
Evaluating Branching Programs on Encrypted Data?

Yuval Ishai and Anat Paskin

Computer Science Department, Technion
yuvali@cs.technion.ac.il, anps83@gmail.com

Abstract. We present a public-key encryption scheme with the following prop-
erties. Given a branching programP and an encryptionc of an inputx, it is
possible to efficiently compute asuccinctciphertextc′ from whichP (x) can be
efficiently decoded using the secret key. The size ofc′ depends polynomially on
the size ofx and thelengthof P , but does not further depend on the size ofP .
As interesting special cases, one can efficiently evaluate finite automata, decision
trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
c′ does not depend on the size of the object being evaluated. These are the first
general representation models for which such a feasibility result is shown. Our
main construction generalizes the approach of Kushilevitz and Ostrovsky (FOCS
1997) for constructing single-server Private Information Retrieval protocols.
We also show how to strengthen the above so thatc′ does not contain additional
information aboutP (other thanP (x) for somex) even if the public key and the
ciphertextc are maliciously formed. This yields a two-message secure protocol
for evaluating a length-bounded branching programP held by a server on an
input x held by a client. A distinctive feature of this protocol is that it hides the
size of the server’s inputP from the client. In particular, the client’s work is
independent of the size ofP .

1 Introduction

Computing on encrypted data is arguably one of the most intriguing open problems in
cryptography. The variant of this problem we are interested in may be illustrated by the
following motivating scenario. Suppose that a client, holding a sensitive local inputx,
wishes to run a remote programP on this input. For instance,x can be the medical
history of an individual andP a complex propriety algorithm determining whether to
offer insurance coverage to this individual. To the end of evaluatingP (x), the client
wishes to publish anencryptedversion ofx, denoted byc, while still allowing a server
owningP to effectively run its program on the ciphertextc. That is, based onP andc
the server should compute in polynomial time a messagec′, from which the client can
recoverP (x) using its secret key.

As described so far, the problem can be solved by simply lettingc′ include a com-
plete description ofP . However, this trivial solution has two significant weaknesses.
First, it completely revealsP to the client, whereas ideally the client should only be
able to learnP (x). Second, when the description size ofP is larger than its input and

? Supported by grants 36/03 and 1310/06 from the Israel Science Foundation and grant 2004361
from the U.S.-Israel Binational Science Foundation.

output, this solution is wasteful in terms of communication. Ideally, the communication
should bea-priori bounded by some polynomial in the size of the inputx, the output
P (x) and the security parameter, independently of the description size ofP . The same
holds for the amount of local computation and storage used by the client. To summarize,
it is desirable to obtain solutions which satisfy the following two goals:

1. HideP from the client (to the extent possible).
2. Make the client’s work independent of the size ofP . In particular,c′ should be

succinctin the sense that its size depends only on the size of the input and output
and not on that ofP .

Jumping ahead, the main open problem in the area is that of realizing the second goal.
This problem is the focus of our work.

Before addressing known methods for realizing the above two goals, it is instruc-
tive to further clarify what we mean when referring to a “program”P . A program is
a string that represents a function, mapping an inputx to an outputy. To simplify the
exposition, we restrict the attention to finite boolean functionsf : {0, 1}n → {0, 1}.
The correspondence between a programP and the function it represents is determined
by an underlyingrepresentation model. Common representation models for finite func-
tions include circuits, formulas, branching programs, OBDDs, finite automata, decision
trees, and truth tables. Once the representation model is fixed, every stringP has a
unique interpretation as a program computing some specific functionf . In this work
we will be interested inuniversalrepresentation models, in which every functionf can
be computed by some programP in the model. Note that all of the models in the above
list are universal. However, thecomplexityof representing a function can greatly vary
between the models. Circuits are the most powerful model in the list, in the sense that
a program in any of the other models has an equivalent circuit of essentially the same
size. On the other extreme, truth tables are the least powerful of these models, requiring
a program of size2n for any functionf . This makes truth tables useless for all but very
small input lengthsn.

We return to the question of realizing the above two goals. Goal 1 can be addressed
by using techniques from the area of secure computation. Most notably, Yao’s gar-
bled circuit technique [36, 7, 25] can handle anycircuit P , allowing to computation-
ally hide all information aboutP other thanP (x) and the size ofP . A similar result
can be obtained for less powerful representation models, such as formulas or various
kinds of branching programs, with the additional feature of keepingP information-
theoretically private [35, 4, 18, 22]. However, all these techniques inherently fail with
respect to Goal 2, as they require the size ofc′ to be comparable to the size ofP . This
gives rise to the following question:

For which natural representation models can we realize Goal 2, namely evalu-
ate an arbitrary programP on an encrypted input so that the client’s work does
not depend on the size ofP?

A positive answer for the case of circuits (hence also for all other models) would easily
follow from the existence of a completely malleable encryption scheme — one that
allows to freely perform both additions and multiplications on ciphertexts. However,
there is yet no candidate for an encryption scheme with this strong property.

The first protocols in which the client’s work can go below the size ofP were
given in the context of Private Information Retrieval (PIR) [10, 23]. A single-server
PIR protocol can be viewed as a protocol for evaluating atruth tableP of sizeN = 2n

on an encrypted inputx of sizen. There are such protocols in which the client’s work
is polynomial inn [6, 26], thus affirmatively answering the above question for the case
of a truth table representation. Extensions to aset representation (whereP lists the
set of inputs on whichf evaluates to1) were given in the context of private keyword
search [23, 9, 13, 30]. Recently, an efficient protocol for evaluating 2-DNF formulas and
degree-2 polynomials on encrypted data was given by Boneh et al. [5].1 The question
of realizing Goal 2 for more powerful and useful representation models remained open.

1.1 Our Contribution

We obtain an affirmative answer to our main question for the case oflength-bounded
branching programs. To explain the meaning of this result, we give some background
on branching programs and their complexity. A (deterministic) branching programP
is defined by a directed acyclic graph in which the nodes are labeled by input variables
and every nonterminal node has two outgoing edges, labeled by 0 and 1. An input
x ∈ {0, 1}n naturally induces a computation path from a distinguished initial node
to a terminal node, whose label determines the outputP (x). Thesizeof P is defined
as the number of nodes in the graph and itslength is the length of the longest path
from the initial node to a terminal node. Branching programs are a relatively powerful
representation model. In particular, any logarithmic space orNC1 computation can be
carried out by a family of polynomial-size branching programs.

We consider classes of branching programs whose length is bounded by some pub-
lic parameter̀ , where` = `(n) is polynomial inn. Representation bỳ(n)-bounded
branching programs is universal whenever`(n) ≥ n. Indeed, any functionf can be
computed by a complete decision tree of lengthn and sizeO(2n). Branching programs
of length`(n) = n are of special interest, as they can simulate several representation
models that are often used in practice. For instance, iff can be computed by a deter-
ministic finite automaton withs states, then it can be computed by a branching program
of lengthn and sizesn+1. Other useful models such as decision trees and OBDDs are
also special cases of length-n branching programs.

