP can be efficiently
transformed into an equivalent layered BP without increasing its length.

Our protocol is based on a strong OT protocol as defined in Section 3.2 and proceeds
roughly as follows. (For simplicity, assume that the input domfaaf P is binary and
that every nonterminal node in the graph has outdegree 2.) The client generates, for
every input variabler; and levelj, an OT query; corresponding to a selection of the
x;-th string out of a pair of strings of an appropriate length. (This length will depend



on j and will be later understood from the context.) 'thequerieSq{ jointly form the
encryptionc of x.

To evaluateP on ¢, the server makes a bottom-up pass@nstarting with the
terminal noded" and ending with the initial nodey. This pass labels each noden
the graph by an OT answer which encrypts the output value to whiehds from this
node. The pass consistsif 1 iterations, where in iteration (0 < 5 < /) all nodes of
height;j are handled. In iteration 0 every terminal nade labeled by the corresponding
output valueyy (v). At the onset of the-th iteration,j > 1, all nodes of heighf — 1
have already been labeled. For each nod# heightj, we want the labeling of to
encrypt the label of the child af to whichz leads. Such a label is computed by using
the OT answering algorithm as follows. Suppose that the childrenasé vy, andwv,
where P branches fromv to v, if z; = b. The label ofv then computed by applying
the OT answering algorithm to the queglyon the pair of stringslabel(vo), label(v)).
Note that sinceP is layered, the two labels have the same length. Moreover, by the
strong server privacy property of the OT protocol, the label cn be viewed as an
encryption of the label of the selected child . In particular, this label does not contain
any information about the identity of the variahlg that was used to determine the
selection. (If a standard one-round OT is used, this is not necessarily be the case.)

Finally, at the end of iteratiof the initial nodey, is labeled by an OT answer which
can be viewed as an (iterated) encryption of the output vBIug. The client decrypts
P(x) by applying the OT decryption algorithftimes to the label ofy.

The above protocol is formally described in Figure 1. Its correctness is implied by
the following lemma, which can be easily proved by induction on the heéight

Lemma 1. For any nodev, let P,(x) denote the output oP on the inputz if v is
used as the initial node. Then, for evéry< h < ¢ and every node of heighth we
haveDor " (sk, label(v)) = P,(z), whereDot ™ (sk, ) denotes thé:-th iterate of
DOT(Sk7 )

In particular,Dot ¥ (sk, label(vy)) = P(z), from which correctness follows. We turn
to analyze the protocol’s efficiency.

Efficiency. Recall that we denote the length of an OT queryd¥, ¢, 7) and the length

of an OT answer byi(k,t, 7). Let 5; be as defined in Step 2, namely the result of
applying thej-th iterate ofg(k, ¢, -) onlog |O|. The length of the encryptioncomputed

by the client is then bounded M - «(k,t, 5¢) and the length of the ciphertext
computed by the server i ;. By default, we assume the strong OT implementation to
be such that(k,t,7) = 7+ poly(k, t). (See Section 4.1 for a concrete implementation
using the Dam@rd-Jurik cryptosystem.) In such a case, the overall communication is
poly(k, n, ¢), which is in particular independent @?| as required. We will later present

an optimized instantiation of the main protocol with a total communicatiaf (@)

(for the case of binary inputs and outputs). Finally, the computation performed by each
party is polynomial in the length of its input.

Remark 3.When{(n) < n, the requirement that(k,¢,7) = 7 + poly(k,t) can be
relaxed. In particular, if(n) = O(log n) it suffices thap(k, ¢, 7) = O(7) + poly(k, t).



Main Protocol

— Common inputs: security paramefé, a branching program length parametér
input domain/ = {0, 1, ...,¢t — 1}, output domairO = {0, 1}".

— Clientinput: an assignment= (z1,...,z,) € I".

— Server input: a layered BP = (G(V, E),vo, T, v, ¥ E) of length?.

— Sub-protocol: a strong OT protocdGor, QoT, AoT, Dot) with answer length

Bk, t,7).

1. SetupGen(1*):
— Let (pk, sk) — Got(1%).
— Return(pk, sk).
2. Encryption Enc(pk, z):
— Forl < i < n, generate a vecta; = (q;,...,q}), Whereqf is obtained by:

@] — Qot(pk,1',1% ),

and where the length$; are defined by, = log |O] andg;+1 = B(k, t, 5;).
— Returnc = (q1,...,qn).
3. Evaluation Eval(1*, pk,c = (¢!), P):
— Initialization: for eactw € T setlabel(v) « 9y (v).
— While v isn't labeled:
e Pick an unlabeled nodec V' — T such that all its children are labeled.
e Leti— 1y (v) andh < height(v).
o Let label(v) «— Aot (pk, ¢, label(uo), . . ., label(u;—1)), wherew,, is
the (unique) node such that € ¥ (v, um).
Note that the nodes,, are not necessarily distinct.
— Returnc’ = label(vy).
4. Decryption Dec(sk, c’):
— Letd, — .
— Forj = ¢downto 1, letd; ; — Dot (sk, d;).
— Returndy.

