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Abstract. One of the main open problems in secret sharing is the char-
acterization of the access structures of ideal secret sharing schemes. As a
consequence of the results by Brickell and Davenport, every one of those
access structures is related in a certain way to a unique matroid.
Matroid ports are combinatorial objects that are almost equivalent to
matroid-related access structures. They were introduced by Lehman in
1964 and a forbidden minor characterization was given by Seymour in
1976. These and other subsequent works on that topic have not been
noticed until now by the researchers interested on secret sharing.
By combining those results with some techniques in secret sharing, we
obtain new characterizations of matroid-related access structures. As a
consequence, we generalize the result by Brickell and Davenport by prov-
ing that, if the information rate of a secret sharing scheme is greater than
2/3, then its access structure is matroid-related. This generalizes several
results that were obtained for particular families of access structures.
In addition, we study the use of polymatroids for obtaining upper bounds
on the optimal information rate of access structures. We prove that every
bound that is obtained by this technique for an access structure applies
to its dual structure as well.
Finally, we present lower bounds on the optimal information rate of the
access structures that are related to two matroids that are not associated
with any ideal secret sharing scheme: the Vamos matroid and the non-
Desargues matroid.
Key words. Secret sharing, Information rate, Ideal secret sharing schemes,
Ideal access structures, Matroids, Polymatroids.

1 Introduction

1.1 The Problems

A secret sharing scheme is a method to distribute a secret value into shares in
such a way that only some qualified subsets of participants are able to recover the
secret from their shares. Secret sharing schemes were independently introduced
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by Shamir [34] and Blakley [5]. Only unconditionally secure perfect secret sharing

schemes will be considered in this paper. That is, the shares of the participants
in a non-qualified subset must not contain any information about the secret
value.

The family of the qualified subsets is the access structure of the scheme,
which is supposed to be monotone increasing , that is, every subset containing
a qualified subset must be qualified. Then an access structure is determined by
its minimal qualified subsets.

The complexity of a secret sharing scheme can be measured by the length
of the shares. In all secret sharing schemes, the length of every share is greater
than or equal to the length of the secret [20]. A secret sharing scheme is said to
be ideal if all shares have the same length as the secret.

The qualified subsets of a threshold access structure are those having at least a
fixed number of participants. Shamir’s construction [34] provides an ideal scheme
for every threshold access structure. Even though there exists a secret sharing
scheme for every access structure [18], in general some shares must be much
larger than the secret [12, 13].

This paper deals with the optimization of the complexity of secret sharing
schemes for general access structures.

The characterization of the ideal access structures, that is, the access struc-
tures of ideal secret sharing schemes, is one of the main open problems in that
direction. Brickell and Davenport [10] discovered important connections of this
problem with matroid theory. The main definitions and basic facts about secret
sharing schemes, matroids, and polymatroids are presented in Section 2. Table 1,
at the end of the paper, may be helpful to the readers that are not familiar with
the concepts that are discussed here.

A necessary condition for an access structure to be ideal is obtained from
the results by Brickell and Davenport [10]. They proved that every ideal secret
sharing scheme on a set P of participants univocally determines a matroid M
on the set Q = P ∪ {D}, where D /∈ P is a special participant, usually called
dealer . In addition, the access structure Γ of the ideal scheme is determined by
this matroid. Specifically, the minimal qualified subsets of Γ are

min Γ = {A ⊆ P : A ∪ {D} is a circuit of M}.
Therefore, every ideal access structure is matroid-related , that is, it can be de-
fined in this way from a matroid. This necessary condition is not sufficient,
because there exist matroids that cannot be defined from any ideal secret shar-
ing scheme [27, 33], and hence the access structures that are related to these
matroids are not ideal.

The matroids that are obtained from ideal secret sharing schemes are gener-
ally called secret sharing matroids, but we prefer to call them ideal secret sharing

representable matroids, or iss-representable matroids for short. This is due to the
fact that an ideal secret sharing scheme can be seen as a representation of its
associated matroid.

Brickell [9] proposed a special class of ideal schemes, the vector space secret

sharing schemes. The matroids that are associated with these ideal schemes are



precisely the linearly representable ones. Therefore, all linearly representable ma-
troids are iss-representable. This implies that the representation by ideal secret
sharing schemes is a generalization of the linear representation of matroids. In
addition, every access structure that is related to a linearly representable ma-
troid is ideal. These access structures are called vector space access structures.
This sufficient condition is not necessary, because there exist iss-representable
matroids that are not linearly representable [35].

As a consequence of the results by Brickell and Davenport [10] the open
problem of characterizing the access structures of ideal secret sharing schemes
can be splitted into the following two open problems.

Problem 1. Characterize the matroid-related access structures.

Problem 2. Characterize the ideal secret sharing representable matroids.

Surprisingly enough, almost all authors interested on secret sharing, including
the ones of this paper, have been unaware that matroid-related access structures
were studied before secret sharing was invented. Of course, a different name was
used: matroid ports.

A clutter on a set P is a family Λ of subsets of P such that there do not exist
two different subsets A,B ∈ Λ with A ⊂ B. A clutter Λ on P is a matroid port

if there exists a matroid M on Q = P ∪ {D}, where D /∈ P , such that

Λ = {A ⊆ P : A ∪ {D} is a circuit of M}.

