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Abstract. In this work we present secure two-party protocols for var-
ious core problems in linear algebra. Our main result is a protocol to
obliviously decide singularity of an encrypted matrix: Bob holds an n×n
matrix, encrypted with Alice’s secret key, and wants to learn whether or
not the matrix is singular (while leaking nothing further). We give an
interactive protocol between Alice and Bob that solves the above prob-
lem in O(log n) communication rounds and with overall communication
complexity of roughly O(n2) (note that the input size is n2). Our tech-
niques exploit certain nice mathematical properties of linearly recurrent
sequences and their relation to the minimal and characteristic polyno-
mial of the input matrix, following [Wiedemann, 1986]. With our new
techniques we are able to improve the round complexity of the commu-
nication efficient solution of [Nissim and Weinreb, 2006] from O(n0.275)
to O(log n).
At the core of our results we use a protocol that securely computes the
minimal polynomial of an encrypted matrix. Based on this protocol we
exploit certain algebraic reductions to further extend our results to the
problems of securely computing rank and determinant, and to solving
systems of linear equations (again with low round and communication
complexity).

Keywords. Secure Linear Algebra, Linearly Recurrent Sequences, Wiede-
mann’s Algorithm.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryp-
tography in particular. Numerous cryptographic applications such as private
information retrieval, secret sharing schemes, and multi-party secure computa-
tion make use of linear algebra. In particular, the ability to solve a set of linear
equations is an important algorithmic and cryptographic tool. In this work we
design efficient and secure protocols for various linear algebra problems. Our
protocols enjoy both low communication and round complexity.
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The secure computation of many linear algebra tasks efficiently reduces to
the following problem. Alice holds the private key of a public-key homomor-
phic encryption scheme, and Bob holds a square matrix A whose entries are
encrypted under Alice’s public key. Alice and Bob wish to decide whether A
is singular while leaking no other information on A. Our protocol is based on
an algorithm by Wiedemann for “black-box linear algebra” [24] which is highly
efficient when applied to sparse matrices. This algorithm uses linearly recurrent
sequences and their relation to the greatest common divisor problem for polyno-
mials (see Section 3). Somewhat surprisingly, we design a secure protocol based
on this algorithm which is applicable to general matrices. Previous secure pro-
tocols for linear algebra problems used basic linear algebra techniques such as
Gaussian Elimination. Our protocols exploit more advanced properties of linear
systems to achieve improved complexity bounds.

Cramer and Damg̊ard initiated the study of secure protocols for solving vari-
ous linear algebra problems [6]. Their work was done in the information theoretic
multi-party setting, with the main focus on achieving constant round complex-
ity. The communication complexity of their protocols is Ω(n3) while the size of
the inputs is just O(n2). A generic approach for designing secure protocols is to
apply the garbled circuit method of Yao [25], for which the communication com-
plexity is related to the Boolean circuit complexity of the underlying function.
However, these linear algebra functions are strongly related to the problem of
matrix multiplication [4], with essentially the same circuit complexity. The best
known upper bound for matrix multiplication is O(nω) [5] for ω ∼= 2.38, which
is still larger than the input size. In a recent paper, Nissim and Weinreb [19]
introduced an oblivious singularity protocol with communication complexity of
roughly O(n2). However, their protocol, which relies on the Gaussian elimination
procedure, has round complexity Ω(n0.275), which is considered relatively high.
The need for low round complexity is motivated by the fact that in most practi-
cal systems the time spent on sending and receiving messages is large compared
to local computation time.

Our Results. We design a secure protocol for deciding singularity of a matrix,
which gets the best of previous results, both in terms of communication and
round complexity, up to a logarithmic factor. We achieve communication com-
plexity of roughly O(n2) and O(log n) round complexity. Our constructions are
secure, assuming the existence of a homomorphic public-key encryption scheme
and a secure instantiation of Yao’s garbled circuit protocol. The latter can be
constructed using an appropriate symmetric key encryption and an oblivious
transfer protocol which is secure against semi-honest adversaries. Using the pro-
tocol for deciding singularity, we design a secure protocol for solving a linear
system Ax = y based on an algorithm by Kaltofen and Saunders [14]. The tech-
nical difficulty in applying this algorithm is that it depends on the rank of the
matrix A. Computing the rank of A in the clear would compromise the privacy
of the protocol. We overcome this problem by designing a protocol for computing
an encryption of the rank of an encrypted matrix. As the rank of a matrix is
a basic concept in linear algebra, this protocol is of independent interest. The



above techniques also yield communication and round efficient secure protocols
for computing the minimal polynomial and the determinant of an encrypted
matrix. Our results give rise to communication and round efficient secure proto-
cols for problems that are reducible to linear algebra, e.g., perfect matching and
problems with low span program complexity [15]. We summarize our main pro-
tocols in Table 1. Note that the outputs of our protocols are always encrypted,
which in particular enables composition of our protocols. Thus, our protocols
may be conveniently used as sub-protocols in other secure protocols.

Our protocols are designed under the assumption that Bob holds an en-
crypted version of the input and Alice holds the decryption key. In practice,
secure linear algebra is often needed when the inputs of Alice and Bob are in
the clear. However, applying simple reductions, we are able to give improved
secure protocols for many natural problems of this kind. For example, consider
the linear subspace intersection problem, in which each of Alice and Bob holds
a subspace of Fn and they wish to securely decide whether there is a non-zero
vector in the intersection of their input subspaces. Even for insecure compu-
tation, it is shown in [2] that the deterministic communication complexity of
the problem is Ω(n2). This result agrees with ours up to a logarithmic factor.1

Another natural problem that we can compute securely and efficiently is solving
a shared system of linear equations. Here Alice and Bob both hold independent
systems of linear equations in the same variables. They jointly want to compute
a solution vector that satisfies both sets of equations, without revealing anything
about their secret inputs.