Fig. 1. Evaluating a branching program on encrypted data




A strong OT protocol with the latter efficiency requirement can be based on homo-
morphic cryptosystems which expand the ciphertext length by a constant factor, such
as El-Gamal (see Section 4.1) /(i) = O(1), we can rely on an arbitrary strong OT,
which in turn can be based on an arbitrary homomorphic encryption scheme (including,
for instance, the Goldwasser-Micali cryptosystem [17]).

Remark 4.The PIR protocol of [23] can be viewed as an instance of our construction

in which ¢ is set to some constait the input domait is of sizet = N'/¢ (whereN is

the database size), and the database is represented as a complete decision tree of depth
d and degreeV'/?. Its variant suggested in [34] (resp., [26]) corresponds to a decision
tree of depthy,/Iog N and degree¢ = 2V!°s N (resp., depthog N and degree = 2).

These three depth parameters correspond to the different BP length regimes discussed
in Remark 3.

We turn to prove the security properties of the main protocol. In the following we
assume that the given strong OT subprotocol is secure and that its answer complexity is
B(k,t,7) = 7+ poly(k, t). In Section 4.1 we will show that this assumption is implied
by the DCRA assumption.

Theorem 1. The protocol described in Figure 1 provides client privacy according to
Definition 6 as well as perfect size hiding server privacy in the semi-honest model ac-
cording to Definition 8.

Proof sketch:  Client privacy readily follows from the client privacy requirement in
the underlying OT protocol. The security of sending polynomially many strong OT
gueries under the same key follows from the security of encrypting multiple messages
under the same key in public-key encryption schemes (see [16], Theorem 5.2.11).

To prove size hiding server privacy, we describe a perfect simufator The idea
is to recreate the labels of the computation path figrto a terminal node labeled with
P(z) without knowing the nodes traversed by the p&iim will use the OT simulator
SimoT as a subroutine. Oninputs®, 11*!, pk, P(z)) (and givenI| = t as an additional
public input),Sim proceeds as follows:

— Letl—£(]x]), Ao — P(z).
— Forj=1to l, Iet)\j <—Sim0T(ka, 1t7)\j,1).
— Return),.

Consider the computation path, v1, . . . , v, induced byz. It follows by induction onj
that the distribution of; produced bysim is identical to the distribution débel(v,_;)
produced byEval(1%, pk, ¢, P), for everyk, z, P and pair(pk, c) which can be gener-
ated byGen, Enc on k, z. In particular, the simulator’'s outpW, is distributed identi-
cally to ¢’ = label(vg). Note that the strong OT requirement allogisno to produce
the correct distributions independently of the OT queries included in a

4.1 Implementing Strong OT

Our concrete implementation of strong OT is based on the Badadurik (DJ) homo-
morphic public-key cryptosystem [11], which generalizes Paillier's cryptosystem [31].



It is suitable for our needs because it allows us to encrypt a group element of fength
into a ciphertext of length + O(k), wherek is a security parameter. This efficiency
feature is unique among all known homomorphic encryption schemes and is needed
for our main protocol to be efficient for arbitrary length bourids). The semantic
security of the DJ cryptosystem follows from the Decisional Composite Residuosity
Assumption (DCRA) [11].

We now describe the main properties of the DJ cryptosystem that are useful for our
purposes (see [11] for further details).

— KEY GENERATION: Given a security parameté; Gen(1%) outputs a secret key
(p1,p2), Wherep;, p, are randonk-bit primes (i.e.2*~! > p;,p, < 2%), and a
public keyN = p;p,. The above choice qf;, p» guarantees thgicd(N, ¢(N)) =
1. This property will be useful in what follows. We refer 2 which can be gener-
ated byGen(1%) as avalid DJ key

— ENCRYPTION: The DJ cryptosystem is length-flexible in the sense that every fixed
key N allows to encrypt plaintexts of an arbitrary (polynomial) length, where the
encryption onlyaddsO(k) bits to the length of the plaintext. Given a plaintext
length parametee, wherel < e < min (p1,p2), we define a plaintext group
My, = Zy- and a ciphertext group'y . = Z}.... The restriction ore is re-
quired for correct decryption, and since we will only us€ poly(k) it will always
hold. Now fix some valid paifV, e). To abbreviate notation we denote the cipher-
text groupC,. = Zi. by C. LetCy = CN° = {N'|c € C}. Clearly,C
is a subgroup o”. Letg = N + 1 € C. The output distribution of the encryp-
tion is specified via an injective homomorphidih : My . — C/C, defined by
H(m) = g™ - Cy, whereg™ - C,, denotes the coset representedgyin C/Cy.

