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Abstract. Private approximation of search problems deals with finding
approximate solutions to search problems while disclosing as little infor-
mation as possible. The focus of this work is on private approximation
of the vertex cover problem and two well studied clustering problems –
k-center and k-median. Vertex cover was considered in [Beimel, Carmi,
Nissim, and Weinreb, STOC, 2006] and we improve their infeasibility
results. Clustering algorithms are frequently applied to sensitive data,
and hence are of interest in the contexts of secure computation and pri-
vate approximation. We show that these problems do not admit private
approximations, or even approximation algorithms that leak significant
number of bits. For the vertex cover problem we show a tight infeasibil-
ity result: every algorithm that ρ(n)-approximates vertex-cover must leak
Ω(n/ρ(n)) bits (where n is the number of vertices in the graph). For the
clustering problems we prove that even approximation algorithms with a
poor approximation ratio must leak Ω(n) bits (where n is the number of
points in the instance). For these results we develop new proof techniques,
which are more simple and intuitive than those in Beimel et al., and yet
allow stronger infeasibility results. Our proofs rely on the hardness of
the promise problem where a unique optimal solution exists [Valiant and
Vazirani, Theoretical Computer Science, 1986], on the hardness of ap-
proximating witnesses for NP-hard problems ([Kumar and Sivakumar,
CCC, 1999] and [Feige, Langberg, and Nissim, APPROX, 2000]), and on
a simple random embedding of instances into bigger instances.

1 Introduction

In secure multiparty computation two or more parties wish to perform a compu-
tation over their joint data without leaking any other information. By the general
feasibility results of [22,8,2], this task is well defined and completely solved for
polynomial time computable functions. When what the parties wish to compute
is not a function, or infeasible to compute (or both) one cannot directly apply
the feasibility results, and special care has to be taken in choosing the func-
tion that is computed securely, as the outcome of the secure computation may
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leak information. We deal with such problems – vertex-cover and clustering that
are NP-complete problems – and check the consequences of choosing to compute
private approximations for these search problems, i.e., approximation algorithms
that do not leak more information than the collection of solutions for the specific
instance.

The notion of private approximation was first put forward and researched
in the context of approximating functions [6,10], and was recently extended to
search problems [1]. These works also consider relaxations of private approxima-
tions, which allow for a bounded leakage. The research of private approximations
yielded mixed results: (i) private approximation algorithms or algorithms that
leak very little were presented for well studied problems [6,10,7,15,13,1], but (ii)
it was shown that some natural functions do not admit private approximations,
unless some (small) leakage is allowed [10]; and some search problems do not
even admit approximation algorithms with significant leakage [1]. We continue
the later line of research and prove that vertex-cover and two clustering prob-
lems – k-center and k-median – do not admit private approximation algorithms,
or even approximation algorithms that leak significant number of bits.

1.1 Previous Works

Feigenbaum et al. [6] noted that an approximation to a function may reveal in-
formation on the instance that is not revealed by the exact (or optimal) function
outcome. Hence, they formulated, , via the simulation paradigm, a notion of pri-
vate approximations that prevents exactly this leakage. Their definition implies
that if applied to instances x, y such that f(x) = f(y), the outcome of an ap-
proximation algorithm f̂(x), f̂(y) are indistinguishable. Under their definition of
private approximations, Feigenbaum et al. provided a protocol for approximat-
ing the Hamming distance of two n-bit strings with communication complexity
Õ(
√

n), and polynomial solutions for approximating the permanent and other
natural #P problems. Subsequent work on private approximations improved the
communication complexity for the Hamming distance to polylog(n) [13]. Other
works on private approximations for specific functions include [15,7].

Attempts to constructs private approximations of the objective functions
of certain NP-complete problems were unsuccessful. This phenomenon was ex-
plained by Halevi, Krauthgamer, Kushilevitz, and Nissim [10] proving strong
inapproximability results for computing the size of a minimum vertex cover even
within approximation ratio n1−ε. They, therefore, presented a relaxation, allow-
ing the leakage of a deterministic predicate of the input. Fortunately, this slight
compromise in privacy allows fairly good approximations for any problem that
admits a good deterministic approximation. For example, minimum vertex cover
may be approximated within a ratio of 4 leaking just one bit of approximation.

Recently, Beimel, Carmi, Nissim, and Weinreb [1] extended the privacy re-
quirement of [6] from functions to search problems, giving a (seemingly) lenient
definition which only allows leaking whatever is implied by the set of all exact
solutions to the problem. A little more formally, if applied to instances x, y that



share exactly the same set of (optimal) solutions, the outcome of the approxima-
tion algorithm A(x) on x should be indistinguishable from A(y). They showed
that even under this definition it is not feasible to privately approximate the
search problems of vertex-cover and 3SAT. Adopting the relaxation of [10] to
the context of private search, Beimel et al. showed for max exact 3SAT an ap-
proximation algorithm with a near optimal approximation ratio of 7/8− ε that
leaks only O(log log n) bits. For vertex-cover, the improvement is more modest
– there exists an approximation algorithm within ratio ρ(n) that leaks `(n) bits
where ρ(n) · `(n) = 2n. On the other hand, they proved that an algorithm for
vertex-cover that leaks O(log n) bits cannot achieve nε approximation. We close
this gap up to constant factors. A different relaxation of private approximation
was presented in the context of near neighbor search by Indyk and Woodruff [13],
and we refer to a generalization of this relaxation in Section 4.

1.2 Our Contributions

The main part of this work investigates how the notion of private approxima-
tions and its variants combine with well studied NP-complete search problems
– vertex-cover, k-center, and k-median. We give strong infeasibility results for
these problems that hold with respect to a more lenient privacy definition than
in [1] – that only requires that A(x) is indistinguishable from A(y) on instances
x, y that have the same unique solution. To prove our results, we introduce new
strong techniques for proving the infeasibility of private approximations, even
with many bits of leakage.

Vertex Cover. As noted above, the feasibility of private approximation of vertex-
cover was researched in [1]. Their analysis left an exponential gap between the
infeasibility and feasibility results. We close this gap, and show that, unless RP =
NP, any approximation algorithm that leaks at most `(n) bits of information and
is within approximation ratio ρ(n) satisfies ρ(n)·`(n) = Ω(n). This result is tight
(up to constant factors) by a result described in [1]: for every constant ε > 0,
there is an n1−ε-approximation algorithm for vertex-cover that leaks 2nε bits.