Protocol name INPUT OUTPUT
Bob Alice Bob Alice

MINPOLY Enc(A) SK Enc(mA) —

SINGULAR Enc(A) SK Enc(det(A) = 0?) —

RANK Enc(A) SK Enc(rank(A)) —

DET Enc(A) SK Enc(det(A)) —

LINEAR SOLVE Enc(A), Enc(x) SK Enc(y) (y random s.t. Ax = y) —

Table 1. Basic linear algebra protocols with O(n2 log n · log |F|) communication com-
plexity and O(log n) rounds. Here A ∈ Fn×n is a matrix and x ∈ Fn is a vector.

Techniques. Our protocols rely on random reductions from computing linear
algebra properties of a matrix A ∈ Fn×n to computing the minimal polynomial
mA of a certain matrix related to A [24, 14, 11]. In particular, the singularity of
A is related to the constant coefficient of this minimal polynomial, and the rank
of A to its degree.
1 Although determining the randomized communication complexity of subspace inter-

section is an open problem, it serves as an evidence that our upper bound may be
tight.



Since no efficient secure protocol for computing the minimal polynomial of
a shared matrix is known, we exploit another probabilistic reduction from this
problem to computing the minimal polynomial of a particular linearly recurrent
sequence. A sequence of field elements a = (ai)i∈N ∈ FN is linearly recurrent of
order n ∈ N if there exist f0, . . . , fn ∈ F with fn 6= 0 such that

∑n
j=0 fjai+j =

0, for all i ∈ N. The field elements f0, . . . , f2n−1 completely characterize the
sequence a and are, roughly speaking, related to its minimal polynomial (see
Section 3). Picking u, v uniformly in Fn, the minimal polynomial of the linearly
recurrent sequence a = (u>Aiv)i∈N of order n coincides, with high probability,
with the minimal polynomial of matrix A [11].

To securely compute the minimal polynomial of the above sequence, we first
show how to compute the first 2n elements of a in low round and communication
complexity. Then we use the Berlekamp/Massey algorithm [17] to reduce the
problem to computing the extended greatest common divisor of two polynomials
derived from the first 2n elements of sequence a. Finally, we exploit the fact the
the Boolean circuit complexity of the extended GCD algorithm is significantly
smaller than that of the original linear algebraic function to apply Yao’s garbled
circuit method here. Moreover, we show a general technique to apply Yao’s
garbled circuit method from a starting point where Bob holds an encrypted input
and Alice holds the decryption key. As we discussed earlier in the introduction,
trying to apply Yao’s construction directly to the original linear algebra problems
would result in Ω(nω) communication complexity.

Organization. In Section 2 we discuss the setting and some basic building blocks.
In Section 3 we define linearly recurrent sequences and discuss their basic prop-
erties. Then, in Section 4, we show how to compute the minimal polynomial of an
encrypted matrix. We design protocols for deciding singularity, computing rank
and determinant of an encrypted matrix, and solving an encrypted linear system
in Section 5. The appendices contain some additional details and applications of
our secure protocols.

2 General Framework

Homomorphic encryption schemes. As a first step in our protocols, we
reduce the original linear algebra problems to a state where Bob holds data
encrypted by a public key homomorphic encryption scheme, and Alice holds
the private decryption key. Our constructions use semantically-secure public-key
encryption schemes that allow for simple computations on encrypted data. In
particular, we use encryption schemes where given two encryptions Enc(m1) and
Enc(m2), we can efficiently compute a random encryption Enc(m1 + m2). Note
that this implies that given an encryption Enc(m) and c ∈ F, we can efficiently
compute a random encryption Enc(cm). We will be working with encryption of
elements in a finite field. Paillier’s [20] cryptosystem is an appropriate choice
for this purpose. One minor issue is that the domain of Paillier’s cryptosystem
is the ring Zn, where n is the product of two large and secret primes. Note



that Zn has all of the properties of a finite field except that some of the non-zero
elements in Zn are not invertible. We assume that all the non-zero values used by
our protocols are invertible elements of Zn. This assumption is reasonable since
otherwise one could use our protocols to factor n. Particularly, an extended GCD
algorithm on any element x used by our protocols and n, would either find the
inverse of x mod n, or find a non-trivial factor of n. So in the context of our
paper, we can describe computations in Zn as if it was a finite field. Several
other constructions of homomorphic encryption schemes are known, each with
their particular properties (see e.g. [22, 13, 10, 21, 23, 3, 18, 7]).

We view our protocols as algorithms that Bob executes on his encrypted
input. As mentioned above, the homomorphic encryption allows Bob to locally
perform several simple computations on his input. However, other computations
require the help of Alice. As a simple example of a protocol where Bob uses
Alice’s help, consider the following (folklore) protocol MATRIX MULT for en-
crypted matrix multiplication.

Bob holds the encryptions Enc(A) and Enc(B) of two matrices A ∈ Fn×` and
B ∈ F`×m. Alice holds the private decryption key. At the end of the protocol
Bob should hold the encryption Enc(AB) of the product matrix AB ∈ Fn×m.
Bob chooses two random matrices RA ∈ Fn×` and RB ∈ F`×m and sends Alice
the two matrices Enc(A + RA) and Enc(B + RB), which he can locally compute
using the homomorphic properties of Enc(·). Alice decrypts these matrices and
returns Enc((A+RA)·(B+RB)) to Bob. Finally Bob locally computes Enc(AB) =
Enc((A+RA)(B+RB))−Enc(ARB)−Enc(RAB)−Enc(RARB). The protocol runs
in two rounds and the communication complexity of this protocol is n`+`m+nm.
The security proof for this protocol is straightforward.

Notation. We denote by neg(x) a function that is negligible in x, i.e., neg(x) =
x−ω(1). Let F be a finite field with p elements, and denote k = log p. To make
our complexity statements simpler, we make the assumption that the size of
the field F is not too big2 with respect to the dimensions of the matrix, i.e.
log |F| = k = O(n). Our protocols usually work with error probability of about
n/|F|. That is, we also assume the field size to be super-polynomial in n. If the
field size is too small, we can always work over an extension field of appropriate
size. This may add a small multiplicative factor polylog(n) to the communication
complexity of the protocol. For example, for the case of F2 we could view the
elements as if they were from (F2)α for α = (log n)1+ε. This would add a factor
of (log n)1+ε to the communication complexity, and reduce the error probability
to neg(n).