Our main result is a public-key encryption scheme with the following properties.
Given a branching programP and an encryptionc of an inputx, it is possible to effi-
ciently compute asuccinctrandomized ciphertextc′ from whichP (x) can be efficiently
decoded using the secret key. The size ofc′ and the work required for decrypting it de-
pend polynomially on the size ofx and thelengthof P , but do not further depend on
the size ofP . Thus, whenever the length`(n) is some fixed (polynomial) function ofn,
we realize Goal 2 above. As interesting special cases, one can evaluate finite automata,
decision trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
c′ does not depend on the size of the object being evaluated. These are the first general

1 In fact, the scheme of [5] realizes a stronger form of computing on encrypted data in which
the length of the ciphertextc′ depends only on the security parameter and not on the length of
the input.

representation models for which such a feasibility result is shown. We also strengthen
the above protocol to realize Goal 1 in a very strong sense, guaranteeing thatc′ does not
contain additional information aboutP (other thanP (x) for somex) even if the public
key and the ciphertextc are maliciously formed.

Size hiding.Our protocols have the followingsize hidingfeature: the ciphertextc′ does
not reveal any information whatsoever about thesizeof P , no matter how largeP is.2

This should be contrasted with previous methods of computing on encrypted data, in
which the communication complexity and the client’s work directly reflect (an upper
bound on) the size ofP . Thus, we achieve a stronger version of Goal 1 than in all
previous solutions. A similar notion of size hiding was previously considered by Micali
et al. in the context ofzero-knowledge sets[27].

Applications to secure two-party computation.Our technique for computing on en-
crypted data immediately gives rise to a one-round (two-message) secure protocol for
evaluating a length-bounded branching programP held by a server on an inputx held
by a client. (This also implies a protocol for the setting in whichP is public but its
inputs are partitioned between the two parties.) In the case of malicious parties, the pro-
tocol satisfies the same relaxed security definition used in previous works on one-round
secure computation [29, 1, 13, 20, 24]. A distinctive feature of our protocol is that the
client’s work is independent of the size ofP and moreover the protocol hides the size
of P from the client.3 The latter size hiding feature demonstrates that while hiding the
sizes ofbothinputs is impossible for interesting functions, there are useful special cases
where one can hide the size ofoneof the inputs while maintaining security.

As a concrete application, one can obtain a secure one-round protocol forkeyword
searchwhich totally hides from the client the size of the data set held by the server.
That is, a client holding a secret keywordx can query a databaseD held by a server
without revealingx and while assuring the server that it cannot learn anything aboutD
(including its size) other than whetherx ∈ D. Previous solutions to the secure keyword
search problem [9, 13, 30] fall short of achieving the size hiding goal. A size hiding
protocol as above is obtained by representingD as atrie data structure, which can be
viewed as an instance of a length-n branching program.

We finally note that the one-round protocol obtained using our technique yields a
simpler alternative to similar protocols from the literature that provideunconditional
security to the server [35, 4, 18, 22]. Its complexity improves over previous protocols
even in the case of branching programs of unbounded length. For evaluating a branch-
ing program of sizes overn inputs, the communication complexity of our protocol is
O(kns) (wherek is a security parameter), improving over theO(ks2) complexity of
the best previous solutions in this setting [18].

2 We note that perfect size hiding cannot be achieved in the physical reality, as thetime it takes
the server to respond reveals an upper bound on the size ofP . However, increasing this upper
bound on the size ofP does not involve additional work. This should be contrasted with the
partial size hiding that can be achieved using previous protocols by simply padding the inputs.

3 A secure two-party protocol in which the client’s work is almost independent of the size ofP
can be obtained using the technique of Naor and Nissim [28]. However, this protocol requires
multiple rounds of interaction and does not achieve size hiding.

Techniques.The basic version of our protocol uses a simple generalization of the tech-
nique of Kushilevitz and Ostrovsky [23] for constructing single-server PIR protocols.
In fact, the protocol of [23] (as well as its variants from [34, 26]) can be viewed as an
instance of our protocol in which the branching program is a complete (but possibly
non-binary) decision tree whosei-th level depends only on thei-th input variable.

Our protocol proceeds roughly as follows. The ciphertextc is obtained by separately
encrypting each bit ofx using a homomorphic public-key encryption scheme. (For effi-
ciency reasons we rely on the Damgård-Jurik scheme [11]; this scheme was previously
used in the context of PIR by Lipmaa [26].) To evaluateP onx we proceed in a bottom
up manner. Starting from the terminal nodes, in thei-th iteration we handle all nodes
whose distance from the terminal nodes isi. For each such node, we compute a cipher-
text containing an (iterated) encryption of its value. Using the homomorphic property,
the encryption assigned to every node can be computed from the encryptions assigned
to its children (which were computed in previous iterations) and the encryption of the
input bit labeling this node. The ciphertextc′ is the (iterated) encryption assigned to the
initial node. The client can recoverP (x) by applying iterated decryptions toc′.

The stronger variant of our protocol which remains secure in the case of malicious
clients is more involved, and relies on variants of previous techniques of Aiello et al. [1],
Naor and Pinkas [29], Laur and Lipmaa [24], and (especially) Kalai [20].

Organization. In Section 2 we define our general notion of representation models as
well as the specific branching program model for which our results apply. In Section 3
we define the problem of computing on encrypted data as well as a variant of Oblivious
Transfer on which our solution relies. Our main protocol is presented in Section 4. This
protocol guarantees the privacy of the client as well as the privacy of the server against
a semi-honest client. The case of malicious clients is discussed in Section 5. For lack of
space, some details are deferred to the full version.

2 Preliminaries

We denote byy←A(x) the process of invoking the (possibly randomized) algorithm
A on inputx and assigning the result toy. We say that a functionε(k) is negligible if
for every constantc > 1 we haveε(k) < 1/kc for all sufficiently largek. We use the
following standard notion of statistical distance:

Definition 1 (Statistical distance).Let X, Y be random variables over the finite set
U . Denote the distance betweenX andY by

SD(X,Y) = maxU ′⊆U

∣∣∣∣ Pr
x←X

[x ∈ U ′]− Pr
y←Y

[y ∈ U ′]
∣∣∣∣

2.1 Representation Models

Loosely speaking, a representation model is a way of interpreting strings as “programs”
for evaluating (families of) functions over some finite domain. We are only interested
in representation models which areuniversal in the sense that every function has a

program evaluating it in that model. For simplicity we restrict the attention to functions
defined over a binary input alphabet. An extension to the general case is straightforward.