Therefore, an access structure is matroid-related if an only if the clutter formed
by its minimal qualified subsets is a matroid port. Matroid ports were introduced
by Lehman [21] in 1964 to solve the Shannon switching game. Seymour [32]
presented in 1976 a characterization of matroid ports by excluded minors that
is based on a previous characterization of matroid ports due to Lehman [22]. As
a consequence, an answer to Problem 1 is obtained.

A more general open problem in secret sharing is to determine the complexity
of the best secret sharing scheme for any given access structure. For instance,
we can try to maximize the information rate, which is the ratio between the
length in bits of the secret and the maximum length of the shares. The optimal

information rate of an access structure Γ , which is denoted by ρ(Γ ), is defined as
the supremum of the information rates of all secret sharing schemes with access
structure Γ . Clearly, 0 < ρ(Γ ) ≤ 1, and ρ(Γ ) = 1 if Γ is ideal.

Problem 3. Determine the value of ρ(Γ ) or, at least, improve the known bounds
on this function.

Duality has been defined for matroids, for linear codes, and for access struc-
tures. It plays an important role in the considered problems. For instance, if an
access structure is related to a matroid, its dual is related to the dual matroid.
One can consider the dual of a linear secret sharing scheme by identifying it with
a linear code. A linear scheme with the same information rate for the dual access
structure is obtained in this way. Nevertheless, it is not known whether the dual



of an ideal access structure is ideal as well. In addition, the relation between the
optimal information rates of an access structure and its dual is equally an open
problem.

1.2 Our Results

Because of their important implications to the problems we are considering here,
one of the main goals of this paper is to point out the results by Lehman [21, 22]
and Seymour [32] on matroid ports to researchers interested on secret sharing.
We think that they will be very useful to obtain new general results on the
problems we are considering here as well as to solve them for particular families
of access structures.

One of our main results, Theorem 17, is a new characterization of matroid-
related access structures in terms of the existence of independent sequences.
These sequences are combinatorial configurations that were introduced in [6, 30]
to obtain upper bounds on the optimal information rate. Our characterization
is obtained by combining Seymour’s characterization of matroid ports [32] with
the fact that the Shannon entropy defines a polymatroid over a set of random
variables [15, 16]. As a corollary of Theorem 17 we obtain a generalization of
the result by Brickell and Davenport [10]. Namely, they proved that the access
structure of every ideal secret sharing scheme is matroid-related, and we prove
that this is so for every secret sharing scheme with information rate greater than
2/3. This is the main result in this paper.

Theorem 4. The access structure of every secret sharing scheme with informa-

tion rate greater than 2/3 is matroid-related.

Our proof for this theorem, as well as the ones for the results we apply in it,
do not rely on the result by Brickell and Davenport [10]. Moreover, except for the
relation between entropy and polymatroids, those proofs use only combinatorial
techniques. Therefore, we can say that we present here a new, almost purely
combinatorial proof for that important result.

Theorem 4 explains a gap property that has been observed in some particular
classes of access structures that have been previously studied, in which every
access structure is either ideal or has optimal information at most 2/3. So, there
is no access structure Γ with 2/3 < ρ(Γ ) < 1 in these families. Specifically,
this has been proved for the access structures on sets of four [36] and five [19]
participants, the ones defined by graphs [7, 10, 12], the bipartite ones [30], the
ones with three or four minimal qualified subsets [24], the ones with intersection
number equal to one [26], and for a special class of homogeneous structures with
rank three [23]. This fact was proved by methods that seemed to be specific to
every one of those families, and hence it was not clear to which extent this result
could be generalized. Since in all those families every matroid-related access
structure is ideal, this gap property is a direct consequence of Theorem 4, which
implies that ρ(Γ ) ≤ 2/3 if Γ is not matroid-related. Therefore, we generalize and
explain a phenomenon that had been observed in several particular situations.



Moreover, our result can be applied to other families that have been studied
previously as, for instance, the weighted threshold access structures [3] and the
access structures with rank three [25].

In addition, we present in Section 3 a new result about the use of polyma-
troids to obtain upper bounds on the information rate, a technique that was
introduced by Csirmaz [13]. Specifically, we prove that every bound on the op-
timal information rate of a given access structure that can be obtained by using
polymatroids applies also to the dual access structure. In order to do that, we
define in a suitable way the dual of a polymatroid. The interest of this result is
that, for the first time, we present a connection between the complexities of the
secret sharing schemes for an access structure and the ones for its dual that is
not restricted to linear schemes.

Finally, Section 5 is devoted to present lower bounds on the optimal in-
formation rate of the access structures related to the Vamos matroid and the
non-Desargues matroid. Since these matroids are not iss-representable, the re-
lated access structures are not ideal. We prove that the optimal information
rate of the access structures related to the Vamos matroid is at least 2/3, while
this parameter is at least 3/4 for the structures related to the non-Desargues
matroid. The only previously known results on the optimal information rate of
non-ideal matroid-related access structures have been presented in a recent work
by Beimel and Livne [2]. They give lower bounds on the length of the shares in
secret sharing schemes for the access structures related to the Vamos matroid.

1.3 Related Work

As a sequel of the results by Brickell and Davenport [10], there is a number of
works dealing with Problem 2. The Vamos matroid was the first matroid that was
proved to be non-iss-representable. This was done by Seymour [33] and different
proofs were given later by Simonis and Ashikhmin [35] and Beimel and Livne [2].
An infinite family of non-iss-representable matroids was given by Matúš [27]. As
we said before, all linearly representable matroids are iss-representable [9]. The
first example of an iss-representable matroid that is not linearly representable,
the non-Pappus matroid, was presented in [35].