For an encryption scheme, we denote by λ its security parameter. We assume
that the result of encrypting a field element is of length O(λ+k). As a convention,
the complexities of our protocols count the number of encrypted field elements
that are communicated during the protocol.

We view a vector v ∈ Fn as a column vector. To denote a row vector we
use v>. For a vector v ∈ Fn, we denote by Enc(v) the coordinate-wise encryp-

2 For bigger fields the complexity of our protocols grows at most by an additional
factor of log k.



tion of v. That is, if v = 〈a1, . . . , an〉 where a1, . . . , an ∈ F, then Enc(v) =
〈Enc(a1), . . . ,Enc(an)〉. Similarly, for a matrix A ∈ Fm×n, we denote by Enc(A)
the m × n matrix such that Enc(A)[i, j] = Enc(A[i, j]). An immediate conse-
quence of the above properties of homomorphic encryption schemes is the abil-
ity to perform the following operations without knowledge of the secret key: (i)
Given encryptions of two vectors Enc(v1) and Enc(v2), we can efficiently com-
pute Enc(v1 + v2), and similarly with matrices. (ii) Given an encryption of a
vector Enc(v) and a constant c ∈ F, we can efficiently compute Enc(cv). (iii)
Given an encryption of a matrix Enc(A) and a matrix A′ of the appropriate
dimensions, we can efficiently compute Enc(AA′) and Enc(A′A), as any entry in
the resulting matrix is a linear combination of some encrypted matrix entries.
Adversary model. Our protocols are constructed for the two-party semi-honest
adversary model.3 Roughly speaking, both parties are assumed to act in accor-
dance with their prescribed actions in the protocol. Each party may, however,
collect any information he/she encounters during the protocol run, and try to
gain some information about the other party’s input. We will compose our pro-
tocols in a modular manner and will argue about their privacy using well-known
sequential composition theorems [12] in the semi-honest adversary model. De-
signing communication and round efficient secure protocols for linear algebraic
problems in the malicious model remains an open problem.
Complexity Measures. Any interaction between Alice and Bob in the proto-
col is called a round of communication. The total number of such interactions
consists the round complexity of the protocol. In each round some data is sent
from Bob to Alice or from Alice to Bob. The size of all the data (i.e. the total
number of bits) that is communicated between Alice and Bob during the whole
execution of the protocol is called the communication complexity of the protocol.
We make the convention to count the communication complexity of our proto-
cols in terms of the number of encrypted values Enc(·) exchanged between Alice
and Bob.

2.1 Applying Yao’s Garbled Circuit Method

In Yao’s garbled circuit method [25] Alice and Bob hold private binary inputs
x and y, respectively, and wish to jointly compute a functionality f(x, y), such
that Alice learns f(x, y) and Bob learns nothing. Let f be a functionality with
m′ inputs and `′ outputs, which can be computed by a Boolean circuit of size
G. Then the construction of Yao results in a protocol that runs in a constant
number of rounds and communication complexity O(G + m′ + `′).4

3 Getting the same results in the multi-party information theoretic setting remains an
open problem. In particular, our protocols reduce the linear algebra problems into a
variant of the extended GCD problem for polynomials. Unfortunately, a communi-
cation and round efficient protocol for this problem is not known in the multi-party
information theoretic setting.

4 Here we make the (simplifying but reasonable) assumption that the primitives used
in [25] (i.e., the 1-out-of-2 oblivious transfer protocol and sending one garbled gate



In our (homomorphic encryption) setting, we typically get to a state where
Bob holds Enc(y) and Alice holds a private decryption key, and they wish for
Bob to learn Enc(f(y)) while Alice learns nothing, for some function f com-
puted by a given circuit. In our protocols, we sometimes need to switch from
this “homomorphic encryption setting” to the setting of Yao’s garbled circuit
to perform some tasks more efficiently. Then, we change from this setting to
the “homomorphic encryption setting” and continue. For completeness, next we
explain a simple way of doing so securely and efficiently.

From Homomorphic Encryption to Yao’s Assume that Bob is holding
Enc(a) where a ∈ F. Parties want to switch to a circuit Cf that computes the
function f(a, ...) on a and other inputs, without revealing the value of a.

Bob generates a random r ∈ F and sends Enc(a + r) to Alice. Alice decrypts
to get a + r. Now, parties create a circuit C ′

f such that Bob feeds r to C ′
f as his

part of the input, and Alice feeds a+ r to C ′
f as her part of the input. They also

add the additional circuitry that subtracts (a+r)−r = a, and use the output of
this circuitry in the same way that a would be used in Cf . Everything else will
stay the same as it was in Cf . The circuit for subtraction requires O(k) gates.
This does not affect the overall complexity of the circuit.

From Yao’s to Homomorphic Encryption Assume that Bob and Alice want
to apply Yao’s garbled circuit method to compute the function f , and Cf is
an appropriate circuit for this task. Lets denote the output of f by o ∈ F.
Then, parties want to have Bob hold Enc(o) without revealing o itself. In what
follows, we assume that Bob creates the circuit and Alice evaluates it (for more
information on Yao’s protocol see [16]).

Bob generates a random value r ∈ F . Parties create a circuit C ′
f such that

Bob feeds r to C ′
f as part of his input. C ′

f is the same as Cf except that parties
add the additional circuity to the end of the circuit to add r to o and output
o + r instead of o. Note that only Alice receives the output. She encrypts and
sends Enc(o+r) to Bob. Bob computes Enc(o) = Enc(o+r)−Enc(r) on his own.

The circuit for addition requires O(k) gates and does not affect the overall
complexity of the circuit. Parties can use the above two transformation on the
same circuit if the goal is to change back and forth between the two different
settings.