Clustering. Clustering is the problem of partitioning n data points into disjoint
sets in order to minimize a cost objective related to the distances within each
point set. Variants of clustering are the focus of much research in data mining
and machine learning as well as pattern recognition, image analysis, and bioin-
formatics. We consider two variants: (i) k-center, where the cost of a clustering
is taken to be the longest distance of a point from its closest center; and (ii)
k-median, where the cost is taken to be the average distance of points from
their closest centers. Both problems are NP-complete [12,14,18]. Furthermore,
we consider two versions of each problem, the one outputting the indices of the
centers and the second outputting the coordinates of the solutions. For private
algorithms these two versions are not equivalent since different information can
be learned from the output.



We prove that, unless RP = NP, every approximation algorithm for the
indices version of these problems must leak Ω(n) bits even if its approximation
ratio as poor as 2poly(n). As there is a 2-approximation algorithm that leaks at
most n bits (the incidence vector of the set of centers), our result is tight up to
a constant factor. Similar results are proved in the full version of the paper for
the coordinate version of these problems (using a “perturbable” property of the
metric).

Trying to get around the impossibility results, we examine a generalization
of a privacy definition by Indyk and Woodruff [13], originally presented in the
context of near neighbor search. In the modified definition, the approximation
algorithm is allowed to leak the set of η-approximated solutions to an instance
for a given η. We consider the coordinate version of k-center, and show that
there exists a private 2-approximation under this definition for every η ≥ 2, and
there is no approximation algorithm under this definition when η < 2.

New Techniques. The basic idea of our infeasibility proofs is to assume that
there exists an efficient private approximation algorithmA for some NP-complete
problem, and use this algorithm to efficiently find an optimal solution of the prob-
lem contradicting the NP-hardness of the problem. Specifically, in our proofs we
take an instance x of the NP-complete problem, transform it to a new instance
x′, execute y′ ← A(x′) once getting an approximate solution for x′, and then
efficiently reconstruct from y′ an optimal solution for x. Thus, we construct a
Karp-reduction from the original NP-complete problem to the private approxi-
mation version of the problem. This should be compared to the reduction in [1]
which used many calls to A, where the inputs to A are chosen adaptively, ac-
cording to the previous answers of A.

Our techniques differ significantly from those of [1], and are very intuitive
and rather simple. The main difference is that we deal with the promise versions
of vertex cover and clustering, where a unique optimal solution exists. These
problems are also NP-hard under randomized reductions [21]. Analyzing how a
private approximation algorithms operate on instances of the promise problem,
we clearly identify a source for hardness in an attempt to create such an algo-
rithm – it, essentially, has to output the optimal solution. Furthermore, proving
the infeasibility result for instances of the unique problems shows that hardness
of private approximation stems from instances we are trying to approximate a
“function” – given an instance the function returns its unique optimal solution.
Thus, our impossibility results are for inputs with unique solutions where the
privacy requirement is even more minimal than the definition of [1].

To get our strongest impossibility results, we use the results of Kumar and
Sivakumar [16] and Feige, Langberg, and Nissim [5] that, for many NP-complete
problems, it is NP-hard to approximate the witnesses (that is, viewing a witness
and an approximation as sets, we require that their symmetric difference is
small). These results embed a redundant encoding of the optimal solution, so
that seeing a “noisy” version of the optimal solution allows recovering it. In
our infeasibility proofs, we assume that there exists an approximation algorithm
A for some unique problem, and use this algorithm to find a solution close to



the optimal solution. Thus, the NP-hardness results of [16,5] imply that such
efficient algorithm A cannot exist.

Our last technique is a simple random embedding of an instance into a bigger
instance. Let us demonstrate this idea for the unique-vertex-cover problem. In
this case, we take a graph, add polynomially many isolated vertices, and then
randomly permute the names of the vertices. We assume that there exists a
private approximation algorithm A for vertex-cover and we execute A on the
bigger instance. We show that, with high probability, the only vertices from
the original graph that appear in the output of A are the vertices of the unique
vertex cover of the original graph. The intuition behind this phenomenon is that,
by the privacy requirement, A has to give the same answer for many instances
generated by different random permutations of the names, hence, if a vertex is in
the answer of A, then with high probability it corresponds to an isolated vertex.

Organization. Section 2 contains the main definitions used in this paper and
essential background. Section 3 includes our impossibility result for almost pri-
vate algorithms for the index version of k-center, based on the hardness of
unique-k-center. Section 4 discusses an alternative definition of private approx-
imation of the coordinate version of k-center, and contains possibility and im-
possibility results for this definition. Section 5 describes our impossibility result
for almost private algorithms for vertex-cover. Finally, Section 6 discusses some
questions arising from our work.

2 Preliminaries

In this section we give definitions and background needed for this paper. We start
with the definitions of private search algorithms from [1]. Thereafter, we discuss
the problems we focus on: the clustering problems – k-center and k-median –
and vertex cover. We then define a simple property of the underlying metrics
that will allow us to present our results in a metric independent manner. Finally,
we discuss two tools we use to prove infeasibility results: (1) hardness of unique
problems and parsimonious reductions, and (2) error correcting reductions.

2.1 Private Approximation of Search Problems

Beimel et al. [1] define the privacy of search algorithms with respect to some
underlying privacy structure R ⊆ {0, 1}∗ × {0, 1}∗ that is an equivalence rela-
tion on instances. The notation x ≡R y denotes 〈x, y〉 ∈ R. The equivalence
relation determines which instances should not be told apart by a private search
algorithm A:

Definition 1 (Private Search Algorithm [1]). Let R be a privacy structure.
A probabilistic polynomial time algorithm A is private with respect to R if for
every polynomial-time algorithm D and for every positive polynomial p(·), there



exists some n0 ∈ N such that for every x, y ∈ {0, 1}∗ such that x ≡R y and
|x| = |y| ≥ n0

∣∣∣ Pr[D(A(x), x, y) = 1]− Pr[D(A(y), x, y) = 1]
∣∣∣ ≤ 1

p(|x|) ,

where the probabilities are taken over the random choices of A and D.

For every search problem, a related privacy structure is defined in [1], where
two inputs are equivalent if they have the same set of optimal solutions. In
Section 2.2 we give the specific definitions for the problems we consider.

We will also use the relaxed version of Definition 1 that allows a (bounded)
leakage. An equivalence relation R′ is said to `-refine an equivalence relation R
if R′ ⊆ R and every equivalence class of R is a union of at most 2` equivalence
classes of R′.