Definition 2 (Representation model).A representation modelis a polynomial-time
computable functionU : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, whereU(P, x) is referred to as
the value returned by a “program”P on the inputx. WhenU is understood from the
context, we useP (x) to denoteU(P, x). We say that a functionf : {0, 1}∗ → {0, 1}∗
can be implemented in a representation modelU if there exists an infinite sequence
(P0, P1, . . .), referred to as an implementation off in U , such thatf(x) = U(P|x|, x)
for everyx ∈ {0, 1}∗.

We now define the branching programs model. This is the representation model for
which our main result applies.

Definition 3 (Branching program (BP)). A (deterministic) branching program over
the variablesx = (x1, . . . , xn) with input domainI and output domainO is defined by
a tuple(G = (V, E), v0, T, ψV , ψE) where:

– G is a directed acyclic graph. Denote byΓ (v) the children set of a nodev.
– v0 is an initial node of indegree 0. We assume without loss of generality that every

u ∈ V − {v0} is reachable fromv0.
– T ⊆ V is a set of terminal nodes of outdegree 0.
– ψV : V → [n] ∪O is a node labeling function assigning an output value to each

terminal node inT , and a variable index from[n] to each nonterminal node in
V − T .

– ψE : E → 2I is an edge labeling function, such that every edge is mapped to a
non-empty set, and for every nodev the sets labeling the edges to nodes inΓ (v)
form a partition ofI.

BP evaluation.The outputP (x) of a branching programP on an input assignmentx ∈
In is naturally defined by following the path induced byx from v0 to a terminal node
v`, where the successor of nodev is the unique nodev′ such thatxψV (v) ∈ ψE(v, v′).
The output is the valueψV (v`) labeling the terminal node reached by the path.

BP complexity measures.Let P = (G(V,E), v0, T, ψV , ψE) be a BP. Thesizeof P
is |E|. (Note that in the case where|I| is constant we have|E| = O(|V |).) Theheight
of a nodev ∈ V , denotedheight(v), is the length (in edges) of the longest path from
v to a node inT . The lengthof P is the height ofv0. We say that an implementation
(P0, P1, . . .) of a functionf in the branching program model is length-bounded by`(·)
if the length of eachPn is at most̀ (n).

Remark 1.In the following we will sometimes assume that branching programs have
binary inputs and outputs, namely thatI = O = {0, 1}. We stress, however, that the
generalization to non-binary domains is useful for some of the applications we have in
mind. For instance, non-binary input alphabets are useful for casting the PIR protocol
from [23] as a special case of our main construction, and large output alphabets are
useful for applications such as private retrieval by keywords [9, 13].

Our protocols take the simplest form when the branching program being evaluated
is layeredin the following sense.

Definition 4 (Layered BP).We say thatP is a layeredbranching program of length̀
if the node setV can be partitioned intò + 1 disjoint levelsV =

⋃`
i=0 Vi, such that

V0 = {v0}, V` = T , and for everye = (u, v) we haveu ∈ Vi, v ∈ Vi+1 for somei. We
refer toVi as thei-th levelof P .

Every branching program of sizes can be efficiently transformed into a layered
branching program of size at mosts2 and same length (cf. [32]). For convenience, we
assume in our protocol that the server’s BP is layered, which may square the server’s
work but has no effect on the communication complexity or the client’s work. The
quadratic overhead in the server’s work can be avoided in most useful special cases
(e.g., evaluating decision trees or finite automata) and can be avoided in the general
case if only client privacy is required.

3 Cryptographic Primitives

In this section we define both our goal of computing on encrypted data and the main
cryptographic tool on which we rely.

3.1 Computing on Encrypted Data

We consider a scenario where a client, holding an inputx, publishes a public keypk and
an encryptionc of x underpk. This encryption is used by a server to efficiently evaluate
a programP (in some given representation model) onc, obtaining a ciphertextc′. The
client then uses its secret key to recoverP (x) from c′. This is formalized as follows.

Definition 5 (Computing on encrypted data).Let U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
be a representation model. Aprotocol for evaluating programs fromU on encrypted
datais defined by a tuple of algorithms(Gen, Enc,Eval, Dec) and proceeds as follows.

– SETUP: Given a security parameterk, the client computes(pk, sk)←Gen(1k) and
savessk for a later use.

– ENCRYPTION: The client computesc←Enc(pk, x), wherex is the input on which
a programP should be evaluated.

– EVALUATION : Given the public keypk, the ciphertextc, and a programP , the
server computes an encrypted outputc′←Eval(1k, pk, c, P).

– DECRYPTION: Given the encrypted outputc′, the client outputsy←Dec(sk, c′).

We require that if both parties act according to the above protocol, then for every input
x, programP , and security parameterk ∈ N, the outputy of the final decryption phase
is equal toU(P, x) except, perhaps, with negligible probability ink.

An essential security requirement for computing on encrypted data isclient privacy,
requiring that the pair(pk, c) produced in the above process keep the client’s inputx
semantically secure [17, 16].

Definition 6 (Client privacy). Let Π = (Gen,Enc, Eval,Dec) be a protocol for com-
puting on encrypted data. We say thatΠ satisfies theclient privacyrequirement if the
advantage of any PPT adversaryAdv in the following game is negligible in the security
parameterk:

– Adv is given1k and generates a pairx0, x1 ∈ {0, 1}∗ such that|x0| = |x1|.
– Let b

R← {0, 1}, (pk, sk)←Gen(1k), andc←Enc(pk, xb).
– Adv is given the challenge(pk, c) and outputs a guessb′.

The advantage ofAdv is defined asPr[b = b′]− 1/2.

Client privacy alone can be realized by simply lettingEval outputP . However, it be-
comes nontrivial to satisfy when|P | À |x| and the communication complexity is re-
quired to be sublinear in|P |. The latter requirement is in the center of this work.

While client privacy suffices for some applications, we will also be interested in
protecting the privacy of the server by hiding the programP to the extent possible. For
simplicity we consider here the case of a semi-honest client, who generates a valid pub-
lic key pk and ciphertextc. The case of malicious clients will be addressed in Section 5.

Definition 7 (Server privacy: semi-honest model).Let Π = (Gen, Enc, Eval, Dec)
be a protocol for evaluating programs from a representation modelU on encrypted
data. We say thatΠ has statistical server privacy in the semi-honest modelif there
exists a PPT algorithmSim and a negligible functionε(·) such that the following holds.
For every security parameterk, input x ∈ {0, 1}∗, pair (pk, c) that can be generated
byGen, Eval on inputsk, x, and programP ∈ {0, 1}∗, we have

SD(Eval(1k, pk, c, P) , Sim(1k, 1|x|, pk, U(P, x), 1|P |)) ≤ ε(k).

The case ofperfect server privacyis defined similarly, except thatε(k) = 0 andSim
is allowed to run in expected polynomial time.

In the case ofcomputational server privacy, Sim should satisfy the following re-
quirement. For every polynomial-size circuit familyD there is a negligible functionε(·)
such that for anyk, x, pk, c, P as above we have

Pr[D(Eval(1k, pk, c, P)) = 1]− Pr[D(Sim(1k, 1|x|, pk, U(P, x), 1|P |)) = 1] ≤ ε(k).