3 Linearly Recurrent Sequences

We reduce our various problems from linear algebra to computing the minimal
polynomial of a certain linearly recurrent sequence. In this section we formally
define linearly recurrent sequences and discuss some of their basic properties.
We follow the exposition given in [11].

of the circuit which is usually done by sending the output of a pseudorandom bit
generator) have a communication complexity O(λ) (where λ = |Enc(·)|) for each
execution.



Let F be field and V be a vector space over F. An infinite sequence a =
(ai)i∈N ∈ V N is linearly recurrent (over F) if there exists n ∈ N and f0, . . . , fn ∈
F with fn 6= 0 such that

∑n
j=0 fjai+j = 0, for all i ∈ N. The polynomial

f =
∑n

j=0 fjx
j of degree n is called a characteristic polynomial of a.

We now define a multiplication of a sequence by a polynomial. For f =∑n
j=0 fjx

j ∈ F[x] and a = (ai)i∈N ∈ V N, we set

f • a = (
n∑

j=0

fjai+j)i∈N ∈ V N.

This makes FN, together with •, into an F[x]-module.5

The property of being a characteristic polynomial can be expressed in terms
of the operation •. A polynomial f ∈ F[x]\ {0} is a characteristic polynomial
of a ∈ FN if and only if f • a = 0 where 0 is the all-0 sequence. The set of
all characteristic polynomials of a sequence a ∈ F

N, together with the zero
polynomial form an ideal in F[x]. This ideal is called the annihilator of a and
denoted by Ann(a). Since any ideal in F[x] is generated by a single polynomial,
either Ann(a) = {0} or there is a unique monic polynomial m ∈ Ann(a) of least
degree such that 〈m〉 = {rm : r ∈ F[x]} = Ann(a). This polynomial is called the
minimal polynomial of a and divides any other characteristic polynomial of a.
We denote the minimal polynomial of a by ma. The degree of ma is called the
recursion order of a.

Let A ∈ Fn×n be a matrix, and u,v ∈ Fn be vectors. We will be interested
in the following three sequences:

– A = AA = (Ai)i∈N where the sequence elements are from V = Fn×n.
– a = aA,v = (Aiv)i∈N where the sequence elements are from V = Fn.
– a′ = a′A,u,v = (u>Aiv)i∈N where the sequence elements are from V = F.

Definition 1. The minimal polynomial of a matrix A ∈ F
n×n is defined as

mA = mA, i.e. as the minimal polynomial of the sequence A = (Ai)i∈N.

By our definition of the minimal polynomial of a sequence the minimal poly-
nomial of A can alternatively be characterized as the unique monic polynomial
p(x) over F of least degree such that p(A) = 0.

We denote by fA = det(xIn −A) =
∑n

i=0 fjx
j the characteristic polynomial

of matrix A ∈ Fn×n. Note that fA is monic.

Lemma 1. Consider ma′ ,ma,mA, the minimal polynomials of the sequences
a′,a,A respectively. Then ma′ |ma|mA|fA.

Proof. We first show mA|fA. By the Cayley-Hamilton Theorem fA(A) = 0.
Consequently,

fA •A = (
n∑

j=0

fjA
i+j)i∈N = (AifA(A))i∈N = 0,

5 Roughly speaking, a module is something similar to a vector space, with the only
difference that the “scalars” may be elements of an arbitrary ring instead of a field.
A formal definition can be found in many linear algebra textbooks (e.g., [11]).



and fA(A) is a characteristic polynomial of A. Therefore mA, the minimal poly-
nomial of A, divides fA.

Next, to prove ma|mA, write mA =
∑n

i=0 aix
i. As mA •A = 0, we get that

(
∑n

j=0 ajA
i+j)i∈N = 0. Hence,

mA • a = (
n∑

j=0

aj(Ai+j · v))i∈N = ((
n∑

j=0

ajA
i+j ·)v)i∈N = (0 · v)i∈N = 0.

Therefore mA is a characteristic polynomial of a as well, thus ma|mA. The proof
of ma′ |ma is similar.

Corollary 1. The sequences a,a′,A are linearly recurrent of order at most n.

We will use the following useful result (e.g. see [8, page 92]).

Lemma 2. The minimal polynomial mA(x) of A divides the characteristic poly-
nomial fA(x) of A, and both polynomials have the same irreducible factors.

Since fA(0) = det(−A) = (−1)n det(A), we obtain:

Corollary 2. mA(0) = 0 if and only if det(A) = 0.

Corollary 3. If fA is square-free, then mA = fA, which implies that mA(0) =
fA(0) = (−1)n · det(A).

4 Computing the Minimal Polynomial of a Matrix

In this section we consider the following problem: Bob holds an n×n dimensional
matrix Enc(A) over a finite field F, encrypted under a public-key homomorphic
encryption scheme. Alice holds the private decryption key. We design a secure
two-party protocol such that in the end Bob holds an encryption of mA, the
minimal polynomial of A. Computing the minimal polynomial of matrix A can be
reduced to computing the minimal polynomial of the linearly recurrent sequence
of field elements a′ = (u>Aiv)i∈N. The correctness of the reduction is proved in
Exercise 12.15 in [11].

Lemma 3. Let A ∈ Fn×n and let mA be the minimal polynomial of matrix A.
For u,v ∈ Fn chosen uniformly at random, we have mA = ma′ with probability
at least 1− 2 deg(mA)/|F|.

To compute ma′ , the minimal polynomial of the sequence a′, we first need to
compute a prefix of the sequence itself. As we will later see, the 2n first entries of
the sequence will suffice. As the communication complexity of the sub-protocol
for matrix multiplication is linear in the matrix size, we are interested in com-
puting (Enc(u>Aiv))0≤i≤2n−1 using the least number of matrix multiplication
operations.

We now show how to compute the sequence using 2 log n matrix multiplica-
tion operations. First compute Enc(A2j

) for 0 ≤ j ≤ log n. This can be easily



done in log n sequential matrix multiplications. For two matrices X and Y of
matching size let X|Y be the matrix obtained by concatenating X with Y . Then
compute the following using a sequence of log n matrix multiplications: (Note
that all the matrices are of dimensions at most n× n.)