A number of important results and interesting ideas for future research on
Problem 2 can be found in the works by Simonis and Ashikhmin [35] and
Matúš [27]. The first one deals with the geometric structure that lies behind
iss-representations of matroids. The second one analyzes the algebraic proper-
ties that the matroid induces in all its iss-representations. These properties make
it possible to find some restrictions on the iss-representations of a given matroid
and, in some cases, to exclude the existence of such representations. By using
these tools, Matúš [27] presented an infinite family of non-iss-representable ma-
troids with rank three.

One of the most important results on the optimization of the complexity
of secret sharing schemes for general access structures is the fact that nonlinear
secret sharing schemes are in general more efficient than the linear ones. By using
the results and techniques in [1, 17], Beimel and Weinreb [4] presented families



of access structures for which there exist nonlinear secret sharing schemes whose
complexity is polynomial on the number of participants while the complexity of
the best linear schemes is not polynomial.

Lower bounds on the optimal information rate of wide families of access
structures can be found by applying the different techniques to construct secret
sharing schemes with high information rate given in [8, 11, 31, 37, 38]. Upper
bounds on this parameter have been found by using Information Theory [6, 7,
12]. In particular, Capocelli, De Santis, Gargano, and Vaccaro [12] presented for
the first time bounds smaller than 1 on the optimal information rate. Specifically,
they showed access structures whose optimal information rates are at most 2/3.
Csirmaz [13] proved that every secret sharing scheme defines a polymatroid that
is related to the access structure and he observed that those upper bounds on the
optimal information rate could be derived from this fact. A general combinatorial
method to find upper bounds, the independent sequence method , was given in [6]
and was improved in [30]. However, there exists a wide gap between the best
known upper and lower bounds on the optimal information rate for most access
structures.

2 Basics on Secret Sharing, Matroids, and Polymatroids

The reader is referred to [36] for an introduction to secret sharing and to [29,
39] for general references on matroid theory. The book by Welsh [39] contains a
chapter about polymatroids. Table 1 summarizes the connections between some
of the concepts that are introduced here.

Let Q be a finite set of participants and D ∈ Q a special participant called
dealer . Consider a finite set E with a probability distribution on it. For every
i ∈ Q, consider a finite set Ei and a surjective mapping πi : E → Ei. Those
mappings induce random variables on the sets Ei. Let H(Ei) denote the Shannon
entropy of one of these random variables. For a subset A = {i1, . . . , ir} ⊆ Q, we
write H(A) for the joint entropy H(Ei1 . . . Eir

), and a similar convention is used
for conditional entropies as, for instance, in H(Ej |A) = H(Ej |Ei1 . . . Eir

).
The mappings πi define a secret sharing scheme Σ with access structure Γ

on the set P = Q−{D} of participants if H(ED) > 0 and H(ED|A) = 0 if A ∈ Γ
while H(ED|A) = H(ED) if A /∈ Γ . In this situation, every random choice of
an element x ∈ E, according to the given probability distribution, results in
a distribution of shares ((si)i∈P , s), where si = πi(x) ∈ Ei is the share of the
participant i ∈ P and s = πD(x) ∈ ED is the shared secret value.

A participant is said to be redundant in an access structure if there is no
minimal qualified set containing it. An access structure is connected if there is
not any redundant participant in it.

The ratio ρ(Σ) = H(ED)/maxi∈P H(Ei) is called the information rate of
the scheme Σ, and the optimal information rate ρ(Γ ) of the access structure
Γ is the supremum of the information rates of all secret sharing schemes with
access structure Γ . It is not difficult to check that H(Ei) ≥ H(ED) for every
non-redundant participant i ∈ P , and hence ρ(Σ) ≤ 1. Secret sharing schemes



with ρ(Σ) = 1 are said to be ideal and their access structures are called ideal as
well. Of course, ρ(Γ ) = 1 for every ideal access structure Γ .

If the sets E and Ei are vector spaces over some finite field K , the mappings
πi are linear mappings, and the uniform probability distribution is considered
in E, we say that Σ is a K -linear secret sharing scheme. The linear schemes
in which Ei = K for every i ∈ Q are ideal and they are called K -vector space

secret sharing schemes. Their access structures are called K -vector space access

structures. Observe that there exist ideal linear schemes that are not vector space
secret sharing schemes. In such schemes, dim Ei = dim ED > 1 for every i ∈ P .

We notate P(Q) for the power set of Q. Given a secret sharing scheme Σ on
the set P = Q − {D}, consider the mapping h : P(Q) → R defined by h(X) =
H(X)/H(ED). This mapping satisfies the following properties [13].

1. h(∅) = 0, and
2. h is monotone increasing : if X ⊆ Y ⊆ Q, then h(X) ≤ h(Y ), and
3. h is submodular : if X,Y ⊆ Q, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ),

and
4. for every X ⊆ Q, either h(X ∪ {D}) = h(X) + 1 or h(X ∪ {D}) = h(X).

A polymatroid is any pair S = (Q,h) satisfying the first three properties.
Polymatroids satisfying the fourth property as well will be called here D-secret
sharing polymatroids, or D-ss-polymatroids for short. Therefore, every secret
sharing scheme Σ defines a D-ss-polymatroid S = S(Σ) = (Q,h). Nevertheless,
there exist D-ss-polymatroids that are not associated with any secret sharing
scheme.