Our main protocol will have perfect server privacy. In fact, it will additionally hide
the size of the server’s inputP from the client. We refer to this property assize hiding.
This implies, in particular, that the length ofc′ must be independent of the length ofP .

Definition 8 (Size hiding server privacy: semi-honest model).We say thatΠ has
(perfect, statistical, or computational)size hiding server privacyin the semi-honest
model if it satisfies the requirements of Definition 7 with the following difference:Sim
does not get the length ofP as an input.

Remark 2.ProtocolsΠ which satisfy our definitions of client privacy (Definition 6) and
standard server privacy (Definition 7) can be easily derived from previous protocols for
one-round secure computation. In particular, Yao’s protocol [36] yields a protocol for

evaluating circuits on encrypted data with computational server privacy, and protocols
from [35, 21, 14, 18, 4, 22] yield protocols for evaluating formulas, branching programs,
and even non-deterministic branching programs on encrypted data with perfect or sta-
tistical server privacy. However, in all these protocols the length ofc′ is generally bigger
than the length ofP . In particular, none of these protocols satisfies the additional size
hiding property of Definition 8.

3.2 Oblivious Transfer

It will be convenient to present our main protocol in a modular way, using a variant
of one-round Oblivious Transfer (OT) [33, 12] as a subprotocol. To this end it will be
necessary to rely on a stronger server privacy property than the one implied by standard
definitions of OT. As before, we focus here on the case of a semi-honest client and
postpone the treatment of malicious clients to Section 5.

A standard one-round OT protocol involves a server, holding a list oft secrets
(s1, s2, . . . , st), and a client, holding a selection indexi. The client sends a queryq
to the server, who responds with an answera. Usinga and its random input, the client
should be able to recoversi. The standard security requirements includeclient privacy,
requiring thatq keepi hidden from the server, andserver privacy,requiring thata keep
all secrets other thansi hidden from the client. Note that the latter server privacy re-
quirement does not rule out the possibility thata reveals information about the query
q which is not implied by the outputsi alone. (In fact,a can include the entire query
q without violating server privacy.) This might compromise the security of our main
protocol, in which the client issues multiple OT queries and each query is used by the
server to compute multiple answers. It will be crucial for the security of the protocol
that the client be unable to correlate answers with queries, beyond correlations which
follow from the outputs. Such correlations will reveal to the client information about
the structure of the server’s branching program.

Roughly speaking, our notion of strong OT strengthens the above server privacy
requirement by requiring the distribution of the answera conditioned on the outputsi

to be independent of the queryq. In other words, the distribution of the answer depends
on the output alone. It turns out that a natural implementation of one-round OT based
on homomorphic encryption [23, 34] satisfies the required properties (see Section 4.1).
We now formally define strong OT.

Definition 9 (Strong OT). A strong OTprotocol is defined by a tuple of PPT algo-
rithms(GOT,QOT, AOT,DOT). The protocol involves two parties, a client and a server,
where the server’s input is at-tuple of strings(s1, . . . , st) of lengthτ each, and the
client’s input is an indexi ∈ [t]. The parameterst, τ are given as inputs to both parties.
The protocol proceeds as follows:

– The client generates(pk, sk)←GOT(1k), computes a queryq←QOT(pk, 1t, 1τ , i),
and sends(pk, q) to the server.

– The server computesa←AOT(pk, q, s1, . . . , st) and sendsa to the client.
– The client computes and outputsDOT(sk, a).

We require that if both parties follow the protocol, the client always outputssi. We
denote the length of the queryq byα(k, t, τ) and the length of the answera byβ(k, t, τ).

Our main protocol will requireβ(k, t, τ) = τ + poly(k, t) to efficiently accommodate
BPs of arbitrary length. (In fact, it suffices that the above holds fort = 2.) This will
be our default efficiency requirement. However, this requirement can be relaxed if one
settles for weaker forms of our main result that apply to shallow BPs, such as constant-
length BPs over a polynomial-size input alphabet.

We now define the client privacy and (strong) server privacy requirements.

Definition 10 (Strong OT: client privacy). We require that the client’s queryq keepi
semantically secure. That is, the advantage of any PPT adversaryAdv in the following
game is negligible in the security parameterk:

– Adv is given1k and generates1t, 1τ andi0, i1 such thati0, i1 ∈ [t].
– Let b

R← {0, 1}, (pk, sk)←GOT(1k), andq←QOT(pk, 1t, 1τ , ib).
– Adv is given the challenge(pk, q) and outputs a guessb′ for b.

The advantage ofAdv is defined asPr[b = b′]− 1/2.

Our strong variant of perfect server privacy is defined similarly to Definition 7.

Definition 11 (Strong OT: server privacy). There exists an expected polynomial time
simulatorSimOT such that the following holds. For everyk, t, τ , i ∈ [t], pair (pk, q) that
can be generated byGOT, QOT on inputsk, t, τ, i, and stringss0, . . . , st−1 ∈ {0, 1}τ ,
the distributionsAOT(pk, q, s1, . . . , st) andSimOT(pk, 1t, si) are identical.

In the following it will sometimes be convenient to index the server’s inputssi by
0, 1, . . . , (t− 1) instead of1, 2, . . . , t.

4 Main Protocol

In this section we will describe our main protocol for evaluating branching programs on
encrypted data. The protocol will provide client privacy, along with size hiding server
privacy in the semi-honest model. Extensions that achieve server privacy in the mali-
cious model will be presented in Section 5.

We fix a polynomially bounded length function`(·), and assume that if the client’s
input x is of lengthn, then the server’s BPP is of length`(n). (To conform to our
general definition of representation models, one may defineP (x) = 0 for P andx
that do not match.) We also view the input domainI and output domainO as being
implicitly determined byn. However, in the following it will be convenient to vieẁ,
|I|, and |O| as separate parameters which are given to both parties, and analyze the
complexity of the protocol as a function of these parameters. We will also assume that
P is layered (see Definition 4). As discussed in Section 2.1, every BP can be efficiently
transformed into an equivalent layered BP without increasing its length.