Enc(Av) = Enc(A) · v
Enc(A3v|A2v) = Enc(A2) · Enc(Av|v)
Enc(A7v|A6v|A5v|A4v) = Enc(A4) · Enc(A3v|A2v|Av|v)
... =

...
Enc(A2n−1v|A2n−2v| . . . |Anv) = Enc(An) · Enc(An−1v|An−2v| . . . |Av|v)

Finally, multiply each vector Enc(Aiv) from the left by u> to get Enc(u>Aiv)
for 0 ≤ i ≤ 2n− 1.

Our next step is to compute the minimal polynomial. By Corollary 1, the
order of the sequence a′ is at most n. To compute the minimal polynomial of the
sequence a′ given the encryption of its first 2n elements, we use the following sub-
protocol. Using the well-known Berlekamp/Massey algorithm [17] there exists
an algebraic circuit of size O(n2) that computes the minimal polynomial from a
sequence a′ = (a′i)i∈N of maximal recursion order n. Further efficiency improve-
ment can be obtained by noting that computing the minimal polynomial can ac-
tually be reduced to computing the greatest common division (GCD) of two poly-
nomial of degree 2n. For completeness we give further details in Appendix A.2.
Using the fast Extended Euclidean algorithm [11, Chapter 11] the latter one can
be carried out using an algebraic circuit of size O(n log n). By implementing each
algebraic operation over F with a binary circuit of size O(k log k log log k) we get
a binary circuit of size O(nk log n log k log log k) for computing the minimal poly-
nomial. We will use the fact that the size of this circuit is O(n2k log n), and so
it will not be the dominate part in the overall complexity of our protocol (since
we assume |F| = 2O(n) and thus k = log |F| = O(n)). Using the techniques from
Section 2.1 we now apply Yao’s protocol to this circuit and obtain the following
result.

Lemma 4. Suppose Bob holds a sequence Enc(a′) = (Enc(a′0), . . . ,Enc(a′2n−1)),
where a′ = (a′i)i∈N is a linearly recurrent sequence of order at most n. There
exists a secure two-party protocol that runs in constant rounds and O(n2k log n)
communication complexity that returns the encrypted minimal polynomial Enc(ma′)
of a′ to Bob.

The following protocol computes the minimal polynomial of matrix A.



Protocol MINPOLY

Input: Enc(A) where A ∈ Fn×n

Output: Enc(mA).

1. Pick random vectors u,v ∈R F
n.

Compute Enc(a′), i.e. for i = 0, . . . , 2n−1 compute the values Enc(a′i) =
Enc(u>Aiv) using 2 log n executions of the matrix multiplication proto-
col.

2. Compute Enc(ma′), an encryption of the minimal polynomial of the se-
quence a′ = (a′i)0≤i≤2n−1 using Yao’s Protocol.

3. Return Enc(ma′) as encryption of the minimal polynomial of matrix A.

The following theorem summarizes the properties of Protocol MINPOLY.

Theorem 1. Let Enc(A) be an encrypted n × n matrix over a finite field F.
Then protocol MINPOLY securely computes Enc(mA) with probability 1−2n/|F|,
communication complexity O(n2k log n) and round complexity O(log n), where
k = log |F|.

5 Singularity, Rank, Determinant, and Linear Equations

In this section, we present our main basic linear algebra protocols from Table 1
for testing if a matrix is singular, computing the rank of a matrix, computing
the determinant of a matrix, and solving a system of linear equations.

5.1 Testing Matrix Singularity

One possible implementation of a protocol to securely test matrix singularity
is based on Corollary 2 stating that mA(0) = 0 if and only if det(A) = 0.
Hence, testing singularity can be reduced to computing the minimal polynomial
of the matrix A and checking if its constant term equals zero. By Theorem 1
its success probability is bounded by 1 − 2n/|F| and a secure implementation
is given by protocol MINPOLY from Section 4. We now present an alternative
protocol achieving a slightly improved error bound by exploiting certain algebraic
properties of the minimal polynomial of sequence a.

Again we reduce matrix singularity to computing the minimal polynomial of
a′. Our reduction works in three steps. Our first step is to reduce the problem
of deciding whether det(A) = 0 to deciding whether the linear system Ax = v
is solvable for some random vector v ∈ Fn. If A is non-singular then, obviously,
the linear system must be solvable. On the other hand, if det(A) = 0, then with
probability at least 1− 1/ |F|, the linear system has no solution.

In the second step we reduce the problem of deciding whether the linear
system Ax = v is solvable to computing ma, the minimum polynomial of the
recurrent sequence of vectors a = (Aiv)i∈N.

Lemma 5. If ma(0) 6= 0 then the system Ax = v is solvable.



Proof. Since by Corollary 1 the order of a is at most n, we can write ma =∑n
i=0 mix

i. As ma is the minimal polynomial of a, we get that

mnAnv + mn−1A
n−1v + . . . + m1Av + m0Iv = 0.

Since m0 = ma(0) is non-zero, we get

−m−1
0 (mnAnv + mn−1A

n−1v + . . . + m1Av) = v

and hence

A(−m−1
0 (mnAn−1v + mn−1A

n−2v + . . . + m1Iv)) = v.

Therefore, the system Ax = v is solvable.

In the third step we reduce computing the minimal polynomial of sequence
a = (Aiv)i∈N to computing the minimal polynomial of a′ = (u>Aiv)i∈N, where
u ∈ F

n is a random vector. The correctness of the reduction is proved in
Lemma 12.17 in [11].

Lemma 6. Let A ∈ Fn×n, v ∈ Fn, ma the minimal polynomial of the sequence
a = (Aiv)i∈N. For a u ∈ Fn chosen uniformly at random we have that ma is the
minimal polynomial of the sequence a′ = (u>Aiv)i∈N with probability at least
1− deg(ma)/|F|.