For a D-ss-polymatroid S = (Q,h), we consider the access structure

ΓD(S) = {A ⊆ P : h(A ∪ {D}) = h(A)}.

Clearly, the access structure of a secret sharing scheme Σ is the one defined
in this way by the associated polymatroid S(Σ). Since there exists a secret
sharing scheme for every access structure Γ , all access structures are of the form
ΓD(S) for some D-ss-polymatroid S. Nevertheless, different D-ss-polymatroids
can define the same access structure.

A matroid can be defined as a polymatroid M = (Q,h) with the following
additional property.

4′. h(X) ∈ Z and 0 ≤ h(X) ≤ |X| for every X ⊆ Q, or, equivalently, for every
X ⊆ Q and x ∈ Q, either h(X ∪ {x}) = h(X) + 1 or h(X ∪ {x}) = h(X).

We need to recall now some terminology and basic facts about matroids. For a
matroid M = (Q, r) (we change from h to r because this is the usual notation
for matroids), the set Q and the mapping r are called, respectively, the ground

set and the rank function of the matroid M. The value r(X) is called the rank

of the subset X while the rank of the matroid M is defined to be r(M) = r(Q).
A subset X ⊆ Q is said to be independent if r(X) = |X|. The dependent subsets
are those that are not independent. A circuit is a minimally dependent subset



while a basis is a maximally independent subset. All bases have the same number
of elements, which coincide with the rank of the matroid.

As a consequence of the results by Brickell and Davenport [10], if Σ is an
ideal scheme, then the polymatroid S = S(Σ) is a matroid and, hence, S is a
j-ss-polymatroid for every j ∈ Q. Moreover, by considering (πi(x))i∈Q−{j} as
shares of the secret value πj(x), the scheme Σ defines an ideal secret sharing
scheme with access structure Γj(S) on the set of participants Q − {j}. We say
that Γ is a matroid-related access structure if Γ = ΓD(M) for some matroid M.
It is not difficult to check that this definition is equivalent to the one we gave in
the Introduction. Observe that the results by Brickell and Davenport [10] imply
that all ideal access structures are matroid-related.

Let K be a finite field and let M be a r0 × n matrix with entries in K .
If |Q| = n and the points in Q are put in a one-to-one correspondence with
the columns of M , a matroid M on the set Q is obtained by considering that
the rank of a subset X ⊆ Q is equal to the rank of the corresponding columns
of M . In this situation, we say that the matrix M is a K -representation of the
matroid M. The matroids that can be defined in this way are called linearly rep-

resentable. Observe that linearly representable matroids coincide with the ones
that are obtained from vector space secret sharing schemes and their related
access structures are precisely the vector space access structures. The matroids
that are associated with an ideal linear secret sharing scheme are called multi-

linearly representable, a class that contains the linearly representable matroids.
The non-Pappus matroid is not linearly representable [29], but it was proved to
be multilinearly representable in [35]. The existence of iss-representable matroids
that are not multilinearly representable is an open problem.

The matroid M is said to be connected if, for every two different points i, j ∈
Q, there exists a circuit C with i, j ∈ C. As a consequence of [29, Proposition
4.1.2], the matroid M is connected if and only if the access structure ΓD(M) is
connected. A connected matroid is determined by the circuits that contain some
given point [21]. Therefore, if Γ is a matroid-related connected access structure,
there exists a unique matroid M with Γ = ΓD(M).

3 Polymatroids and Optimal Information Rate

Most of the upper bounds on the optimal information rate that have been given
until now were obtained by information-theoretical arguments. Specifically, by
using basic properties of the Shannon entropy function. Csirmaz [13] pointed
out that all those results are based solely on the so-called Shannon inequalities

on the entropy of subsets of variables and, hence, they can be deduced from the
fact that every secret sharing scheme defines a D-ss-polymatroid related to the
access structure.

If S = (Q,h) is a polymatroid, we define σ(S) = max{h({x}) : x ∈ Q}. For
every access structure Γ , we consider the value κ(Γ ) = inf σ(S), where the infi-
mum is taken over all D-ss-polymatroids S with Γ = ΓD(S). The upper bounds



on the optimal information rate that can be obtained by using polymatroids
(that is, by using Shannon inequalities) are based on the following proposition.

Proposition 5. The optimal information rate of every access structure Γ is

upper bounded by ρ(Γ ) ≤ 1/κ(Γ ).

Proof. Let Σ be a secret sharing scheme with access structure Γ and let S be
the D-ss-polymatroid defined by Σ. Then ρ(Σ) = 1/σ(S) ≤ 1/κ(Γ ). ut

Therefore, upper bounds on ρ(Γ ) can be found by deriving lower bounds
on κ(Γ ) from combinatorial properties of the access structure. Actually, 1/κ(Γ )
is the best upper bound that can be obtained by this technique. Since κ(Γ )
deals only with the properties of the D-ss-polymatroids S such that Γ = ΓD(S),
and some of these polymatroids may not be associated with any secret sharing
scheme, there can exist access structures Γ such that ρ(Γ ) < 1/κ(Γ ). As far
as we know, no examples of access structures in this situation are known, but
Theorem 8 gives some intuition supporting their existence.

Since κ(Γ ) = 1 if Γ is matroid-related, it is clear that no upper bounds on
the optimal information rate of matroid-related access structures can be found
by using this method.