To encryptm € My ., the encryption functiorEly .(m) returns a random ele-

ment in the coseH (m). This can be done by samplingi Z3%, and outputting

¢ = g™-rN° (where all multiplications are i@"). In particular, an encryption ofis
arandom element af,. Note that the difference between the size of the ciphertext
([log N¢*17) and the size of the plaintexflog N¢]) is indeed onlyO (k).

— DECRYPTION Givenc = g™ -rN° and the factorizatiofip;, p») of N, it is possible
to efficiently decryptm. We denote the decryption algorithm BY,,, ) (c).

— HoMOMORPHISM: Given two ciphertexts € En (m) andcd’ € En .(m'), their
producte- ¢’ (in the ciphertext group) is a valid encryption of the sum-m’ (in the
plaintext group). It follows that” is an encryption op - m. Moreover, multiplying
¢ by a random encryption of @randomizeg into a random encryption of..

Strong OT from the DJ cryptosystem. The following strong OT protocol is similar to

the PIR protocol of [23] and its generalizations from [34, 26]. The choice of DJ as the
underlying cryptosystem is motivated by the goal of handling branching programs of an
arbitrary length. If the length functiof{n) is small, other homomorphic cryptosystems
can be used (see Remark 3).

Construction 2 (Strong OT) Let(Gen, En.c, D(p, p,),) b€ the DJ cryptosystem. The
OT protocol(GoT, AoT, QoT, DoT) proceeds as follows.

1. GOT(lk):



— Let (N, (p1,p2)) «— Gen(1%).
— Return(N, (p1,p2)).
2. Qot(N, 1%, 1¢,17,4):
— Lete be the minimal integer such that® > 27. We naturally identify strings in
{0,1}7 with integers inMy . = Zn., and assume that elements in the groups
Mpy . andCy . are padded so that their representation reveals
— Letg; < En (1) andg; <+ En (0) forall j € [t] \ i.
— Returng = (g1, ..., q1—1)-
3. Aot(INV,q,81,.-.,8¢):
— Infere fromgq.
— Letg — En.(1) - (Hf;i ¢;)~! (where all operations are iy .).
— Leta«— [['_, ¢ - En.(0).
— Returna.
4. DOT((plaPQ)aa):
— Infer e froma.
- ReturnD,, ,,).c(a).

Analysis. Correctness follows by observing that, . . . , ¢;) encrypt the-th unit vector

of lengtht anda encrypts the inner product 44, . . ., s;) with this vector, which yields

s;. Client privacy follows from the semantic security of the DJ cryptosystem, which can
be based on the DCRA assumption [11]. Server privacy follows from the fact that (due
to rerandomization) the server’s answer on any valid arandomencryption ofs;,
which can be easily generated Bymor. The protocol's query length is(k,t,7) =

t- (t 4+ O(k)) and its answer length 8(k, ¢, 7) = 7 4+ O(k).

4.2 Optimizations

Optimizing the server’'s workOur main protocol requires the branching progr&mno

be layered. Converting an arbitrary BP to an equivalent layered BP of the same length
may generally result in a quadratic blowup to its size, which in turn results in a quadratic

computational overhead on the server’s part. (We note, however, that most “natural”

BPs, including ones that arise from other computation models such as finite automata,
are either already layered or can be turned into equivalent layered BPs with only a linear
overhead.) The quadratic overhead can be easily avoided in general if only client privacy
is required. The main protocol can be modified in this case to operate on a non-layered
BP by padding the labels that serve as OT inputs to match the size of the longest label.

Optimizing the encryption lengthin the main protocol, the length of the encryption

¢ produced byEnc must be bigger thaEﬁZl B; > 2. It turns out that the quadratic
dependence ofican be avoided by exploiting the specific structure of the DJ cryptosys-
tem. The improvement is based on the following observation:

Observation 3 For every valid DJ key paif(N,e), ¢ < e, m € My, andc €
En (m) (i.e.,cis some valid encryption of) it holds that

cmod N¢+! ¢ En e (m mod N¢).