Our protocol is based on a strong OT protocol as defined in Section 3.2 and proceeds
roughly as follows. (For simplicity, assume that the input domainI of P is binary and
that every nonterminal node in the graph has outdegree 2.) The client generates, for
every input variablexi and levelj, an OT queryqj

i corresponding to a selection of the
xi-th string out of a pair of strings of an appropriate length. (This length will depend

on j and will be later understood from the context.) The`n queriesqj
i jointly form the

encryptionc of x.
To evaluateP on c, the server makes a bottom-up pass onP , starting with the

terminal nodesT and ending with the initial nodev0. This pass labels each nodev in
the graph by an OT answer which encrypts the output value to whichx leads from this
node. The pass consists of` + 1 iterations, where in iterationj (0 ≤ j ≤ `) all nodes of
heightj are handled. In iteration 0 every terminal nodev is labeled by the corresponding
output valueψV (v). At the onset of thej-th iteration,j ≥ 1, all nodes of heightj − 1
have already been labeled. For each nodev of heightj, we want the labeling ofv to
encrypt the label of the child ofv to whichx leads. Such a label is computed by using
the OT answering algorithm as follows. Suppose that the children ofv arev0 andv1,
whereP branches fromv to vb if xi = b. The label ofv then computed by applying
the OT answering algorithm to the queryqj

i on the pair of strings(label(v0), label(v1)).
Note that sinceP is layered, the two labels have the same length. Moreover, by the
strong server privacy property of the OT protocol, the label ofv can be viewed as an
encryption of the label of the selected childvxi

. In particular, this label does not contain
any information about the identity of the variablexi that was used to determine the
selection. (If a standard one-round OT is used, this is not necessarily be the case.)

Finally, at the end of iteratioǹ, the initial nodev0 is labeled by an OT answer which
can be viewed as an (iterated) encryption of the output valueP (x). The client decrypts
P (x) by applying the OT decryption algorithm̀times to the label ofv0.

The above protocol is formally described in Figure 1. Its correctness is implied by
the following lemma, which can be easily proved by induction on the heighth.

Lemma 1. For any nodev, let Pv(x) denote the output ofP on the inputx if v is
used as the initial node. Then, for every0 ≤ h ≤ ` and every nodev of heighth we
haveDOT

(h)(sk, label(v)) = Pv(x), whereDOT
(h)(sk, ·) denotes theh-th iterate of

DOT(sk, ·).

In particular,DOT
(`)(sk, label(v0)) = P (x), from which correctness follows. We turn

to analyze the protocol’s efficiency.

Efficiency.Recall that we denote the length of an OT query byα(k, t, τ) and the length
of an OT answer byβ(k, t, τ). Let βj be as defined in Step 2, namely the result of
applying thej-th iterate ofβ(k, t, ·) on log |O|. The length of the encryptionc computed
by the client is then bounded bỳn · α(k, t, β`) and the length of the ciphertextc′

computed by the server isβ`+1. By default, we assume the strong OT implementation to
be such thatβ(k, t, τ) = τ +poly(k, t). (See Section 4.1 for a concrete implementation
using the Damg̊ard-Jurik cryptosystem.) In such a case, the overall communication is
poly(k, n, `), which is in particular independent of|P | as required. We will later present
an optimized instantiation of the main protocol with a total communication ofO(kn`)
(for the case of binary inputs and outputs). Finally, the computation performed by each
party is polynomial in the length of its input.

Remark 3.When`(n) ¿ n, the requirement thatβ(k, t, τ) = τ + poly(k, t) can be
relaxed. In particular, if̀(n) = O(log n) it suffices thatβ(k, t, τ) = O(τ)+poly(k, t).

Main Protocol

– Common inputs: security parameter1k, a branching program length parameter1`,
input domainI = {0, 1, . . . , t− 1}, output domainO = {0, 1}γ .

– Client input: an assignmentx = (x1, . . . , xn) ∈ In.
– Server input: a layered BPP = (G(V, E), v0, T, ψV , ψE) of length`.
– Sub-protocol: a strong OT protocol(GOT, QOT, AOT, DOT) with answer length

β(k, t, τ).

1. SetupGen(1k):
– Let (pk, sk)←GOT(1k).
– Return(pk, sk).

2. Encryption Enc(pk, x):
– For1 ≤ i ≤ n, generate a vectorqi = (q1

i , . . . , q`
i), whereqj

i is obtained by:

qj
i ←QOT(pk, 1t, 1βj , xi),

and where the lengthsβj are defined byβ1 = log |O| andβj+1 = β(k, t, βj).
– Returnc = (q1, . . . , qn).

3. Evaluation Eval(1k, pk, c = (qj
i), P):

– Initialization: for eachv ∈ T setlabel(v) ← ψV (v).
– While v0 isn’t labeled:

• Pick an unlabeled nodev ∈ V − T such that all its children are labeled.
• Let i←ψV (v) andh← height(v).
• Let label(v)←AOT(pk, qh

i , label(u0), . . . , label(ut−1)), whereum is
the (unique) node such thatm ∈ ψE(v, um).
Note that the nodesum are not necessarily distinct.

– Returnc′ = label(v0).
4. Decryption Dec(sk, c′):

– Let d`← c′.
– For j = ` down to 1, letdj−1←DOT(sk, dj).
– Returnd0.

Fig. 1. Evaluating a branching program on encrypted data

A strong OT protocol with the latter efficiency requirement can be based on homo-
morphic cryptosystems which expand the ciphertext length by a constant factor, such
as El-Gamal (see Section 4.1). If`(n) = O(1), we can rely on an arbitrary strong OT,
which in turn can be based on an arbitrary homomorphic encryption scheme (including,
for instance, the Goldwasser-Micali cryptosystem [17]).

Remark 4.The PIR protocol of [23] can be viewed as an instance of our construction
in which` is set to some constantd, the input domainI is of sizet = N1/d (whereN is
the database size), and the database is represented as a complete decision tree of depth
d and degreeN1/d. Its variant suggested in [34] (resp., [26]) corresponds to a decision
tree of depth

√
log N and degreet = 2

√
log N (resp., depthlog N and degreet = 2).

These three depth parameters correspond to the different BP length regimes discussed
in Remark 3.

We turn to prove the security properties of the main protocol. In the following we
assume that the given strong OT subprotocol is secure and that its answer complexity is
β(k, t, τ) = τ + poly(k, t). In Section 4.1 we will show that this assumption is implied
by the DCRA assumption.

Theorem 1. The protocol described in Figure 1 provides client privacy according to
Definition 6 as well as perfect size hiding server privacy in the semi-honest model ac-
cording to Definition 8.

Proof sketch: Client privacy readily follows from the client privacy requirement in
the underlying OT protocol. The security of sending polynomially many strong OT
queries under the same key follows from the security of encrypting multiple messages
under the same key in public-key encryption schemes (see [16], Theorem 5.2.11).

To prove size hiding server privacy, we describe a perfect simulatorSim. The idea
is to recreate the labels of the computation path fromv0 to a terminal node labeled with
P (x) without knowing the nodes traversed by the path.Sim will use the OT simulator
SimOT as a subroutine. On inputs(1k, 1|x|, pk, P (x)) (and given|I| = t as an additional
public input),Sim proceeds as follows:

– Let `← `(|x|), λ0←P (x).
– For j = 1 to `, let λj ←SimOT(pk, 1t, λj−1).
– Returnλ`.