Definition 2 ([1]). Let R be a privacy structure. A probabilistic polynomial
time algorithm A leaks at most ` bits with respect to R if there exists a privacy
structure R′ such that (i) R′ is a `-refinement of R, and (ii) A is private with
respect to R′.

2.2 k-center and k-median Clustering

The k-center and k-median clustering problems are well researched problems,
both known to be NP-complete [12,14,18]. In both problems, the input is a
collection P of points in some metric space and a parameter c. The output is a
collection of c of the points in P – the cluster centers – specified by their indices
or by their coordinates. The partition into clusters follows by assigning each
point to its closest center (breaking ties arbitrarily). The difference between
k-center and k-median is in the cost function: in k-center the cost is taken
to be the maximum distance of a point in P from its nearest center; in k-
median it is taken to be the average distance of points from their closest centers.
For private algorithms, the choice of outputting indices or coordinates may be
significant (different information can be learned from each), and hence we define
two versions of each problem.

Definition 3 (k-center – outputting indices (k-center-I)). Given a set P =
{p1, . . . , pn} of n points in a metric space and a parameter c, return the indices
of c cluster centers I = {i1, . . . , ic} that minimize the maximum cluster radius.

Definition 4 (k-center – outputting coordinates (k-center-C)). Given a
set P = {p1, p2, . . . , pn} of n points in a metric space and a parameter c, re-
turn the coordinates of c cluster centers C = {pi1 , . . . , pic} that minimize the
maximum cluster radius (C ⊆ P ).1

1 We do not consider versions of the problem where the centers do not need to be
points in P .



The k-median-I and k-median-C problems are defined analogously.

Theorem 1 ([12,14,18]). In a general metric space, k-center (k-median) is
NP-hard. Furthermore, the problem of finding a (2−ε)-approximation of k-center
in a general metric space is NP-hard for every ε > 0.

Proof (sketch): The reduction is from dominating set. Given a graph G =
(V, E), transform each vertex v ∈ V to a point p ∈ P . For every two points
p1, p2 ∈ P let dist(p1, p2) = 1 if (v1, v2) ∈ E, otherwise dist(p1, p2) = 2. As the
distances are 1 and 2, they satisfy the triangle inequality. There is a dominating
set of size c in G iff there is a k-center clustering of size c and cost 1 (k-median
clustering of cost n−c

n ) in P . Furthermore, every solution to k-center with cost
less than 2 in the constructed instance has cost 1, which implies the hardness of
(2− ε)-approximation for k-center. ut

There is a greedy 2-approximation algorithm for k-center [9,11]: select a
first center arbitrarily, and iteratively selects the other c − 1 points each time
maximizing the distance to the previously selected centers. We will make use of
the above reduction, as well as the 2-approximation algorithm for this problem,
in the sequel.

We next define the privacy structures related to k-center. Only instances
(P1, c1), (P2, c2) were |P1| = |P2| and c1 = c2 are equivalent, provided they
satisfy the following conditions:

Definition 5. Let P1, P2 be sets of n points and c < n a parameter determining
the number of cluster centers.

– Instances (P1, c) and (P2, c) are equivalent under the relation Rk-center-I if
for every set I = {i1, . . . , ic} of c point indices, I minimizes the maximum
cluster radius for (P1, c) iff it minimizes the maximum cluster radius for
(P2, c).

– Instances (P1, c) and (P2, c) are equivalent under the relation Rk-center-C if
(i) for every set C ⊆ P1 of c points, if C minimizes the maximum cluster
radius for (P1, c) then C ⊆ P2 and it minimizes the maximum cluster radius
for (P2, c); and similarly (ii) for every set C ⊆ P2 of c points, if C minimizes
the maximum cluster radius for (P2, c) then C ⊆ P1 and it minimizes the
maximum cluster radius for (P1, c)

Definition 6 (Private Approximation of k-center). A randomized algo-
rithm A is a private ρ(n)-approximation algorithm for k-center-I (respectively
k-center-C) if: (i) the algorithm A is a ρ(n)-approximation algorithm for k-center,
that is, for every instance (P, c) with n points, it returns a solution – a set of
c points – such that the expected cluster radius of the solution is at most ρ(n)
times the radius of the optimal solution of (P, c). (ii) A is private with respect
to Rk-center-I (respectively k-center-C).

The definitions for vertex-cover are analogous and can be found in [1].



2.3 Distance Metric Spaces

In the infeasibility results for clustering problems we use a simple property of the
metric spaces, which we state below. This allows us to keep the results general
and metric independent. One should be aware that clustering problems may
have varying degrees of difficulty depending on the underlying metric used. Our
impossibility results will show that unique-k-center and unique-k-median may
be exactly solved in randomized polynomial time if private algorithms for these
problems exist. When using metric spaces for which the problems are NP-hard,
this implies RP = NP.

The property states that given a collection of points, it is possible to add to
it new points that are “far away”:

Definition 7 (Expandable Metric). Let M be a family of metric spaces.
A family of metric spaces M is (ρ,m)-expandable if there exists an algorithm
Expand that given a metric M =

〈
P, dist

〉 ∈ M, where P = {p1, . . . , pn}, runs
in time polynomial in n,m, and the description of M , and outputs a metric
M ′ =

〈
P ′, dist′

〉 ∈M, where P ′ = {p1, . . . , pn, pn+1, . . . , pn+m}, such that

– dist′(pi, pj) = dist(pi, pj) for every i, j ∈ [n], and
– dist′(pi, pj) ≥ ρd for all n < i ≤ n + m and 1 ≤ j < i, where d =

maxi,j∈[n](dist(pi, pj)) is the maximum distance within the original n points.

General Metric Spaces. Given a connected undirected graph G = (V, E) where
every edge e ∈ E has a positive length w(e), define the metric induced by G
whose points are the vertices and distG(u, v) is the length of the shortest path
in G between u and v. The family M of general metric spaces is the family of
all metric spaces induced by graphs. This family is expandable: Given a graph
G, we construct a new graph G′ by adding to G a path of m new vertices
connected to an arbitrary vertex, where the length of every new edge is ρ(n) · d.
The metric induced by G′ is the desired expansion of the metric induced by G.
The expansion algorithm is polynomial when ρ(n) is bounded by 2poly(n).

Observation 1. Let ρ(n) = 2poly(n). The family of general metric spaces is
(ρ(n), m)-expandable for every m.