As far as we know, the only known upper bounds that do not fit this pattern
are the one given by Gál [17], which was improved in [28], and the one presented
by Beimel and Livne [2]. The first one applies only to linear secret sharing
schemes and it is the basis for proving the separation between the complexities
of linear and nonlinear schemes [1, 4]. The second one applies to the access
structures related to the Vamos matroid.

As an example of the kind of results that are obtained by using polymatroids,
we present the independent sequence method , which was introduced in [6] and
was improved in [30]. Let Γ be an access structure on a set of participants P .
Consider A ⊆ P and an increasing sequence of subsets B1 ⊆ · · · ⊆ Bm ⊆ P .
We say that (B1, . . . , Bm |A) is an independent sequence in Γ with length m
and size s if |A| = s and, for every i = 1, . . . ,m, there exists Xi ⊆ A such that
Bi ∪ Xi ∈ Γ , while Bm /∈ Γ and Bi−1 ∪ Xi /∈ Γ if i ≥ 2. The independent
sequence method is based on the following result. We notice that this theorem
was not stated in [6, 30] in terms of polymatroids, but in terms of the entropy
function. The proof in [6] is easily adapted to this new statement.

Theorem 6. ([6, 30]) Let Γ be an access structure on the set P . Let S = (Q,h)
be a D-ss-polymatroid such that Γ = ΓD(S). If there exists in Γ an indepen-

dent sequence (B1, . . . , Bm |A) with length m and size s, then h(A) ≥ m. As a

consequence, κ(Γ ) ≥ m/s and ρ(Γ ) ≤ s/m.

The following corollary of that theorem points out that independent se-
quences can be used in the characterization of matroid-related access structures.
Actually, the converse of this result will be proved in Section 4.

Corollary 7. An access structure is not matroid-related if it admits an inde-

pendent sequence with length m and size s < m.



The next result by Csirmaz [13] points out the limitations of the use of
polymatroids to find upper bounds on the optimal information rate.

Theorem 8. ([13]) If Γ is an access structure on a set P of participants with

|P | = n, then κ(Γ ) ≤ n.

Proof. It is not difficult to prove that there exists a D-ss-polymatroid S = (Q,h)
with Γ = ΓD(S) such that h(X) = n + (n − 1) + · · · + (n − (k − 1)) for every
subset of participants X ⊆ P with |X| = k. ut

By taking into account the known methods to construct secret sharing schemes,
it is against intuition to suppose that there can exist, for every access structure,
a secret sharing scheme such that the length of the shares is around n times the
length of the secret. Therefore, as a consequence of Theorem 8, it seems that the
optimal information rate of an access structure will be in general much smaller
than 1/κ(Γ ), the best upper bound that can be obtained by using polymatroids.
Nevertheless, besides the Shannon inequalities, the properties of the entropy
function imply other inequalities, the so-called non-Shannon inequalities. Thus,
it might be possible to find better upper bounds on the optimal information rate
than the ones derived from Proposition 5 by using information theory. This may
be the case for matroid-related access structures as well.

Anyway, the polymatroid technique has proved to be very useful when study-
ing some particular families of access structures. In some cases the obtained up-
per bounds are tight or, at least, close to the best known lower bounds. In the
following we prove a positive result for the polymatroid technique. Namely, we
prove in Theorem 12 that the bounds that are obtained by this technique for an
access structure apply also to its dual.

Before presenting our result, we recall some facts about dual access structures
and dual matroids. The dual of the access structure Γ on the set P is defined as
the access structure Γ ∗ = {A ⊆ P : P −A /∈ Γ}. If M = (Q, r) is a matroid, the
mapping r∗ : P(Q) → Z defined by r∗(X) = |X| − r(Q) + r(Q − X) is the rank
function of a matroid M∗ = (Q, r∗), which is called the dual of the matroid M.
Since ΓD(M∗) = (ΓD(M))∗, the dual of a matroid-related access structure is
matroid-related. If Σ is an ideal secret sharing scheme with access structure Γ ,
then there exists a linear scheme Σ∗ with access structure Γ ∗ and information
rate ρ(Σ∗) = ρ(Σ) [14]. Actually, Σ can be seen as a linear code, and the linear
scheme Σ∗ is the one constructed from the dual code. As a consequence, if a
matroid is linearly or multilinearly representable, the same applies to the dual
matroid. Nevertheless, it is not known whether the dual of an iss-representable
matroid is iss-representable, and the relation between ρ(Γ ) and ρ(Γ ∗) is an open
problem too. Our result, Theorem 12, deals with this open problem. Specifically,
we prove that the upper bounds for ρ(Γ ) that are obtained by the polymatroid
technique apply also to ρ(Γ ∗).

There exist several inequivalent ways to define the dual of a polymatroid [39]
and we have to choose the suitable one to prove our result. Specifically, if
S = (Q,h) is a polymatroid, we consider the dual polymatroid S∗ = (Q,h∗),
where h∗ : P(Q) → R is defined by h∗(X) =

∑
x∈X h({x}) − h(Q) + h(Q − X).



This definition generalizes the duality that is usually considered for matroids.
Clearly, if M = (Q, r) is a loopless matroid, that is, with r({x}) = 1 for every
x ∈ Q, then the dual matroid of M coincides with the dual polymatroid. We
prove in the next lemma that S∗ is actually a polymatroid, and we describe in
Lemma 10 the relation between the dual of a D-ss-polymatroid and the dual of
the corresponding access structure.