Protocol SINGULAR

Input: Enc(A) where A ∈ Fn×n

Output: Enc(0) if det(A) = 0 and Enc(1) otherwise.

1. Pick random vectors u,v ∈R F
n.

For i = 0 . . . 2n − 1 compute the values a′i = Enc(u>Aiv) using 2 log n
executions of the matrix multiplication protocol.

2. Compute Enc(ma′), an encryption of the minimal polynomial of the se-
quence a′ = (a′i)0≤i≤2n−1 except that in the last step a circuit is used
that returns 0 if ma′(0) = 0 and 1 otherwise using Yao’s Protocol.

The following theorem summarizes the properties of Protocol SINGULAR.

Theorem 2. Let Enc(A) be an encrypted n×n matrix over a finite field F. Then
Protocol SINGULAR securely checks if A is singular with probability 1 − (n +
1)/|F|, communication complexity O(n2k log n) and round complexity O(log n),
where k = log |F|.

Proof. We first prove that if det(A) 6= 0 then the output of the protocol is
Enc(1). If ma′(0) = 0, this means that the constant coefficient of ma′ is 0, thus
x|ma′ . By Lemma 1, ma′ |fA, where fA is the characteristic polynomial of the
matrix A. Hence, the constant coefficient of fA is 0, which implies det(A) = 0.
Hence if A is non-singular, the output of the entire protocol must be Enc(1).



On the other hand, if det(A) = 0 then, by Lemma 5, if the following two
events happen, the output of the protocol is Enc(0): (i) The system Ax = v is
not solvable. (ii) ma′ = ma. The probability of event (i) is at least (1 − 1/|F|).
The probability of event (ii), by Lemma 6, is at least 1 − deg(ma)/|F| ≥ 1 −
n/|F|. Therefore, with probability at least 1− (n + 1)/|F| the output is Enc(0).
Security of the protocol follows by security of the sub-protocols used. Round and
communication complexity of the protocol is easy to verify.

5.2 Computing the Rank

In this section we show how to compute Enc(rank(A)) given an encryption
Enc(A) of a matrix A ∈ Fn×n. To compute the rank of a matrix A, we use
the following two results which are proved in [14].

Lemma 7. Let A be a matrix in Fn×n of (unknown) rank r. Let U and L be
randomly chosen unit upper triangular and lower triangular Toeplitz matrices in
F

n×n, and let B = UAL. Lets denote the i× i leading principal of B by Bi. The
probability that det(Bi) 6= 0 for all 1 ≤ i ≤ r is greater than 1− n2/|F|.

Lemma 8. Let matrix B ∈ Fn×n have leading invertible principals up to Br

where r is the (unknown) rank of B. Let X be a randomly chosen diagonal matrix
in Fn×n. Then, r = deg(mXB)− 1 with probability greater than 1− n2/|F|.

The above two results lead to the following protocol for computing the rank of
a matrix.

Protocol RANK

Input: Enc(A) where A ∈ Fn×n.
Output: Enc(r) where r is rank of A.

1. Generate random unit upper and lower triangular Toeplitz matrices
U, L ∈ Fn×n and a random diagonal matrix X ∈ Fn×n.

2. Compute Enc(M) = XU · Enc(A) · L.
3. Run the protocol MINPOLY on M except that in the last step, use a

circuit that only outputs the degree of the minimal polynomial minus 1,
and not the polynomial itself.

The following theorem is implied by the above two lemmas and summarizes the
properties of our RANK protocol.

Theorem 3. Let Enc(A) be an encrypted n × n matrix over a finite field F.
Then Protocol RANK securely outputs the encrypted rank of A with probability at
least 1−2n2/|F|, communication complexity O(n2k log n), and round complexity
O(log n), where k = log |F|.



5.3 Computing the Determinant

In this section we show how to compute Enc(det(A)), given an encryption Enc(A)
of a matrix A ∈ Fn×n. The protocol uses the following fact from linear alge-
bra [24].

Lemma 9. Let B be an n×n matrix over F where all the leading principal sub-
matrices of B, including B itself are nonsingular, and let X be a uniformly cho-
sen diagonal matrix in Fn×n. Then, fXB is square-free with probability greater
than 1− n/|F|.

Protocol DET

Input: Enc(A) where A ∈ Fn×n.
Output: Enc(d) where d is the determinant of A.

1. Generate random unit upper and lower triangular Toeplitz matrices
U, L ∈ Fn×n and a random diagonal matrix X ∈ Fn×n.

2. Computes Enc(Z) = XU · Enc(A) · L.
3. Run the protocol MINPOLY on Z except that in the last step, use a

circuit that computes (−1)nmZ(0)/ det(X) instead of mZ (note that
Bob knows det(X), and feeds it to the circuit as part of his input.).

The following theorem summarizes the properties of our DET protocol.

Theorem 4. Let Enc(A) be an encrypted n × n matrix over a finite field F.
Then Protocol DET securely outputs the encryption of determinant of A with
probability at least 1 − 3n2/|F|, communication complexity O(n2k log n), and
round complexity O(log n), where k = log |F|.

Proof. If A is singular, Z = XUAL is also singular. Therefore, based on Corol-
lary 2, mZ(0) = 0. Hence, the protocol correctly returns Enc(0) as the answer.
On the other hand, if A is non-singular, Z is also non-singular. Note that from
given the determinant of Z, Bob can easily derive the determinant of A, as he
has all the other matrices in the clear.

Based on Corollary 3, if Z is square-free, computing the constant coefficient
of mZ is sufficient to compute the det(Z). We now show that the probability
that Z is square-free is high. By Lemma 7, the probability that all the leading
principals of the matrix UAL are of full rank is 1− n2/|F|. Conditioned on the
latter, Lemma 9 implies that with probability 1−n/|F| the matrix Z = XUAL
is square-free. Hence, with probability greater than 1 − 2n2/|F|, the matrix Z
is indeed square free. We also need the minimal polynomial protocol to succeed,
which happens with probability 1−2n/|F|. Hence, the overall success probability
of the protocol is at least 1−3n2/|F|. The round and communication complexity
of the protocol is easy to verify.