Similarly, the family of metric spaces induced by a finite set of points in the
plain with Euclidean distance is expandable.

2.4 Parsimonious Reductions and Unique Problems

Parsimonious reductions are reductions that preserve the number of solutions. It
was observed that among the well known NP-complete problems, such reductions
can be found [3,19,20]. Indeed, one can easily show that such reductions also exist
for our problems:

Lemma 1. SAT and 3-SAT are parsimoniously reducible to the vertex-cover,
k-center, and k-median problems (the general metric version).



The existence of such parsimonious reductions allows us to base our negative
results on a promise version of the problems – where only a unique optimal
solution exists. We use the results of Valiant and Vazirani [21] that the promise
version unique-SAT is NP-hard under randomized reductions. Therefore, if there
exists a parsimonious reduction from SAT to an NP-complete (search) problem
S, then its promise version unique-S is NP-hard under randomized reductions.

Corollary 1. Vertex-cover, unique-k-center, and unique-k-median (general met-
ric version) are NP-hard under randomized reductions.

2.5 Error Correcting Reductions

An important tool in our proofs are error correcting reductions – reductions
that encode, in a redundant manner, the witness for one NP-complete prob-
lem inside the witness for another. Such reductions were shown by Kumar and
Sivakumar [16] and Feige, Langberg, and Nissim [5] – proving that for certain
NP-complete problems it is hard to approximate witnesses (that is, when viewed
as sets, the symmetric difference between the approximation and a witness is
small). For example, such result is proved in [5] for vertex-cover. We observe
that the proof in [5] applies to unique-vertex-cover and we present a similar re-
sult for unique-k-center and unique-k-median. We start by describing the result
of [5] for unique-vertex-cover.

Definition 8 (Close to a minimum vertex cover). A set S is δ-close to a
minimum vertex cover of G if there exists a minimum vertex cover C of G such
that |S4C| ≤ (1− δ)n.

Theorem 2 ([21,5]). If RP 6= NP, then for every constant δ > 1/2 there is
no efficient algorithm that, on input a graph G and an integer t where G has
a unique vertex cover of size t, returns a set S that is δ-close to the minimum
vertex cover of G.

We next describe the result for unique-k-center.

Definition 9 (Close to an optimal solution of unique-k-center). A set S
is δ-close an optimal solution of an instance (P, c) of unique-k-center if there
exists an optimal solution I of (P, c) such that |S4I| ≤ (1− δ)n.

Theorem 3. If RP 6= NP, then, for every constant δ > 2/3, there is no ef-
ficient algorithm that for every instance (P, c) of unique-k-center finds a set
δ-close to the optimal solution of (P, c). The same result holds for instances of
unique-k-median.

The proof technique of Theorem 3 is similar to the proofs in [5]. The proof
is described in the full version of this paper.



3 Infeasibility of Almost Private Approximation of
Clustering

In this section, we prove that if RP 6= NP, then every approximation algorithm
for the clustering problems is not private (and, in fact, must leak Ω(n) bits). We
will give a complete treatment for k-center-I (assuming the underlying metric is
expandable according to Definition 7). The modifications needed for k-median-I
are small. The proof for k-center-C and k-median-C are different and use a “per-
turbable” property of the metric. The proofs for the 3 latter problems appear in
the full version of this paper. We will start our proof for k-center-I by describing
the infeasibility result for private algorithms, and then we consider deterministic
almost private algorithms. The infeasibility result for randomized almost private
algorithms appears in the full version of this paper.

3.1 Infeasibility of Private Approximation of Clustering Problems

In this section, we demonstrate that the existence of a private approximation
algorithm for k-center-I implies that unique-k-center is in RP. Using the hardness
of the promise version unique-k-center, we get our infeasibility result.

We will now show that any private ρ(n)-approximation algorithm must es-
sentially return all the points in the unique solution of an instance. We use the
fact that the underlying metric is (2n ·ρ(n+1), 1)-expandable. Given an instance
(P, c) = ({p1, . . . , pn}, c) for k-center-I we use Algorithm Expand with param-
eters (2n · ρ(n + 1), 1) to create an instance (P ′, c + 1) by adding the point p∞

returned by Expand, i.e. pn+1 = p∞ and dist′(pi, p
∞) ≥ ρ(n + 1) · d. Any op-

timal solution I ′ for (P ′, c + 1) includes the new point p∞ (if p∞ 6∈ I ′ then this
solution’s cost is at least 2n · ρ(n + 1) · d whereas if p∞ ∈ I ′ the cost is at most
d). Hence, the unique optimal solution I ′ consists of the optimal solution I for
(P, c) plus the index n + 1 of the point p∞.

Lemma 2. Let A be a private ρ(n)-approximation algorithm for k-center-I, let
(P, c) be an instance of k-center-I and construct (P ′, c + 1) as above. Then

Pr[A(P ′, c + 1) returns the indices of all critical points of (P, c)] ≥ 1/3 .

The probability is taken over the random coins of algorithm A.

Proof. Let pi1 , . . . , pic be the points of the unique optimal solution of (P, c)
(hence pi1 , . . . , pic , pn+1 are the points of the unique optimal solution of (P ′, c+
1)). Consider an instance (P ′′, c + 1) where P ′′ is identical to P ′, except for the
points pi1 and p∞ whose indices (ii and n + 1) are swapped.2 As both pi1 and
p∞ are the optimal solution in P ′, swapping them does not change the optimal
solution, and hence (P ′′, c + 1) ≡Rk-center-I (P ′, c + 1).

2 Note that while P ′ can be efficiently constructed from P , the construction of P ′′ is
only a thought experiment.



Let Ĩ ′ and Ĩ ′′ denote the random variables A(P ′, c + 1) and A(P ′′, c + 1)
respectively. Note that the optimal cost of (P ′′, c+1) is bounded by d. Whereas
if i1 6∈ Ĩ ′′ we get a clustering cost of 2n·ρ(n+1)·d. Hence, if Pr[i1 6∈ Ĩ ′′] > 1/(2n)
algorithm A cannot maintain an approximation ratio of ρ(n + 1). This implies
that Pr[i1 6∈ Ĩ ′] < 2/(3n), otherwise, it is easy to construct a polynomial time
procedure that would distinguish (Ĩ ′, P ′, P ′′) from (Ĩ ′′, P ′, P ′′) with advantage
Ω(1/n). A similar argument holds for indices i2, . . . , ic.