It follows from Observation 3 that the ciphertextnay consist of encryptionsy; in the
largest group (rather thanencryptions;, for every level; of the BP), since the server
can convert encryptions from the largest group into encryptions from smaller groups.
(Note that since we only encrypt O’s and 1's, the conversion does not modify the en-
crypted value.) The improved implementation achieves communication complexity of
O(knt) bits from the client to the server (instead@fkn/?) in the original implemen-
tation) andO(k¢) bits from the server to the client (as in the original implementation).
Clearly, the optimization doesn’t compromise client or server privacy. Thus, we have:

Theorem 4. Assuming DCRA [11], there is a protocol for evaluating a binary branch-
ing program of lengtlY and of arbitrary size on an encrypted input of lengthwith

a total communication o®(knt) bits (wherek is a security parameter). The protocol
provides client privacy as well as size hiding server privacy in the semi-honest model.

5 Handling Malicious Clients

In this section we sketch the required modifications for achieving security against mali-
cious clients. For lack of space we only describe the high level ideas and refer the reader
to the full version for further details. For simplicity, we restrict the attention throughout
this section to the case of branching programs over binary inputs.

We start by observing that a malicious client can easily break the server privacy of
the main protocol even if it honestly generates the publicikey

Example 1.Consider a client who sends an encryption of 2 (instead of 0 or 1) as an
OT query. In this OT invocation, the client can recover bgitands; . This potentially
reveals additional information about the structure of the branching proydror in-
stance, in the degenerate case whereonsists of an initial node and two terminal
nodes, the client will learn the values of both terminal nodes.

The above mild form of cheating is relatively easy to handle using previous tech-
nigues [15, 1, 24] and will be addressed in Section 5.1. A more challenging goal is to
handle clients that are also free to choose invalid public kéydJ his scenario will be
addressed in Section 5.2.

Before describing our solutions, we formalize our notions of server privacy in the
malicious model. The following definitions modify Definition 8 in that they allow an
unbounded simulator to extract an effective inptitfrom a corrupted ciphertext*
and a (possibly) corrupted public key*. The use of unbounded simulation seems
necessary in the “vanilla” one-round malicious model (i.e., without setup assumptions)
and was previously made in similar contexts [29, 1, 13, 20, 24].

We start by defining therusted setup modgelvhere the client is forced to use a valid
public keypk but can cheat by creating invalid ciphertexts This model is motivated
by the fact that the same public key may be reused to encrypt many different inputs.
Thus, one can afford an expensive certification procedure (e.g., using interactive zero-
knowledge proofs or a trusted party) that is used once and for all.



Definition 12 (Size hiding server privacy: trusted setup model)LetIT = (Gen, Enc,
Eval, Dec) be a protocol for evaluating programs from a representation méteh en-
crypted data. We say thdl hasstatistical server privacy in the trusted setup maflel
there exists a computationally unbounded, randomized algor$iinmand a negligible
functione(-) such that the following holds. For every security paraméteralid public
keypk that can be generated ben(1%), and arbitrary ciphertext* there exists an
“effective” input «* such that for every prograr? € {0, 1}*, we have

SD(Eval(1%, pk, ¢, P), Sim(1%, pk, c¢*, U (P, z*))) < e(k).

The case o€omputationakerver privacy is defined in an analogous way (see Defini-
tion 7), where statistical indistinguishability is replaced by computational one.

We turn to the fully malicious model.

Definition 13 (Size hiding server privacy: fully malicious model). We say that/l
has (statistical or computationaferver privacy in the fully malicious modilit satis-
fies Definition 12 with the following modification: instead of quantifying ovevalid
public keygpk, now the quantification is over arbitrary public keys*.

Protocols for computing on encrypted data in the above model give rise to one-
round (two-message) protocols for secure two-party computatidn(of) under the
relaxed security definitions of [29, 1, 13].

A natural approach for handling malicious clients would be to leave the main pro-
tocol as it is and only upgrade the original strong OT primitive into one that achieves
security against malicious clients. Unfortunately, we cannot use this modular approach
for several reasons. First, the basic variant of the protocol requires the client to use
each inputz; in multiple OT invocations (corresponding to the different levels where
x; appears) and so the client could cheat by simply using inconsistent inputs in these
OT invocations. More importantly, we do not know how to construct a strong OT proto-
col which simultaneously satisfies both our security and efficiency requirements in the
malicious model. It is interesting to note that a one-round OT protocol of Kalai [20],
which is based on Paillier's cryptosystem and can be generalized to work with the DJ
cryptosystem, fails with respect to both security (in that it is nstrangOT) and effi-
ciency (in that its answer significantly blows up the length of the selected string). Still,
ideas from [20] will be instrumental in our solution for the fully malicious model.