5.4 Solving Linear Equations

In this section we discuss the problem of solving a system of linear equations.
Given encryptions Enc(M) and Enc(y), where M ∈ Fm×n and y ∈ Fm, we are
interested in outputting an encryption Enc(x) of a random solution to the linear
system Mx = y, if the system is solvable.

The easy case is where M is a non-singular square matrix. In this case it is
enough to compute Enc(M−1) and then execute Protocol MATRIX MULT once
to compute Enc(M−1)Enc(y) = Enc(M−1y), which is the unique solution to
the system (and hence is also a random solution). To compute Enc(M−1) from
Enc(M) we use Protocol MATRIX INVERT which assume the encrypted input
matrix M to be invertible. see Appendix A.1 for an implementation of protocol
MATRIX INVERT based on [1].

To reduce the general case to the non-singular case, we adapt an algorithm of
Kaltofen and Saunders [14]. Their algorithm solves Mx = y in the following way:
(i) Perturb the linear system Mx = y to get a system M ′x = y′ with the same
solution space. The perturbation has the property that, with high probability,
if M is of rank r, then M ′

r, the top-left r × r sub-matrix of M ′, is non-singular.
(ii) Pick a random vector u ∈ Fn and set y′r to be the upper r coordinates of
the vector y′ + M ′u. (iii) Solve the linear system M ′

rxr = y′r, and denote the
solution by ur. (iv) Let u∗ ∈ Fn be a vector with upper part ur and lower part
0n−r. It can be shown that x = u∗ − u is a uniform random solution to the
system M ′x = y′ and thus is a uniform random solution to the original system.
The correctness proof for this algorithm may be found in [14, Theorem 4]. Note
that this algorithm is correct assuming that the system Mx = y is solvable. An
implementation of the first step relies on the following simple linear algebraic
lemma.

Lemma 10. Let M be a matrix in Fm×n of (unknown) rank r. Let P ∈ Fm×m

and Q ∈ Fn×n randomly chosen full rank matrices, and let M ′ = PMQ. Denote
the r × r leading principal of M ′ by M ′

r. The probability that det(M ′
r) 6= 0 is

greater than 1− 2n/|F|.

Implementing Kaltofen-Saunders algorithm in a secure protocol is not straight-
forward. On one hand, we need to compute r, the rank of M , in order to invert
the top-left sub-matrix of M . On the other hand, computing r violates the pri-
vacy of the protocol, as r cannot be extracted from a random solution to the
linear system. We overcome this problem by showing how to implement the
Kaltofen-Saunders algorithm using only an encryption of r (computed using
Protocol RANK from Section 5.1). The key idea is that we can work with the
r×r top-left sub-matrix of the perturbed matrix M ′, without knowing the value
of r in the clear.



Protocol LINEAR SOLVE

Input: Enc(M) where M ∈ Fm×n and n ≤ m, and Enc(y) where y ∈ Fm.
This protocol assumes the system Mx = y is solvable.
Output: Enc(x), where x ∈ Fn is a random solution to the system Mx = y.

1. Execute Protocol RANK on Enc(M) to compute Enc(r) where r =
rank(M).

2. Locally compute Enc(M ′) = P · Enc(M) · Q and Enc(y′) = P · Enc(y)
where P and Q are random non-singular m × m and n × n matrices
respectively.

3. Compute the encrypted matrix Enc(N ′), where N ′ ∈ Fn×n consists of
the r by r leading principal of M ′ in the top-left corner and of the unit
matrix in the bottom-right corner.

4. Compute Enc(N ′−1) using protocol MATRIX INVERT.
5. Pick a random vector u ∈ Fn and set Enc(y′r) for y′r ∈ Fn to be a vector

whose upper r coordinates are the upper r coordinates of Enc(y′) +
Enc(M ′)u and lower n− r coordinates are Enc(0).

6. Compute Enc(ur) = Enc(N ′−1
) · Enc(y′r) and output Enc(x) = Q−1 ·

Enc(u− ur).

Some remarks are in place. First, note that the protocol is valid only for solvable
linear system. To check if a system is solvable, it is sufficient to compare the rank
of the matrices M and M |y where | stands for concatenation. The encryption
of the rank of these matrices can be computed using Protocol RANK, while the
comparison can be easily done using Yao’s garbled circuit method.

In Step 3 to compute Enc(N ′) from Enc(M ′) and Enc(r) one proceeds as fol-
lows. First Enc(r) is converted into unary representation (i.e., (Enc(δ1), . . . ,Enc(δn))
with δi = 1 if i ≤ r and δi = 0 otherwise) using Yao’s garbled circuit method.
Then create Enc(∆), where ∆ is the n×n matrix ∆ = diag(δ1, δ2, . . . , δn). Then
Enc(N ′) is computed as Enc(N ′) = Enc(M ′)Enc(∆) + In − Enc(∆), where In is
the n× n identity matrix.

As a final note, we stress that the requirement that n ≤ m is made only
for simplicity of presentation. Otherwise, N ′ would have been of dimension
min(m,n) × min(m,n) instead of n × n, and the changes needed in the rest
of the protocol are minor. The following Theorem concludes the properties of
Protocol LINEAR SOLVE.

Theorem 5. Let Enc(M) be an encrypted m×n matrix over a finite field F, and
let Enc(y) be an encrypted vector y ∈ Fm. Protocol LINEAR SOLVE securely
computes Enc(x), where x ∈ Fn is a random solution of Mx = y, with probabil-
ity 1 − 3n2/|F|, communication complexity O(n2k log n) and round complexity
O(log n), where k = log |F|.