To conclude the proof, we use the union bound and get that Pr[{i1, . . . , im} ⊂
Ĩ ′] ≥ 1− 2c/3n ≥ 1/3. ut

We now get our infeasibility result:

Theorem 4. Let ρ(n) ≤ 2poly(n). The k-center-I problem does not admit a poly-
nomial time private ρ(n)-approximation unless unique-k-center can be solved in
probabilistic polynomial time.

Proof. Let A be a polynomial time private ρ(n)-approximation for k-center-I.
Let (P, c) = ({p1, . . . , pn}, c) be an instance of unique-k-center and let I be the
indices of the centers in its unique solution. Construct the instance (P ′, c+1) as
above by adding the point pn+1 = p∞. As ρ(n) ≤ 2poly(n), constructing P ′ using
Algorithm Expand is efficient. By Lemma 2, A(P ′) includes every index in I
with probability at least 1/3. With high probability, A(P ′, c+1) contains exactly
c points from P , and the set A(P ′) \ {n + 1} is the unique optimal solution for
(P, c). ut

Combining Theorem 4 with Corollary 1 we get:

Corollary 2. Let ρ(n) ≤ 2poly(n). The k-center-I problem (general metric ver-
sion) cannot be privately ρ(n)-approximated in polynomial time unless RP 6= NP.

3.2 Infeasibility of Deterministic Approximation of Clustering
Problems that Leaks Many Bits

In this section we prove that even if RP 6= NP, then for every ρ(n) ≤ 2poly(n)

there is no efficient deterministic ρ(n)-approximation algorithm of k-center-I
that leaks 0.015n bits (as in Definition 2).3 As in the previous section, we as-
sume the underlying distance metric is expandable. To prove the infeasibility
of almost private approximation of k-center-I, we assume towards contradiction
that there exists an efficient deterministic ρ(n)-approximation algorithm A that
leaks 0.015n bits. We use this algorithm to find a set close to the solution of a
unique-k-center instance.

In the proof of the infeasibility result for private algorithms, described in
Section 3.1, we started with an instance P of unique-k-center and generated a
new instance P ′ by adding to P a “far” point. We considered an instance P ′′

that is equivalent to P ′ and argued that, since the instances are equivalent, a de-
terministic private algorithm must return the same output on the two instances.
3 Throughout this paper, constants are shamelessly not optimized.



For almost private algorithms, we cannot use the same proof. Although the in-
stances P ′ and P ′′ are equivalent, even an algorithm that leaks one bit can give
different answers on P ′ and P ′′.

The first idea to overcome this problem is to add linearly many new “far”
points (using Algorithm Expand). Thus, any deterministic approximation algo-
rithm must return all “far” points and a subset of the original points. However,
there is no guarantee that this subset is the optimal solution to the original in-
stance. The second idea is using a random renaming of the indices of the instance.
We will prove that with high probability (over the random choice of the renam-
ing), the output of the almost private algorithm is close to the optimal solution
of unique-k-center. This contradicts the NP-hardness, described in Section 2.5,
of finding a set close to the exact solution for unique-k-center instances.

We next formally define the construction of adding “far” points and permut-
ing the names. Given an instance (P, c) of unique-k-center with distance function
dist, we use Algorithm Expand with parameters (2 ·ρ(10n), 9n) to create an in-
stance (P ′, 9n + c) with distance function dist′ by adding 9n “far” points. Let
N

def= 10n be the number of points in P ′ and c′ def= c + 9n. We next choose a
permutation π : [N ] → [N ] to create a new instance (Pπ, 9n + c) with distance
function distπ, where distπ(pπ(i), pπ(j))

def= dist′(pi, pj).
We start with some notation. Let I be the the set of indices of the points in the

unique optimal solution for (P, c) and S
def= [n] \ I (that is, S is the set of indices

of the points in the original instance P not in the optimal solution). Note that
|I| = c and |S| = n− c. For any set A ⊆ [N ], we denote π(A) def= {π(i) : i ∈ A}.
The construction of Pπ and the sets S and I are illustrated in Fig. 1.

It is easy to see that an optimal solution Iπ for (Pπ, c′) includes the 9n “far”
points, that is, {pπ(i) : n + 1 ≤ i ≤ 10n} (if not, then this solution’s cost is
at least 2 · ρ(N) · d whereas if {π(n + 1), . . . , π(10n)} ⊂ Iπ the cost is at most
d). Thus, Iπ contains exactly c points from {pπ(i) : 1 ≤ i ≤ n} which must be
π(I). That is, the unique optimal solution Iπ of (Pπ, c′) consists of the indices
in [N ] \ π(S).

Observation 2. Let π1, π2 be two permutations such that π1(S) = π2(S). Then,
(Pπ1 , c

′) ≡Rk-center-I (Pπ2 , c
′).

In Fig. 2 we describe Algorithm Close to Unique k-Center that finds
a set close to the unique minimum solution of an instance of unique-k-center
assuming the existence of a deterministic ρ(N)-approximation algorithm A for
k-center-I that leaks 0.015N -bits. Notice that in this algorithm we execute the
approximation algorithm A on (Pπ, c′) – an instance with N = 10n points –
hence the approximation ratio of A (and its leakage) is a function of N .

We next prove that, with high probability, Algorithm Close to Unique
k-Center returns a set that is close to the optimal solution. In the analysis,
we partition the set of permutations π : [N ] → [N ] to disjoint subsets. We
prove that in every subset, with high probability, Algorithm Close to Unique
k-Center returns a set that is close to the optimal solution, provided that it



The points Pπ
The points P ′

I

π(I)[n]

D = π(S)

S

Fig. 1. The construction of Pπ.

Algorithm Close to Unique k-Center:
Input: An instance (P = {p1, . . . , pn}, c) and an integer t.
Promise: (P, c) has a unique set of c cluster centers with maximum cluster radius
at most t.
Output: A set 0.7-close to the unique set of c cluster centers with maximum cluster
radius at most t.

1. Use algorithm Expand with parameters (2 ·ρ(10n), 9n) to create a set of points
P ′ = {p1, . . . , pn, pn+1, . . . , p10n}.

2. Choose a permutation π : [N ] → [N ] uniformly at random and construct Pπ.
3. Let B ← A(Pπ, c + 9n) and B−1 ← {i ∈ [n] : π(i) ∈ B}.
4. Return B−1.