Lemma 9. S∗ = (Q,h∗) is a polymatroid.

Proof. Obviously, h∗(∅) = 0. Take a subset X ⊆ Q and a point y /∈ X. Since
h({y}) + h(Q − (X ∪ {y})) ≥ h(Q − X), we get that h∗(X ∪ {y}) ≥ h∗(X).
Therefore, h∗ is monotone increasing. Finally, consider two arbitrary subsets
X,Y ⊆ Q. Then from the definition of h∗ and the submodularity of h,

h∗(X) + h∗(Y ) − h∗(X ∪ Y ) − h∗(X ∩ Y ) =

= h(Q − X) + h(Q − Y ) − h(Q − (X ∪ Y )) − h(Q − (X ∩ Y )) ≥ 0.

This proves that h∗ is submodular. ut
Lemma 10. Let S = (Q,h) be a D-ss-polymatroid. Assume that ΓD(S) 6= ∅
and ∅ /∈ ΓD(S). Then S∗ = (Q,h∗) is also a D-ss-polymatroid and ΓD(S∗) =
(ΓD(S))∗.

Proof. Let Γ = ΓD(S). Since ∅ /∈ Γ and P = Q − {D} ∈ Γ , we have that
h({D}) = 1 and h(P ) = h(Q), and hence h∗({D}) = 1. Consider a subset
X ⊆ P . Then h∗(X ∪ {D}) = h({D}) +

∑
x∈X h({x}) − h(Q) + h(P − X).

If X ∈ Γ ∗, then P − X /∈ Γ and h(P − X) = h(Q − X) − 1. In this case,
h∗(X ∪{D}) = h∗(X). Analogously, if X /∈ Γ ∗ then h(P −X) = h(Q−X), and
hence h∗(X ∪ {D}) = h∗(X) + 1. ut

To be precise, the polymatroid S∗ is properly a dual of S, in the sense that
S∗∗ = S, if and only if h(Q − {x}) = h(Q) for every x ∈ Q. The polymatroids
satisfying this property will be said to be normalized . In addition, we need
some technical results that are given in the next lemma, whose proof is an easy
exercise.

Lemma 11. Let S = (Q,h) be a polymatroid. Then the following properties

hold.

1. The polymatroid S∗ = (Q,h∗) is normalized.
2. h∗∗(X) ≤ h(X) for every X ⊆ Q.
3. S is normalized if and only if S∗∗ = S.
4. If S is normalized, then h∗({x}) = h({x}) for every x ∈ Q.

Theorem 12. Let Γ be an access structure with Γ 6= ∅ and ∅ /∈ Γ , and let Γ ∗

be its dual. Then κ(Γ ) = κ(Γ ∗).

Proof. Let Γ be an access structure. Consider the sets of real numbers Ω(Γ ) =

{σ(S) : Γ = ΓD(S)} and Ω̂(Γ ) = {σ(S) : S is normalized, Γ = ΓD(S)}. If
S is a D-ss-polymatroid such that Γ = ΓD(S), then S∗∗ is normalized, Γ =

ΓD(S∗∗) and σ(S∗∗) ≤ σ(S). Therefore, κ(Γ ) = inf Ω(Γ ) = inf Ω̂(Γ ). The proof

is concluded by taking into account that Ω̂(Γ ) = Ω̂(Γ ∗). ut



4 On the Characterization of Matroid-Related Access

Structures

4.1 A Theorem by Seymour

Let Γ be an access structure on a set P and take a subset Z ⊆ P . We define the
access structures Γ \Z and Γ/Z on the set P−Z by Γ \Z = {A ⊆ P−Z : A ∈ Γ}
and Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}. Every access structure that can be
obtained from Γ by repeatedly applying the operations \ and / is called a minor

of the access structure Γ . If Z1 and Z2 are disjoint subsets then (Γ \ Z1)/Z2 =
(Γ/Z2) \ Z1, and (Γ \ Z1) \ Z2 = Γ \ (Z1 ∪ Z2), and (Γ/Z1)/Z2 = Γ/(Z1 ∪ Z2).
Therefore, every minor of Γ is of the form (Γ \Z1)/Z2 for some disjoint subsets
Z1, Z2 ⊆ P . In addition, (Γ \ Z)∗ = Γ ∗/Z and (Γ/Z)∗ = Γ ∗ \ Z.

We can consider as well minors of matroids and polymatroids. Let S =
(Q,h) be a polymatroid. Given a subset Z ⊆ Q, we define the polymatroids
S \ Z = (Q − Z, h\Z) and S/Z = (Q − Z, h/Z), where h\Z(X) = h(X) and
h/Z(X) = h(X ∪Z)−h(Z) for every X ⊆ Q−Z. It is not difficult to prove that,
if S is a D-ss-polymatroid and Γ = ΓD(S), then for every Z ⊆ P , both S \ Z
and S/Z are D-ss-polymatroids and Γ \ Z = ΓD(S \ Z) and Γ/Z = ΓD(S/Z).
Moreover, if M = (Q, r) is a matroid, then M\Z and M/Z are matroids as well.
The following proposition is a direct consequence of all these considerations.

Proposition 13. Every minor of a matroid-related access structure is matroid-

related.