Consider the computation pathv0, v1, . . . , v` induced byx. It follows by induction onj
that the distribution ofλj produced bySim is identical to the distribution oflabel(v`−j)
produced byEval(1k, pk, c, P), for everyk, x, P and pair(pk, c) which can be gener-
ated byGen,Enc on k, x. In particular, the simulator’s outputλ` is distributed identi-
cally to c′ = label(v0). Note that the strong OT requirement allowsSimOT to produce
the correct distributions independently of the OT queries included inc. ut

4.1 Implementing Strong OT

Our concrete implementation of strong OT is based on the Damgård-Jurik (DJ) homo-
morphic public-key cryptosystem [11], which generalizes Paillier’s cryptosystem [31].

It is suitable for our needs because it allows us to encrypt a group element of lengthτ
into a ciphertext of lengthτ + O(k), wherek is a security parameter. This efficiency
feature is unique among all known homomorphic encryption schemes and is needed
for our main protocol to be efficient for arbitrary length bounds`(n). The semantic
security of the DJ cryptosystem follows from the Decisional Composite Residuosity
Assumption (DCRA) [11].

We now describe the main properties of the DJ cryptosystem that are useful for our
purposes (see [11] for further details).

– KEY GENERATION: Given a security parameterk, Gen(1k) outputs a secret key
(p1, p2), wherep1, p2 are randomk-bit primes (i.e.,2k−1 ≥ p1, p2 < 2k), and a
public keyN = p1p2. The above choice ofp1, p2 guarantees thatgcd(N, φ(N)) =
1. This property will be useful in what follows. We refer toN which can be gener-
ated byGen(1k) as avalid DJ key.

– ENCRYPTION: The DJ cryptosystem is length-flexible in the sense that every fixed
key N allows to encrypt plaintexts of an arbitrary (polynomial) length, where the
encryption onlyaddsO(k) bits to the length of the plaintext. Given a plaintext
length parametere, where1 ≤ e < min (p1, p2), we define a plaintext group
MN,e = ZNe and a ciphertext groupCN,e = Z∗Ne+1 . The restriction one is re-
quired for correct decryption, and since we will only usee ≤ poly(k) it will always
hold. Now fix some valid pair(N, e). To abbreviate notation we denote the cipher-
text groupCN,e = Z∗Ne+1 by C. Let C0 = CNe

=
{
cNe |c ∈ C

}
. Clearly,C0

is a subgroup ofC. Let g = N + 1 ∈ C. The output distribution of the encryp-
tion is specified via an injective homomorphismH : MN,e → C/C0 defined by
H(m) = gm · C0, wheregm · C0 denotes the coset represented bygm in C/C0.
To encryptm ∈ MN,e, the encryption functionEN,e(m) returns a random ele-

ment in the cosetH(m). This can be done by samplingr
R← Z∗N and outputting

c = gm ·rNe

(where all multiplications are inC). In particular, an encryption of0 is
a random element ofC0. Note that the difference between the size of the ciphertext
(dlog Ne+1e) and the size of the plaintext (dlog Nee) is indeed onlyO(k).

– DECRYPTION: Givenc = gm ·rNe

and the factorization(p1, p2) of N , it is possible
to efficiently decryptm. We denote the decryption algorithm byD(p1,p2),e(c).

– HOMOMORPHISM: Given two ciphertextsc ∈ EN,e(m) andc′ ∈ EN,e(m′), their
productc·c′ (in the ciphertext group) is a valid encryption of the summ+m′ (in the
plaintext group). It follows thatcρ is an encryption ofρ ·m. Moreover, multiplying
c by a random encryption of 0rerandomizesc into a random encryption ofm.

Strong OT from the DJ cryptosystem. The following strong OT protocol is similar to
the PIR protocol of [23] and its generalizations from [34, 26]. The choice of DJ as the
underlying cryptosystem is motivated by the goal of handling branching programs of an
arbitrary length. If the length functioǹ(n) is small, other homomorphic cryptosystems
can be used (see Remark 3).

Construction 2 (Strong OT) Let (Gen, EN,e, D(p1,p2),e) be the DJ cryptosystem. The
OT protocol(GOT, AOT,QOT,DOT) proceeds as follows.

1. GOT(1k):

– Let (N, (p1, p2))←Gen(1k).
– Return(N, (p1, p2)).

2. QOT(N, 1k, 1t, 1τ , i):
– Let e be the minimal integer such thatNe > 2τ . We naturally identify strings in
{0, 1}τ with integers inMN,e = ZNe , and assume that elements in the groups
MN,e andCN,e are padded so that their representation revealse.

– Let qi←EN,e(1) andqj ←EN,e(0) for all j ∈ [t] \ i.
– Returnq = (q1, . . . , qt−1).

3. AOT(N, q, s1, . . . , st):
– Infer e from q.
– Let qt←EN,e(1) · (∏t−1

i=1 qsi
i)−1 (where all operations are inCN,e).

– Let a← ∏t
i=1 qsi

i · EN,e(0).
– Returna.

4. DOT((p1, p2), a):
– Infer e from a.
– ReturnD(p1,p2),e(a).

Analysis.Correctness follows by observing that(q1, . . . , qt) encrypt thei-th unit vector
of lengtht anda encrypts the inner product of(s1, . . . , st) with this vector, which yields
si. Client privacy follows from the semantic security of the DJ cryptosystem, which can
be based on the DCRA assumption [11]. Server privacy follows from the fact that (due
to rerandomization) the server’s answer on any validq is a randomencryption ofsi,
which can be easily generated bySimOT. The protocol’s query length isα(k, t, τ) =
t · (τ + O(k)) and its answer length isβ(k, t, τ) = τ + O(k).

4.2 Optimizations

Optimizing the server’s work.Our main protocol requires the branching programP to
be layered. Converting an arbitrary BP to an equivalent layered BP of the same length
may generally result in a quadratic blowup to its size, which in turn results in a quadratic
computational overhead on the server’s part. (We note, however, that most “natural”
BPs, including ones that arise from other computation models such as finite automata,
are either already layered or can be turned into equivalent layered BPs with only a linear
overhead.) The quadratic overhead can be easily avoided in general if only client privacy
is required. The main protocol can be modified in this case to operate on a non-layered
BP by padding the labels that serve as OT inputs to match the size of the longest label.

Optimizing the encryption length.In the main protocol, the length of the encryption
c produced byEnc must be bigger than

∑`
j=1 βj > `2. It turns out that the quadratic

dependence oǹcan be avoided by exploiting the specific structure of the DJ cryptosys-
tem. The improvement is based on the following observation:

Observation 3 For every valid DJ key pair(N, e), e′ < e, m ∈ MN,e and c ∈
EN,e(m) (i.e.,c is some valid encryption ofm) it holds that

c mod Ne′+1 ∈ EN,e′(m mod Ne′).