Fig. 2. An algorithm that finds a set 0.7-close to the unique minimum solution
of an instance of unique-k-center assuming that A is an almost private approxi-
mation algorithm for k-center-I.

chose a permutation in the subset. Specifically, for every D ⊂ [N ], we consider
the subset of the permutations π such that π(S) = D.

In the rest of the proof we fix an instance (P, c) with a unique optimal solution
I and define S

def= [n] \ I. Furthermore, we fix a set D ⊂ [N ] such that |D| = |S|
and consider only permutations such that π(S) = D. (The algorithm does not to
need know S and D; these sets are used for the analysis.) We prove in Lemma 4
that with high probability [N ]\A(Pπ, c′) is close to D, and we show in Lemma 3
that in this case Algorithm Close to Unique k-Center succeeds.

Lemma 3. Let B be a set such that |B∩D| ≤ 0.15n and π is a permutation such
that A(Pπ, c′) = B. Then, Algorithm Close to Unique k-Center returns a
set 0.7-close to I when it chooses the permutation π in Step (2).

Proof. When choosing π, Algorithm Close to Unique k-Center returns the
set

B−1 = {i ∈ [n] : π(i) ∈ B} = {i ∈ I : π(i) ∈ B} ∪ {i ∈ S : π(i) ∈ B}
= {i ∈ I : π(i) ∈ B} ∪ {i : π(i) ∈ B ∩D}.



Thus, |B−1 \I| = |B∩D| ≤ 0.15n. As |B−1| = |I|, we get |I \B−1| = |B−1 \I| ≤
0.15n. Therefore, |B−14 I| ≤ 0.3n, and B−1 is 0.7-close to I. ut

Lemma 4. Let pr def= Pr[ |A(Pπ, c′)∩D| ≤ 0.15n ], where the probability is taken
over the uniform choice of π subject to π(S) = D. Then, pr ≥ 3/4.

Proof. We prove that if pr < 3/4, there is a permutation π such that A does
not ρ(N)-approximate k-center-I on (Pπ, c′), in a contradiction to the definition
of A.

In this proof, we say that a set B is “bad” if |B ∩D| > 0.15n. The number
of permutations such that π(S) = D is (|S|)!(N − |S|)! = (n − c)!(9n + c)!. As
we assumed that pr < 3/4, the number of permutations π such that π(S) = D
and A(Pπ, c′) is “bad” is at least

0.25(n− c)!(9n + c)! ≥ (n− c)!
√

n
(

9n+c
e

)9n+c
. (1)

We will prove that, by the properties of A, the number of such permutations is
much smaller achieving a contradiction to our assumption that pr < 3/4.

We first upper bound, for a given “bad” set B, the number of permutations
π such that π(S) = D and A(Pπ, c′) = B. Notice that the output of the deter-
ministic algorithm A(Pπ, c′) must contain all points in {pπ(i) : n+1 ≤ i ≤ 10n}
(otherwise the radius of the approximated solution is at least 2 · ρ(N) · d, com-
pared to at most d when taking all points in {pπ(i) : n + 1 ≤ i ≤ 10n}
and additional c points). Thus, if a permutation π satisfies π(S) = D and
A(Pπ, c′) = B, then [N ] \ B ⊂ D ∪ π(I), which implies [N ] \ (B ∪ D) ⊂ π(I).
Letting b

def= |B ∩D| ≥ 0.15n,

| [N ] \ (B ∪D) | = N − |B| − |D|+ |B ∩D| = 10n− (9n + c)− (n− c) + b = b.

Every permutation π satisfying π(S) = D and A(Pπ, c′) = B has a fixed set of
size b contained in π(I), thus, the number of such permutations is at most

(|S|)!
(|I|

b

)
b!(N − |S| − b)! = (n− c)!

(
c

b

)
b!(9n + c− b)!.

Taking b = 0.15n can only increase this expression (as we require that a smaller
set is contained in π(I)). Thus, noting that c ≤ n, the number of permutations
such that π(S) = D and A(Pπ, c′) = B is at most (n−c)!

(
n

0.15n

)
(0.15n)!(8.85n+

c)!. First,
(

n
0.15n

) ≤ 2H(0.15)n ≤ (16)0.15n, where H(0.15) ≤ 0.61 is the Shannon
entropy. Thus, using Stirling approximation, the number of such permutations
is at most

O
(√

n(0.3)0.15n
) ·

(
(n− c)!

√
n

(
9n + c

e

)9n+c
)

. (2)

By Obseration 2, all instances (Pπ, c′) for permutations π such that π(S) = D
are equivalent according to Rk-center-I. Thus, since A leaks at most 0.015N bits,



there are at most 20.015N possible answers of A on these instances, in particular,
there are at most 20.015N = 20.15n “bad” answers. Thus, by (2), the number of
permutations such that π(S) = D and A(Pπ, c′) is a “bad” set is at most

O
(
20.15n

√
n(0.3)0.15n

) ·
(

(n− c)!
√

n

(
9n + c

e

)9n+c
)

(3)

As the number of permutations in (3) is smaller than the number of permutations
in (1), we conclude that pr ≥ 3/4. ut

Combining Lemma 3 and Lemma 4, if A is a ρ(N)-approximation algorithm
for k-center-I that leaks 0.015N bits, then Algorithm Close to Unique k-
Center returns a set that is 0.7-close to the optimal solution with probability
at least 3/4, and by Theorem 3, this is impossible unless RP = NP.

In the full version of the paper we show that Algorithm Close to Unique
k-Center finds a set close to the optimal solution even when A is randomize.

Theorem 5. Let ρ(n) ≤ 2poly(n). If RP 6= NP, every efficient ρ(n)-approximation
algorithm for k-center-I (in the general metric version) must leak Ω(n) bits.

4 Privacy of Clustering with respect to the Definition
of [13]

Trying to get around the impossibility results, we examine a generalization of
a definition by Indyk and Woodruff [13], originally presented in the context of
near neighbor search. In the modified definition, the approximation algorithm is
allowed to leak the set of approximated solutions to an instance. More formally,
we use Definition 1, and set the equivalence relationRη to include η-approximate
solutions as well:

Definition 10. Let L be a minimization problem with cost function cost. A
solution w is an η-approximation for x if costx(w) ≤ η · minw′(costx(w′)). Let
appx(x) def= {w : w is an η-approximation for x}. Define the equivalence relation
Rη

L as follows: x ≡Rη
L

y iff appx(x) = appx(y).

Note that Definition 10 results in a range of equivalence relations, parameterized
by η. When η = 1 we get the same equivalence relation as before.