We now discuss the success probability of Protocol LINEAR SOLVE. In
Step 1, we compute an encryption of the rank of M which is by Theorem 3
correct with probability 1− 2n2/|F|. In Step 2, we multiply the matrix M from
the right and from the left by random non-singular matrices to get the matrix



M ′. By Lemma 10, the top left r × r sub-matrix of M ′ is of rank r with prob-
ability 1 − 2n/|F|. If this is the case, then the rest of the protocol follows the
Kaltofen-Saunders algorithm, and thus its correctness is implied by [14, Theorem
4].
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A More Protocols

A.1 Matrix Inversion

Bob holds an encrypted matrix Enc(M) such that M ∈ F
n×n is guaranteed

to be invertible. Alice holds the private decryption key. Based on the shared
field inversion protocol from Bar-Ilan and Beaver [1] we design a protocol for
computing Enc(M−1).

Protocol MATRIX INVERT

Input: Enc(M) where M ∈ Fn×n.
Output: Enc(M−1)

1. Bob picks an n× n random non-singular matrix Q.
2. Bob computes the encrypted matrix Enc(QM) by multiplying Enc(M)

from the left by the matrix Q, and sends Enc(QM) to Alice.
3. Alice decrypts Enc(QM) and compute (QM)−1 = M−1Q−1. Alice en-

crypts M−1Q−1 and sends Bob Enc(M−1Q−1).
4. Bob computes Enc(M−1) = Enc(M−1Q−1)Q.
5. Bob locally outputs Enc(M−1).



It is easy to see that Alice gets a random non-singular matrix QM , and thus
learns no information in the protocol. Since Bob only learns encrypted values
from the protocol, he gets no information on the value of M .

A.2 Minimal Polynomial

We demonstrate an algorithm from [9] how to efficiently compute the mini-
mal polynomial of a sequence a = (ai)i∈N of recursion order n using the Ex-
tended Euclidean Algorithm on polynomials. By the definition from Section 3
the minimal polynomial ma of the sequence a is the unique monic polynomial
ma(x) = m(x) of least degree ≤ n for which m(x) • a = 0. By division with
remainder we can rewrite this as

ma · (a1 + a2x + . . . + a2nx2n−1)− q(x) · x2n = r(x), (1)

where r(x) is a remainder polynomial of degree < n, and q(x) is a quotient
polynomial. Denote by a(x) the sum

∑2n
i=1 aix

i−1. If we apply the extended GCD
algorithm to the two polynomials a(x) and x2n, keeping track of remainders, we
get two sequences pi(x), qi(x) such that the ri := pi(x) · a(x)− qi(x) ·x2n form a
series of polynomials whose degree is strictly decreasing. As soon as the degree of
ri is less than n, we have the required polynomials from (1) with ma(x) = pi(x),
q(x) = qi, and r(x) = ri(x).

B Applications

B.1 Linear Subspace Intersection

Let F be a finite field and n be a positive integer. Alice holds a subspace VA ⊆ Fn

of dimension na ≤ n. The subspace VA is represented by an na × n matrix A,
where the rows of A span VA. Similarly, Bob’s input is a subspace VB⊆Fn of
dimension nb, represented by an nb × n matrix B. Letting VI = VA ∩ VB , Alice
and Bob wish to securely study different properties of VI .

In [19], constant round O(n2) protocols were designed for securely comput-
ing the subspace VI , and for securely computing the rank of the subspace VI .
However, it turned out that the problem of securely deciding whether the sub-
space VI is the trivial zero subspace seems harder to solve. Ignoring security
issues, computing the intersection of the input subspaces is at least as hard as
deciding whether they have a non trivial intersection. However, constructing a
secure protocol for the latter turns to be somewhat harder as the players gain
less information from its output.

The following lemma from [19] reduces the problem of deciding subspace
intersection, to computing whether a matrix is of full rank:

Lemma 11 ([19]). Define M = AB>. Then VI 6= {0} if and only if the matrix
M is not of full row rank.

This gives rise to the following protocol:



Protocol INTERSECTION DECIDE

Input: Alice (resp. Bob) holds a na × n (resp. nb × n) matrix A (resp. B)
over a finite field F representing a subspace VA⊆Fn (resp. VB⊆Fn). Let B>

be a n× n′b matrix that represents the subspace V >
B , where n′b

def
= n− nb.

Output: If VI is the trivial zero subspace, Alice outputs 1. Else, Alice outputs
0.

1. Alice generates keys for a homomorphic public key encryption system,
and sends Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def
= AB>. Note that M is a

na × n′b matrix.
3. Alice and Bob execute Protocol RANK on Enc(M). Denote by Enc(r)

the output of the protocol held by Bob.
4. Alice and Bob execute protocol EQUAL on min na, n′b and Enc(r). Bob

sends the encrypted output to Alice who decrypts and outputs it.

This protocol has the same communication complexity as of the protocol de-
signed in [19]. However, the round complexity of this protocol, which is O(log n)
is substantially better than the round complexity of [19], which is Ω(n0.275). We
note that the techniques in our paper are very different from those of [19].

B.2 Solving a Common Linear Equation System

Let F be a finite field and n be a positive integer. Alice holds an na × n matrix
MA and a vector va ∈ Fna . Similarly, Bob’s input is an na × n matrix MB and
a vector vb ∈ Fnb . Alice and Bob wish to securely compute a random vector
x ∈ Fn such that both MAx = va and MBx = vb.

This problem can be viewed as computing a random vector from the intersec-
tion of the affine subspaces representing the solutions to the systems MAx = va

and MBx = vb. This problem was considered in [19], who designed a protocol
of communication complexity O(n2k log n) and round complexity Ω(n0.275). We
show a protocol which improves the round complexity to O(log n) while keeping
the communication complexity roughly O(n2).

The protocol is simple: Alice generates keys for a homomorphic public key
encryption system, and sends Bob Enc(MA), Enc(va) and the public key. Bob
encrypts his input to get the encrypted linear system.(

Enc(MA)
Enc(MB)

)
x =

(
Enc(va)
Enc(vb)

)
Alice and Bob then execute Protocol LINEAR SOLVE after which Bob holds
Enc(x) where x is a random solution to the common system. Finally, bob sends
Enc(x) to Alice, which decrypts and outputs x.