It follows from Observation 3 that the ciphertextc may consist ofn encryptionsqi in the
largest group (rather thann encryptionsqj

i for every levelj of the BP), since the server
can convert encryptions from the largest group into encryptions from smaller groups.
(Note that since we only encrypt 0’s and 1’s, the conversion does not modify the en-
crypted value.) The improved implementation achieves communication complexity of
O(kn`) bits from the client to the server (instead ofO(kn`2) in the original implemen-
tation) andO(k`) bits from the server to the client (as in the original implementation).
Clearly, the optimization doesn’t compromise client or server privacy. Thus, we have:

Theorem 4. Assuming DCRA [11], there is a protocol for evaluating a binary branch-
ing program of length̀ and of arbitrary size on an encrypted input of lengthn, with
a total communication ofO(kn`) bits (wherek is a security parameter). The protocol
provides client privacy as well as size hiding server privacy in the semi-honest model.

5 Handling Malicious Clients

In this section we sketch the required modifications for achieving security against mali-
cious clients. For lack of space we only describe the high level ideas and refer the reader
to the full version for further details. For simplicity, we restrict the attention throughout
this section to the case of branching programs over binary inputs.

We start by observing that a malicious client can easily break the server privacy of
the main protocol even if it honestly generates the public keypk.

Example 1.Consider a client who sends an encryption of 2 (instead of 0 or 1) as an
OT query. In this OT invocation, the client can recover boths0 ands1. This potentially
reveals additional information about the structure of the branching programP . For in-
stance, in the degenerate case whereP consists of an initial node and two terminal
nodes, the client will learn the values of both terminal nodes.

The above mild form of cheating is relatively easy to handle using previous tech-
niques [15, 1, 24] and will be addressed in Section 5.1. A more challenging goal is to
handle clients that are also free to choose invalid public keyspk. This scenario will be
addressed in Section 5.2.

Before describing our solutions, we formalize our notions of server privacy in the
malicious model. The following definitions modify Definition 8 in that they allow an
unbounded simulator to extract an effective inputx∗ from a corrupted ciphertextc∗

and a (possibly) corrupted public keypk∗. The use of unbounded simulation seems
necessary in the “vanilla” one-round malicious model (i.e., without setup assumptions)
and was previously made in similar contexts [29, 1, 13, 20, 24].

We start by defining thetrusted setup model, where the client is forced to use a valid
public keypk but can cheat by creating invalid ciphertextsc∗. This model is motivated
by the fact that the same public key may be reused to encrypt many different inputs.
Thus, one can afford an expensive certification procedure (e.g., using interactive zero-
knowledge proofs or a trusted party) that is used once and for all.

Definition 12 (Size hiding server privacy: trusted setup model).LetΠ = (Gen, Enc,
Eval, Dec) be a protocol for evaluating programs from a representation modelU on en-
crypted data. We say thatΠ hasstatistical server privacy in the trusted setup modelif
there exists a computationally unbounded, randomized algorithmSim and a negligible
functionε(·) such that the following holds. For every security parameterk, valid public
keypk that can be generated byGen(1k), and arbitrary ciphertextc∗ there exists an
“effective” input x∗ such that for every programP ∈ {0, 1}∗, we have

SD(Eval(1k, pk, c, P) , Sim(1k, pk, c∗, U(P, x∗))) ≤ ε(k).

The case ofcomputationalserver privacy is defined in an analogous way (see Defini-
tion 7), where statistical indistinguishability is replaced by computational one.

We turn to the fully malicious model.

Definition 13 (Size hiding server privacy: fully malicious model).We say thatΠ
has (statistical or computational)server privacy in the fully malicious modelif it satis-
fies Definition 12 with the following modification: instead of quantifying over allvalid
public keyspk, now the quantification is over arbitrary public keyspk∗.

Protocols for computing on encrypted data in the above model give rise to one-
round (two-message) protocols for secure two-party computation ofU(·, ·) under the
relaxed security definitions of [29, 1, 13].

A natural approach for handling malicious clients would be to leave the main pro-
tocol as it is and only upgrade the original strong OT primitive into one that achieves
security against malicious clients. Unfortunately, we cannot use this modular approach
for several reasons. First, the basic variant of the protocol requires the client to use
each inputxi in multiple OT invocations (corresponding to the different levels where
xi appears) and so the client could cheat by simply using inconsistent inputs in these
OT invocations. More importantly, we do not know how to construct a strong OT proto-
col which simultaneously satisfies both our security and efficiency requirements in the
malicious model. It is interesting to note that a one-round OT protocol of Kalai [20],
which is based on Paillier’s cryptosystem and can be generalized to work with the DJ
cryptosystem, fails with respect to both security (in that it is not astrongOT) and effi-
ciency (in that its answer significantly blows up the length of the selected string). Still,
ideas from [20] will be instrumental in our solution for the fully malicious model.

5.1 Trusted Setup Model

We now describe a solution in the trusted setup model. Our starting point is the opti-
mized instantiation of the protocol for the semi-honest model (Section 4.2), where in
the case of binary inputs (t = 2) the client sends a single encryption for each input. Our
goal is to prevent the type of attack described in Example 1, namely to ensure that each
encryption sent by the client is indeed an encryption of 0 or 1. To this end one could em-
ploy general-purpose zero-knowledge proofs, forcing the client to prove that its queries
are well formed. However, this approach requires multiple rounds of interaction which
we would like to avoid, and also involves a considerable efficiency overhead.

Instead, we apply the conditional disclosure of secrets (CDS) methodology of [15,
1]. The idea is that instead of making the client prove that its queries are well formed,
it suffices for the server to disclose its answerc′ to the client only under the condition
that the queries are well formed. Using the homomorphic property of the encryptions,
the latter conditional disclosure can be done without the server even knowing whether
the condition is satisfied.

The original CDS solutions from [1] relies on homomorphic encryption over groups
of a prime order. An efficient extension to groups of a composite order was suggested
in [24], assuming that the order of the group is sufficiently “rough”. We employ a similar
extension which avoids the roughness assumption and is geared towards the solution in
the fully malicious model.

We start by describing the approach of [1]. The simplest setting involves a server
holding a (valid) public keypk of a homomorphic cryptosystem, a ciphertextc ∈
Epk(m) (presumably generated by a client), and a secrets. The client holds the secret
key sk corresponding topk. The goal is for the server to send a single (randomized)
ciphertext̃c such that: (1) ifm = 0 thens can be recovered from̃c using the secret key;
and (2) ifm 6= 0 thenc̃ reveals (almost) no information abouts. The above is referred
to as a CDS of the secrets under the conditionm = 0. A solution to this simple CDS
problem can be easily extended to CDS under more general conditions, involving mul-
tiple inputsmi and general predicates over atomic conditions of the formmi = bi. In
particular,2n invocations of the above primitive are sufficient to disclose a secret under
the suitable condition here, namely thatn ciphertextsci all encrypt 0/1 values.