We consider the coordinate version of k-center. In the full version of this
paper we show a threshold at η = 2 for k-center-C: (1) When η ≥ 2, every
approximation algorithm is private with respect to Rη

k-center-C. (2) For η < 2 the
problem is as hard as when η = 1.

5 Infeasibility of Approximation of Vertex Cover that
Leaks Information

In [1], it was proven that if RP 6= NP, then for every constant ε > 0, every algo-
rithm that n1−ε approximates vertex cover must leak Ω(log n) bits. In this paper



we strengthen this result showing that if RP 6= NP, then every algorithm that
n1−ε-approximates vertex cover must leak Ω(nε) bits. We note that this results
is nearly tight: In [1], an algorithms that n1−ε-approximates vertex cover and
leaks 2nε bits is described. We will describe the infeasibility result in stages. We
will start by describing a new proof of the infeasibility of deterministic private
approximation of vertex cover, then we will describe the infeasibility of deter-
ministic n1−ε-approximation of vertex cover that leaks at most αnε bits (where
α < 1 is a specific constant). In the full version of the paper we show the same
infeasibility result for randomized algorithms.

5.1 Infeasibility of Deterministic Private Approximation of Vertex
Cover

We assume the existence of a deterministic private approximation algorithm for
vertex-cover and show that such algorithm implies that RP = NP. The idea of
the proof is to start with an instance G of unique-vertex-cover and construct a
new graph Gπ. First, polynomially many isolated vertices are added to the graph.
This means that any approximation algorithm must return a small fraction of the
vertices of the graph. Next, the names of the vertices in the graph are randomly
permuted. The resulting graph is Gπ. Consider two permutations that agree
on the mapping of the vertices of the unique-vertex-cover. The two resulting
graphs are equivalent and the private algorithm must return the same answer
when executed on the two graphs. However, with high probability on the choice
of the renaming of the vertices, this answer will contain the (renamed) vertices
that consisted the minimum vertex cover in G, some isolated vertices, and no
other non-isolated vertices. Thus, given the answer of the private algorithm, we
take the non-isolated vertices and these vertices are the unique minimum vertex
cover. As unique-vertex-cover is NP-hard [21], we conclude that no deterministic
private approximation algorithm for vertex exists (unless RP = NP).

The structure of this proof is similar to the proof of infeasibility of k-center-I,
presented in Section 3.2. There are two main differences implied by the charac-
teristics of the problems. First, the size of the set returned by an approximation
algorithm for vertex-cover is bigger than the size of the minimum vertex cover
as opposed to k-center where the approximation algorithm always returns a set
of c centers (whose objective function can be sub-optimal). This results in some-
what different combinatorial arguments used in the proof. Second, it turns out
that the roll of the vertices in the unique vertex cover of the graph is similar to
the roll of the points not in the optimal solution of k-center. For example, we
construct a new graph by adding isolated vertices which are not in the minimum
vertex cover of the new graph.

We next formally define the construction of adding vertices and permuting
the names. Given a graph G = (V,E), where |V | = n, an integer N > n, and
an injection π : V → [N ] (that is, π(u) 6= π(v) for every u 6= v), we construct
a graph Gπ = ([N ], Eπ), where Eπ = {(π(u), π(v)) : (u, v) ∈ E}. That is, the
graph Gπ is constructed by adding N − n isolated vertices to G and choosing
random names for the original n vertices. Throughout this section, the number of



vertices in G is denoted by n, and the number of vertices in Gπ is denoted by N .
We execute the approximation algorithm on Gπ, hence its approximation ratio
and its leakage are functions of N . Notice that if G has a unique vertex cover
C, then Gπ has a unique vertex cover π(C) def= {π(u) : u ∈ C}. In particular,

Observation 3. Let G be a graph with a unique minimum vertex cover C, where
k

def= |C|, and π1, π2 : V → [N ] be two injections such that π1(C) = π2(C). Then,
(Gπ1 , k) ≡RVC (Gπ2 , k).

In Fig. 3, we describe an algorithm that uses this observation to find the unique
minimum vertex cover assuming the existence of a private approximation algo-
rithm for vertex cover. In the next lemma, we prove that Algorithm Vertex
Cover solves the unique-vertex-cover problem.

Algorithm Vertex Cover:
Input: A Graph G = (V, E) and an integer t.
Promise: G has a unique vertex cover of size t.
Output: The unique vertex cover of G of size t.

1. Let N ← (4n)2/ε.
2. Choose an injection π : V → [N ] uniformly at random and construct the graph

Gπ.
3. Let B ← A(Gπ) and B−1 ← {u ∈ V : π(u) ∈ B}.
4. Return B−1.

Fig. 3. An algorithm that finds the unique minimum vertex cover.

Lemma 5. Let ε > 0 be a constant. If A is a deterministic N1−ε-private ap-
proximation algorithm for vertex cover and G has a unique vertex cover of size t,
then, with probability at least 3/4, Algorithm Vertex Cover returns the unique
vertex cover of G of size t.

Proof. First, observe that B−1 is a vertex cover of G: For every (u, v) ∈ E the
edge (π(u), π(v)) is in Eπ, thus at least one of π(u), π(v) is in B and at least
one of u, v is in B−1. Notice that if π(v) /∈ A(Gπ) for every v ∈ V \ C, then
Algorithm Vertex Cover returns the vertex cover C. We will show that the
probability of this event is at least 3/4.

We say that an injection π : V → [N ] avoids a set B if π(v) /∈ B for every v ∈
V \C. See Fig. 4. By Obseration 3, the output B of the deterministic algorithm
A depends only on π(C). Thus, it suffices to show that for every possible value
of D, the probability that a random injection π such that π(C) = D avoids
B = A(Gπ) is at least 3/4. As Gπ has a cover of size at most n, and A is an
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Fig. 4. Injections that avoid and do not avoid the output of A.

N1−ε-approximation algorithm, |B| ≤ nN1−ε. Thus, since N = (4n)2/ε,

Pr[π avoids B|π(C) = D] ≥
|V |−|C|∏

i=1

(
1− |B|

N − n

)
≥

(
1− nN1−ε

N/2

)n

=
(

1− 2n

N ε

)n

=
(

1− 1
8n

)n

>
3
4
.