We introduce now the forbidden minors in the characterization by Seymour.
The set of participants of the access structures Φ and Φ̂ is P = {p1, p2, p3, p4}.
The minimal qualified subsets of Φ are {p1, p2}, {p2, p3} and {p3, p4}, while the

minimal qualified subsets Φ̂ are {p1, p2}, {p2, p3}, {p2, p4} and {p3, p4}. For every
s ≥ 3, the set of participants of the access structure Ψs is P = {p1, . . . , ps, ps+1}
and its minimal qualified subsets are {p1, . . . , ps} and {pi, ps+1} for every i =

1, . . . , s. Observe that Φ∗ ∼= Φ and Ψ∗
s = Ψs. The minimal qualified subsets of Φ̂∗

are {p1, p3, p4}, {p2, p3} and {p2, p4}.
The forbidden minor characterization of matroid ports by Seymour is stated

here in our terminology.

Theorem 14. (Seymour [32]) An access structure is matroid-related if and only

if it has no minor isomorphic to Φ, Φ̂, Φ̂∗ or Ψs with s ≥ 3.

4.2 Generalizing the Result by Brickell and Davenport

New characterizations of matroid-related access structures are given in Theo-
rem 17. They are obtained by combining Theorem 14 with the results in Sec-
tion 3. As a consequence we obtain Theorem 4, a generalization of the result by
Brickell and Davenport [10].

We need to introduce two technical results that are used in the proof of The-
orem 17. First, the independent sequence method we have described in Section 3



has a good behavior with respect to minors, and second, all the forbidden mi-
nors in Seymour’s characterization admit an independent sequence with length
m = 3 and size s = 2.

Lemma 15. Let Γ ′ be a minor of an access structure Γ . If there exists in Γ ′

an independent sequences with length m and size s, then the same occurs for Γ .

Proof. Consider disjoint subsets Z1, Z2 ⊆ P such that Γ ′ = (Γ \Z1)/Z2. Suppose
that (B1, . . . , Bm |A) is an independent sequence with length m and size s = |A|
in Γ ′. Then (B1 ∪ Z2, . . . , Bm ∪ Z2 |A) is an independent sequence in Γ . ut

Proposition 16. Every one of the access structures Φ, Φ̂, Φ̂∗, and Ψs with s ≥ 3
admits an independent sequence with length m = 3 and size s = 2.

Proof. We are going to consider sequences (B1, B2, B3 | a1a2) with B1 ⊆ B2 ⊆
B3 ⊆ P and a1, a2 ∈ P . Such a sequence will be independent in the access
structure Γ if the subsets B1 ∪ {a1, a2}, B2 ∪ {a1} and B3 ∪ {a2} are in Γ while
B1 ∪{a1}, B2 ∪{a2} and B3 are not in Γ . The sequence (∅, {p1}, {p1, p4} | p2p3)

is independent for both Φ and Φ̂, while an independent sequence for Φ̂∗ is
(∅, {p4}, {p1, p4} | p2p3). Finally, (∅, {ps}, {p2, . . . , ps} | ps+1p1) is an independent
sequence in Ψs. ut

Theorem 17. Let Γ be an access structure. Then the following statements are

equivalent.

1. Γ is matroid-related.

2. There does not exist in Γ any independent sequence with length m and size

s < m.

3. There does not exist in Γ any independent sequence with length m = 3 and

size s = 2.
4. κ(Γ ) < 3/2.

Proof. If Γ is matroid-related, then κ(Γ ) = 1 and, by Corollary 7, there does not
exist in Γ any independent sequence with length m and size s < m. In addition,
by Theorem 6, there does not exist in Γ any independent sequence with length
m = 3 and size s = 2 if κ(Γ ) < 3/2. Finally, if Γ is not matroid-related, then
there exists a minor Γ ′ of Γ that is isomorphic to one of the forbidden minors
in Theorem 14. From Proposition 16, Γ ′ admits an independent sequence with
length m = 3 and size s = 2 and, by Lemma 15, the same occurs with Γ . ut

Two direct consequences of Theorem 17 are stated in Corollary 18. Our
main result, Theorem 4, is proved from the second one. As we said before, we
have obtained in this way a generalization of the important result by Brickell
and Davenport [10], who proved that the access structure of every ideal secret
sharing scheme is matroid-related. Moreover, since the result by Brickell and
Davenport has not been used in the proof of Theorem 17, we have presented
here an alternative proof for it.

Corollary 18. Let Γ be an access structure. Then the following statements hold.



1. Γ is matroid-related if and only if κ(Γ ) = 1.
2. If Γ is not matroid-related, then κ(Γ ) ≥ 3/2, and hence ρ(Γ ) ≤ 2/3.

This result implies a gap in the values of κ(Γ ). Namely, there does not exist
any access structure Γ with 1 < κ(Γ ) < 3/2. This gap does not mean that the
corresponding gap appears in the values of the optimal information rate ρ(Γ ).
Specifically, the existence of non-ideal matroid-related access structures Γ with
2/3 < ρ(Γ ) < 1 is an open problem.

5 On Non-Ideal Matroid-Related Access Structures

Since there exist matroids that are not iss-representable, there are matroid-
related access structures that are not ideal. Very little is known about the opti-
mal information rate of these structures. We cannot find upper bounds by the
techniques in Section 3 because κ(Γ ) = 1 if Γ is matroid-related. By using other
techniques, upper bounds have been given by Beimel and Livne [2]. We present
here some lower bounds on the optimal information rate of the access structures
related to the Vamos matroid and the non-Desargues matroid.