The solution of [1] is to let̃c be a random encryption ofs+ρm, whereρ is a random
integer between 1 and the order of the plaintext group. Note thatc̃ can be efficiently
computed using the homomorphic properties of the encryption. Requirement (1) holds
because ifm = 0 then c̃ encryptss + ρ · 0 = s. Requirement (2) holds in the case
where the plaintext group is of a prime order; indeed, in that case ifm 6= 0 thenρm is
uniformly distributed over the plaintext group and therefore can be used to hides.

The next observation is that in the case that the plaintext group has a composite
order, not all is lost. In this case, ifm 6= 0 thenρm is uniformly distributed over a
nontrivial subgroup of the plaintext group. Ifs is chosen uniformly at random from the
plaintext group, thens will still have at least one bit of remaining entropy even when
conditioned oñc. This residual randomness can be extracted using standard privacy am-
plification techniques. Specifically, to disclose anl-bit secret we first repeat the above
l + k times with independent secretssi, increasing the conditional entropy tol + k, and
then apply an arbitrary strong randomness extractor (e.g., a pairwise independent hash
function) to extractl (almost) perfectly secret bits from the partially leaked secrets.

The above approach (or the similar approach from [24]) solves our problem in the
trusted setup model. In this case, every possible stringc∗ can be interpreted as a valid
ciphertext encrypting some messagem in the plaintext groupZNe . Thus, we can use
the above to disclose the server’s answer under the condition that then encryptions
produced by the client are well formed. This yields a protocol for the trusted setup

model whose communication complexity is comparable to that of the optimized version
of the original protocol.4

5.2 Fully Malicious Model

The previous solution relied on the fact that for a valid keyN , everyc∗ can be inter-
preted as a valid encryption of some messagem. This does not hold in general. In fact,
there is an explicit cheating strategy which usesN such thatgcd(N, φ(N)) > 1 (e.g.,
N = p1p2, wherep1, p2 are odd primes andp2 = 2p1+1) in order to break the previous
protocol. The main difficulty arises from the fact that the set of harmful keysN cannot
be efficiently recognized. Our high level approach for getting around this problem is to
project ciphertexts sent by the client onto a “harmless” subgroup ofC by having the
server raise them to the power ofNT , whereT = dlog Ne. To maintain correctness,
plaintexts are chosen from a subgroup ofZNe of sizeNe−T , which requires to moder-
ately increase the values ofe used in our protocol. We refer the reader to the full version
for further details.

Acknowledgements.We thank Mike Freedman, Benny Pinkas, and Omer Reingold for
discussions about secure keyword search from which this work originated. We also
thank the anonymous TCC referees for many helpful comments and suggestions.

References

1. W. Aiello, Y. Ishai and O. Reingold. Priced oblivious transfer: How to sell digital goods. In
Proc. of EUROCRYPT 2001, pages 119-135.

2. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive Zero Knowledge.SIAM
Journal of Computing, 20(6), pages 1084-1118, 1991.

3. B. Barak and O. Goldreich. Universal Arguments and their Applications. InProc. CCC
2002, pages 194-203.

4. D. Beaver. Minimal-Latency Secure Function Evaluation. InProc. of EUROCRYPT 2000,
pages 335-350.

5. D. Boneh, E.J. Goh, and K. Nissim. Evaluating2-DNF formulas on ciphertexts. InProc.
2nd TCC, pages 325–341, 2005.

6. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication.Proc. of EUROCRYPT ’99, pages 402–414.

7. C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation and secure
autonomous mobile agents. InProceedings of ICALP ’00.

8. R. Canneti. Security and composition of multiparty cryptographic protocols.Journal of
Cryptology, 13(1), pages 143-202.

9. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Technical
Report TR-CS0917, Department of Computer Science, Technion, 1997.

10. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.J. of the
ACM, 45:965–981, 1998. Earlier version in FOCS ’95.

4 This holds for the case ofcomputationalserver privacy, where we can afford to disclose a
short secrets and then encrypt the (long) answer using this key. The statistically private variant
involves an additional multiplicative overhead ofO(`).

11. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and some Applications of
Paillier’s Probabilistic Public-Key System. InProc. of CT-RSA ’02, pages 79-95.

12. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In
Communications of the ACM,28(6):637–647, 1985.

13. M.J. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword search and oblivious pseudo-
random fuctions. InProc. of TCC 2005vol. 3378, pages 303-324.

14. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. InProc. of 26th
STOC, pages 554-563, 1994.

15. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting Data Privacy in Private Infor-
mation Retrieval Schemes. InProc. of 30th STOC, pages 151-160, 1998.

16. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

17. S. Goldwasser and S. Micali. Probabilistic encryption.JCSS, 28(2):270–299, 1984. Prelim-
inary version in Proc. STOC ’82.

18. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applica-
tions to round-efficient secure computation. InProc. 41st FOCS, pp. 294–304, 2000.

19. Y. Ishai and E. Kushilevitz. Perfect Constant-Round Secure Computation via Perfect Ran-
domizing Polynomials. InProc. of the 29th ICALP, pages 244-256, 2002.

20. Y. T. Kalai. Smooth Projective Hashing, and two message Oblivious Transfer. InProc. of
EUROCRYPT 2005, pages 78-95.

21. J. Kilian. Founding cryptography on oblivious transfer. InProc. of the 20th ACM, pages
20-31, 1998.

22. V. Kolesnikov. Gate Evaluation Secret Sharing and Secure One-Round Two-Party Compu-
tation. InProc. of ASIACRYPT 2005, pages 136-155.

23. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval InProc. 38th FOCS, pages 364-273, 1997.

24. S. Laur and H. Lipmaa. Additively homomorphic Conditional Disclosure of Secrets and
applications. Eprint report 2005/378.

25. Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation.
Cryptology ePrint Archive, Report 2004/175, 2004.

26. H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. InProc. 8th
ICS, pages 314-328, 2005. Full version on eprint.

27. S. Micali, M. Rabin and J. Kilian. Zero knowledge sets. InProc. 44th FOCS, pages 80-91,
2003.

28. M. Naor and K. Nissim. Communication Preserving Protocols for Secure Function Evalua-
tion. In Proc. 33rd STOC, pages 590–599, 2001.

29. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proc. SODA 2001.
30. R. Ostrovsky and W. E. Skeith III. Private Searching on Streaming Data. InProc. Crypto

2005, pages 223-240.
31. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In

Proc. of EUROCRYPT 1999, pages 223-238.
32. N. Pippenger. On simultaneous resource bounds. InProc. of the 20th FOCS, pages 307-311,

1979.
33. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken

Computation Laboratory, Harvard U., 1981.
34. J.P. Stern. A new and efficient all or nothing Disclosure of Secrets protocol. InProc. Asi-

aCrypt 98, vol. 1514, pages 357-371.
35. T. Sander, A. Young and M. Yung. Non-interactive cryptocomputing forNC1. In Proc. 20th

FOCS, pages 554-566, 1999.
36. A.C. Yao. How to generate and exchange secrets. InProc. 18th STOC, pages 162-167, 1986.