To conclude, the probability that the random π avoids A(Gπ) is at least 3/4.
In this case B−1 = C (as B−1 is a vertex cover of G that does not contain any
vertices in V \ C) and the algorithm succeeds. ut

Infeasibility of leaking O(log n) bits. Now, assume that Algorithm A is a deter-
ministic N1−ε-approximation algorithm that leaks at most (ε log N)/2 bits. In
this case, for every equivalence class of ≡RVC , there are at most 2(ε log N)/2) =
N ε/2 possible answers. In particular, for every possible value of D, there are at
most N ε/2 answers for all graphs Gπ such that the injection π satisfies π(C) = D.
If the injection π avoids the union of these answers, then Algorithm Vertex
Cover succeeds for a graph G that has a unique vertex cover of size t. The size
of the union of the answers is at most N ε/2 · nN1−ε = nN1−ε/2, and if we take
N = (4n)4/ε in Algorithm Vertex Cover, then with probability at least 3/4
the algorithm succeeds for a graph G that has a unique vertex cover of size t.
However, we want to go beyond this leakage.

5.2 Infeasibility of Approximation of Vertex Cover that Leaks
Many Bits

Our goal is to prove that there exists a constant α such that for every constant
ε > 0, if RP 6= NP, then there is no efficient algorithm that N1−ε-approximates
the vertex cover problem while leaking at most αN1−ε bits. This is done by
using the results of [16,5] that shows that it is NP-hard to produce a set that is
close to a minimal vertex cover as defined in Section 2.5. Using this result, we



only need that B−1 is close to the minimum vertex cover. We show that, even if
A leaks many bits, for a random injection, the set B−1 is close to the minimum
vertex cover.

Algorithm Close to Vertex Cover:
Input: A Graph G = (V, E) and an integer t.
Promise: G has a unique vertex cover of size t.
Output: A set S that is δ-close to the unique vertex cover of G of size t for some
constant δ > 1/2.

1. Let N ← (100n)1/ε.
2. Choose a random injection π : V → [N ] with uniform distribution and construct

the graph Gπ.
3. Let B ← A(Gπ) and B−1 ← {u ∈ V : π(u) ∈ B}.
4. Return B−1.

Fig. 5. An algorithm that returns a set close to a unique minimum vertex cover.

In Fig. 5, we describe Algorithm Close to Unique k-Center that finds a
set close to the unique vertex cover of G assuming the existence of a deterministic
N1−ε-approximation algorithm for vertex cover that leaks αN ε bits. (In the full
version of the paper we show how to generalize the analysis to deal with a
randomized N1−ε-approximation algorithm.) To prove the correctness of the
algorithm we need the following definition and lemma.

Definition 11. Let C ⊂ V be the unique minimum vertex cover of a graph G,
and π : V → [N ] be an injection. We say that π δ-avoids a set B if |{v ∈ V \C :
π(v) ∈ B}| ≤ δ|V |.
Lemma 6. Let ε > 0 be a constant, and B ⊂ [N ], D ⊂ [N ] be sets, where |B| ≤
nN1−ε. If N = (100n)1/ε and an injection π : V → [N ] is chosen at random
with uniform distribution, then Pr[π does not 0.2-avoid B|π(C) = D] ≤ e−0.2n.

The lemma is proved by using the Chernoff bound noting that the events
π(u) ∈ B and π(v) ∈ B are “nearly” independent for u 6= v.

Lemma 7. There exists a constant α < 1 such that, for every constant ε > 0,
if A is a deterministic N1−ε-approximation algorithm for vertex cover that leaks
at most αN ε bits, then for every G and t such that G has a unique vertex cover
of size t, with probability at least 3/4, Algorithm Close to Vertex Cover
returns a set that is 0.6-close to the minimum vertex cover of G.

Proof (sketch): Let G and t be such that G has a unique vertex cover of size t;
denote this vertex cover by C. We fix a set D and consider only injections π such
that π(C) = D. Let α = 0.002 and assume that A leaks at most αN ε = 0.2n bits



(since N = (100n)1/ε). By Obseration 3, if we restrict ourself to such injections,
then the output of A has at 20.2n options. Denote these answers by B1, . . . , B`

for ` ≤ 20.2n. By Lemma 6, for every possible value of B, the probability that a
random injection π such that π(C) = D does not 0.2-avoid B is at most e−0.2n.
Thus, by the union bound, the probability that a random injection π such that
π(C) = D 0.2-avoids A(Gπ) is at least 1 − (2/e)0.2n À 3/4. In this case B−1

contains at most 0.2n vertices not from the minimum vertex cover C. Recall
that B−1 is a vertex cover of G. Therefore, |C \ B−1| ≤ 0.2n (as |B−1| > |C|
and |B−1 \C| ≤ 0.2n). We conclude that B−1 is 0.6-close to a vertex cover of G
as claimed. ut

Theorem 6. There exists a constant α > 0 such that, if RP 6= NP, there is no
efficient N1−ε-approximation algorithm for vertex cover that leaks αN ε bits.

6 Discussion

The generic nature of our techniques suggests that, even if the notion of private
approximations would be found useful for some NP-complete problems, it would
be infeasible for many other problems. Hence, there is a need for alternative
formulations of private approximations for search problems.

The definitional framework of [1] allows for such formulations, by choosing
the appropriate equivalence relation on input instances. Considering vertex-cover
for concreteness, the choice in [1] and the current work was to protect against
distinguishing between inputs with the same set of vertex covers. A different
choice, that could have been made, is to protect against distinguishing between
inputs that have the same lexicographically first maximal matching. (In fact, the
latter is feasible and allows a factor 2 approximation).

A different incomparable notion of privacy was pursued in recent work on
private data analysis. For example, [4] present a variant on the k-means clus-
tering algorithm that is applied to a database, where each row contains a point
corresponding to an individual’s information. This algorithm satisfies a privacy
definition devised to protect individual information.

Finally, a note about leakage of information as discussed in this work. It
is clear that introduction of leakage may be problematic in many applications
(to say the least). In particular, leakage is problematic when composing proto-
cols. However, faced by the impossibility results, it is important to understand
whether a well defined small amount of leakage can help. For some functionalities
allowing a small amount of leakage bypasses an impossibility result – approxi-
mating the size of the vertex cover [10], and finding an assignment that satisfies
7/8− ε of the clauses for exact max 3SAT [1]. Unfortunately, this is not the case
for the problems discussed in this work.

Acknowledgments. We thank Enav Weinreb and Yuval Ishai for interesting dis-
cussions on this subjects and we thank the TCC program committee for their
helpful comments.
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