The Vamos matroid V is the matroid on the set Q1 = {v1, . . . , v8} such that
its bases are all sets with cardinality 4 except the following five: {v1, v2, v3, v4},
{v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8} and {v5, v6, v7, v8}. The Vamos ma-
troid is not iss-representable [33] and, hence, the access structures related to it
are not ideal. In a recent work, Beimel and Livne [2] prove that, for every secret
sharing scheme realizing one of these access structures with domain of the secrets
of size k, the size of the domain of the shares is at least k+Ω(

√
k). Observe that

this bound does not exclude that the optimal information rate of these structures
may be equal to one, because ρ(Γ ) is the supremum of the information rates of
the schemes realizing Γ .

The non-Desargues matroid N is the matroid with rank 3 on a set with 10
points determined by a non-Desargues configuration on a projective plane. That
is, take three different lines L1, L2, L3 that meet in a point p0 and, on the line
Li, two different points qi, ri 6= p0. Finally, consider the points s12, s23, and s31,
where sij is the intersection of the lines qiqj and rirj . If such a configuration has
been taken on a projective plane over a field, the points s12, s23 and s31 must
be collinear by the Desargues’ Theorem. The non-Desargues matroid is defined
by this configuration but considering that the three points sij are not collinear.
That is, the set of points of N is Q2 = {p0, q1, q2, q3, r1, r2, r3, s12, s23, s31}, and
the bases are all subsets with three points that are not supposed to be collinear.
As a consequence of the Desargues’ Theorem, this matroid is not linearly repre-
sentable. Moreover, Matúš [27] proved that it is not iss-representable.

Lower bounds on the optimal information rate of the access structures related
to those matroids are given in the next theorem. We just present here a sketch
of the proof. All details will be discussed in the full version.

Theorem 19. Consider two arbitrary points D1 ∈ Q1 and D2 ∈ Q2 and the

access structures Γ1 = ΓD1
(V) and Γ2 = ΓD2

(N ). Then ρ(Γ1) ≥ 2/3 and ρ(Γ2) ≥
3/4.



Proof. Suppose that D1 = v1. For every 2 ≤ i < j ≤ 8, let Γ (i,j) be the access
structure on P1 whose minimal qualified subsets are the minimal qualified subsets
A of Γ1 such that {vi, vj} 6⊆ A. It can be proved that Γ (3,4), Γ (5,6) and Γ (7,8)

are K -vector space access structures for some finite field K . By applying the
λ-decomposition technique to these substructures, we get that ρ(Γ1) ≥ 2/3. A
similar construction can be obtained for other values of D1 ∈ Q1.

There exists a finite field K such that, for every x ∈ P2 = Q2 − {D2},
the matroid N \ {x} is K -representable and, hence, Γ2 \ {x} is a K -vector
space access structure. Therefore, we can apply the λ-decomposition technique
by Stinson [38] to the nine access structures {Γ2 \ {x}}x∈P2

. By doing that, a
secret sharing scheme for Γ2 with information rate equal to 3/4 is obtained. ut

Access structures of. . . Access structures related to. . .

SSS with ρ > 2/3
=⇒ [here]
⇐= ?

Matroids

⇑ 6⇓ [27, 33]
Ideal SSS ⇐⇒ [10] Iss-representable matroids

⇑ ⇓?
Ideal linear SSS ⇐⇒ Multilinearly representable matroids

⇑ 6⇓ [35]
Vector space SSS ⇐⇒ [9] Linearly representable matroids

Table 1.

6 Open Problems

The known results about the connection between secret sharing and matroids,
including our main result, are summarized in Table 1. Equally, some open prob-
lems appear there. The following open problem was posed in [24, 26].

Problem 20. Is there any access structure Γ with 2/3 < ρ(Γ ) < 1?

From Theorem 4, if such an access structure exists, it must be matroid-
related. We proved before that there exist non-ideal matroid-related access struc-
tures Γ with ρ(Γ ) ≥ 3/4. Nevertheless, it is possible that ρ(Γ ) = 1 even if Γ is
not ideal. Observe that the results in [2] about the length of the shares for the
access structures related to the Vamos matroid do not imply an affirmative an-
swer to Problem 20. Actually, very little is known about the optimal information
rate of non-ideal matroid-related access structures.

Problem 21. Is there any matroid-related access structure Γ with ρ(Γ ) < 1?
And with ρ(Γ ) ≤ 2/3?



The existence of ideal access structures that are not realized by any ideal
linear secret sharing scheme is another unsolved question, which is equivalent to
the following open problem.

Problem 22. Is there any iss-representable matroid that is not multilinearly rep-
resentable?

Even though the existence of access structures Γ with ρ(Γ ) < 1/κ(Γ ) is quite
natural from Theorem 8, no actual example is known.

Problem 23. Present an access structure Γ with ρ(Γ ) < 1/κ(Γ ).
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26. J. Mart́ı-Farré, C. Padró. Secret sharing schemes on access structures with inter-
section number equal to one. Discrete Applied Mathematics 154 (2006) 552–563.

27. F. Matúš. Matroid representations by partitions. Discrete Math. 203 (1999) 169–
194.

28. V. Nikov, S. Nikova, B. Preneel. On the Size of Monotone Span Programs. Fourth

Conference on Security in Communication Networks - SCN 2004. Lecture Notes

in Comput. Sci. 3352 (2004) 252–265.
29. J.G. Oxley. Matroid theory . Oxford Science Publications. The Clarendon Press,

Oxford University Press, New York, 1992.
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