5.1 Trusted Setup Model

We now describe a solution in the trusted setup model. Our starting point is the opti-
mized instantiation of the protocol for the semi-honest model (Section 4.2), where in
the case of binary input$ & 2) the client sends a single encryption for each input. Our
goal is to prevent the type of attack described in Example 1, namely to ensure that each
encryption sent by the client is indeed an encryption of 0 or 1. To this end one could em-
ploy general-purpose zero-knowledge proofs, forcing the client to prove that its queries
are well formed. However, this approach requires multiple rounds of interaction which
we would like to avoid, and also involves a considerable efficiency overhead.



Instead, we apply the conditional disclosure of secrets (CDS) methodology of [15,
1]. The idea is that instead of making the client prove that its queries are well formed,
it suffices for the server to disclose its answeto the client only under the condition
that the queries are well formed. Using the homomorphic property of the encryptions,
the latter conditional disclosure can be done without the server even knowing whether
the condition is satisfied.

The original CDS solutions from [1] relies on homomorphic encryption over groups
of a prime order. An efficient extension to groups of a composite order was suggested
in [24], assuming that the order of the group is sufficiently “rough”. We employ a similar
extension which avoids the roughness assumption and is geared towards the solution in
the fully malicious model.

We start by describing the approach of [1]. The simplest setting involves a server
holding a (valid) public keypk of a homomorphic cryptosystem, a ciphertextc
E,(m) (presumably generated by a client), and a secr&he client holds the secret
key sk corresponding t@k. The goal is for the server to send a single (randomized)
ciphertext? such that: (1) ifn = 0 thens can be recovered fromusing the secret key;
and (2) ifm # 0 then¢ reveals (almost) no information aboutThe above is referred
to as a CDS of the secretunder the conditiomn = 0. A solution to this simple CDS
problem can be easily extended to CDS under more general conditions, involving mul-
tiple inputsm,; and general predicates over atomic conditions of the form= b;. In
particular,2n invocations of the above primitive are sufficient to disclose a secret under
the suitable condition here, namely thatiphertexts:; all encrypt 0/1 values.

The solution of [1] is to le€ be a random encryption 6f+ pm, wherep is a random
integer between 1 and the order of the plaintext group. Notectisah be efficiently
computed using the homomaorphic properties of the encryption. Requirement (1) holds
because ifn = 0 thené encryptss + p - 0 = s. Requirement (2) holds in the case
where the plaintext group is of a prime order; indeed, in that case-# 0 thenpm is
uniformly distributed over the plaintext group and therefore can be used ta hide

The next observation is that in the case that the plaintext group has a composite
order, not all is lost. In this case, il # 0 thenpm is uniformly distributed over a
nontrivial subgroup of the plaintext group.dfis chosen uniformly at random from the
plaintext group, ther will still have at least one bit of remaining entropy even when
conditioned orz. This residual randomness can be extracted using standard privacy am-
plification techniques. Specifically, to disclose/dit secret we first repeat the above
[ + k times with independent secrets increasing the conditional entropytte- &, and
then apply an arbitrary strong randomness extractor (e.g., a pairwise independent hash
function) to extract (almost) perfectly secret bits from the partially leaked secrets.

The above approach (or the similar approach from [24]) solves our problem in the
trusted setup model. In this case, every possible stringan be interpreted as a valid
ciphertext encrypting some messagein the plaintext grougZ .. Thus, we can use
the above to disclose the server's answer under the condition that éimeryptions
produced by the client are well formed. This yields a protocol for the trusted setup



model whose communication complexity is comparable to that of the optimized version
of the original protocof.

5.2 Fully Malicious Model

The previous solution relied on the fact that for a valid Kéyeveryc* can be inter-
preted as a valid encryption of some messagd his does not hold in general. In fact,
there is an explicit cheating strategy which udésuch thaigcd(N, ¢(N)) > 1 (e.g.,

N = p1p2, Wherepy, po are odd primes angh, = 2p; +1) in order to break the previous
protocol. The main difficulty arises from the fact that the set of harmful Réysmnnot

be efficiently recognized. Our high level approach for getting around this problem is to
project ciphertexts sent by the client onto a “harmless” subgroug by having the
server raise them to the power df", whereT = [log N]. To maintain correctness,
plaintexts are chosen from a subgroupZf. of size N*~7, which requires to moder-
ately increase the values ofised in our protocol. We refer the reader to the full version
for further details.
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